

zsh and shell scripts
Michael Steder, 06.11.2006, oo get together

1 what are we talking about?

2 feel comfortable with the zsh

3 teaching an old dog new tricks (aka use the history)

4 using shell scripts

5 summary

what are we talking about?
a shell

- interface between OS and user

- command line interpreter (CLI)

- in principle also
- X-Server
- M$ Windows desktop

- typical features of today's shells
- navigating in the directory tree
- redirecting in-/output
- expanding wild cards
- job control
- history
- tab completion

small shell selection

- sh Bourne shell, 1977/78
- csh C shell, 1979
- ksh Korn shell
- bash Bourne again shell
- pdksh
- tcsh
- ash
- zsh z shell, Paul Falstad, 1989

(Zhong Shao, userid: zsh)
-

let's not forget about some retards...

 - command.com MS-DOS
- cmd.exe Windows NT, 2000, XP, 2003

feel comfortable with the zsh
why do I need to quote ?

- some keys or characters have special meaning
e.g. “- > < | / ^C $”

- one might need/want to use them

- special characters between single quotes '...'
everything is quoted (e.g. '\'' does NOT work)

- special characters between double quotes “...”
everything quoted - except “, \, $, and ´ (e.g. “directory is $PWD”)

the three levels of quoting
task: rename a file “-|^C” to “filename”

→ mv -|^C filename
1. parameters starting with “-” are options for mv (application)

- quoting with “./” → mv ./-|^C filename
2. the pipe character “|” is used for redirecting I/O (shell)

- quoting with “\” → mv ./-\|^C filename
3. Ctrl-C “^C” will be captured by the terminal and sends an interrupt to the shell

- quoting with “^V” → mv ./-|^V^C filename

a simple quoting example
task: try to delete files starting with a space

“rm ⌴testfile” → “rm \ testfile”

feel comfortable with the zsh
what's globbing ?

- extension of wildcards to match multiple filenames
- very powerful in the zsh (see also man zshexpn)
- very brief here

now let's benefit
- setopt extended_glob enables additional features
- grep for “word” in all files except (~) compressed ones

grep word *~(*.gz | *.bz | *.bz2 | *.zip | *.Z)
- grep or list files recursivly using “**”

print -l **/*.html
grep name **/*.txt

- grep only in files containing a dot
grep *(.)

- list all files which are not (^) postscripts or pdf's
ls ^(*.ps | *.pdf)

- list all files changed up to one day before
print -l *(a1)

- change permissions of files everyone may write to
chmod 640 *(w)

- make life more efficient with aliases (be careful...)
alias -g §k = “*~(*.gz | *.bz | *.bz2 | *.zip | *.Z)”
→ ls -d §k
unalias '§k' !! mind the single quotes !! (or the alias will be interpreted)

feel comfortable with the zsh
redirects and pipes

- zsh supports redirecting to or from multiple files
ls > file1 > file2 > file3
less < file4 < file5

- zsh supports redirecting and piping at the same time
make > logfile | grep error

- cut out a part of the output
cat file | cut -d”;” -f 1,3 (-d delimiter, -f fields)

cat /etc/resolv.conf | grep nameserver | cut -d” ” -f 2

- piping to files within a shell script
cat >! $STEERFILE << EOF
This text from here until End Of File will enter the file
formatted as written here....
EOF

- temporary files
e.g. show diff of two compressed files

diff <(zcat first.gz) <(second.gz)

act on no orders
- if no command is given, $READNULLCMD is used (default: more)

< file → more file

feel comfortable with the zsh
handle files within $PATH

- list or edit files with “=name”
ls -iL =xemacs
xemacs =passwd (if /etc is part of $PATH)

wildcards
- list all files ending with .a or .b

ls *.[ab]
- list all files not ending with ' ~ '

ls *[^~]

change directories
- pushd is like cd, but stores current directory on a stack
- popd restores this later on
- pushd without specifying a directory stores the current dir

- same directory tree with different versions
use the old fashioned
msteder@h1trinidad:~/h1/30/a/b/c>cd ../../../../27/a/b/c/

or the zsh way
msteder@h1trinidad:~/h1/30/a/b/c>cd 30 27
msteder@h1trinidad:~/h1/27/a/b/c>

mailto:msteder@h1trinidad
mailto:msteder@h1trinidad
mailto:msteder@h1trinidad

feel comfortable with the zsh
controll the jobs

Ctrl-Z suspends a running job and returns to shell
cmd & starts a job in the background
jobs shows suspended and in background running jobs
fg %2 gets job 2 in the foreground
bg %3 puts job 3 in the background

get the right job
get the...

%% or %+ last job

%- job before last

%2 second job

%xyz last job starting with xyz

%?xyz last job containing xyz

or a bit shorter
fg,%,%% or %+ ≙ fg %%

bg ≙ bg %%

%2 ≙ fg %2

%xyz, %?xyz ≙ fg %xyz, fg %?xyz

teaching an old dog new tricks (aka use the history)

the shell history
- stores all shell commands in a history file .history
- ignores lines starting with a blank ((un)setopt HIST_IGNORE_SPACE)

use the shell history
common but inefficient ways

- scroll the whole terminal → cut and paste
- use “cursor up” to scroll through the list
- “cat .history | grep command” → cut and paste

if you pretend to be lazy – be lazy !
- get the correct line

!! last command line (in history)
!3 third line
!-2 line before last
!xyz last line starting with “xyz”
!?xyz last line containing “xyz”

- get the correct parameter
:* all parameters
:^ first parameter
:$ last parameter
:2 2nd parameter
:2-4 2nd - 4th parameter

teaching an old dog new tricks (aka use the history)

- modify history expansion
:h remove last path component (/h1/test → /h1)
:t remove path of a filename (/h1/test/file → file)
:r remove last file extension (/h1/test.tar.gz →:r :r → /h1/test)
:e only keep the extension (/h1/test.tgz → .tgz)
:p only print result, don't execute
:s/a/b/ replace “a” once by “b”
:gs/a/b replace all “a” by “b”

let's become real sluggards...
- use short forms

!^ ≙ !!:^
!$ ≙ !!:$
!:2 ≙ !!:2
!* ≙ !!:*
^a^b ≙ !!:s/a/b

or a bit more intuitively?
Ctrl-R starts interactive search
Meta-P searches for the text in the command line
fc -l -10 lists the last 10 commands
fc opens last command to edit in $FCEDIT (default vi)

echoes the command and executes

teaching an old dog new tricks (aka use the history)

efficient and excessive ...

tar cvf file-1.2.3woody4_i386.tar file
gzip -9v file-1.2.3woody4_i386.tar
mv file-1.2.3woody4_i386.tar.gz file-1.2.3woody4_i386.tgz
mkdir backup
mv file-1.2.3woody4_i386.tgz backup
mv backup Backup
cd Backup

tar cvf file-1.2.3woody4_i386.tar file
gzip -9v !:2
mv !$.gz !$:r:r.tgz
mkdir backup
mv !mv:$!$
mv !$!$:s/b/B
cd !$

- fault-tolerant but hard to read
- therefore better to use in shell scripts

using shell scripts
what's a shell script

- an executable file containing
- linux commands
- control structures
- variables
- comments
- other shell scripts

- reduces expenditure of time (for recurring tasks)

how does a shell script look like
- first line denominates the interpreting shell

#! /bin/zsh
- followed by the code
- commands are seperated by either a new line or a “;”

comments
- lines starting with a “#” are not interpreted (except 1st line)
- works also in the middle of a line (for the rest of it)

variables
- assignment

name = X
- access

$name

using shell scripts
controll structures

- loop
while loops

while true; do echo -n .; sleep 1; done;
while [$VarA -le $VarB]; do echo -n .; sleep 1; done;

until loops
until false; do echo -n .; sleep 1; done;

for loops
for i in 1 2 3; echo $i; sleep 1; done;
for ((i=1;i<4;i++)); echo $i; sleep 1; done;
foreach flag (jpsi dstar ...); print $flag; end
foreach file ($(ls*.[ab])); print $file; end

- decide
if [$flag = 'jpsi'] ; then ; selection="NumJPsi>0" ; fi
if ((NumJPsi > 0)) ; then ;... ; else ;...; fi

using command line parameters
- simply use “$n”, where n is the position of the parameter

script.zsh:
#! /bin/zsh
print "Nice to see you, $1." #$1 is the 1st parameter

~$./script.zsh Shiraz
Nice to see you, Shiraz.

using shell scripts
in medias res

- small example for a shell script
- (()) allows syntax similar to C
- calculates somehow funny...

#! /bin/zsh
multiply.zsh
print
print "This program multiplies two numbers."
print "Usage: ./multiply.zsh a b,"
print " where a and b are the numbers to multiply"
print
print $1" * "$2" = "$(($1*$2))

msteder@h1trinidad:~>./multiply.zsh 2.3 2

This program multiplies two numbers.
Usage: ./multiply.zsh a b,

 where a and b are the numbers to multiply

2.3 * 2 = 4.5999999999999996

using shell scripts
replacement via character string indices

- replacing characters in strings
- negative indices count down from the end

#! /bin/zsh

a="i didn't do it."
print $a
a[1]='I'
a[-1]='. (Bart Simpson)'
print $a

msteder@h1trinidad:~>./test.zsh
i didn't do it.
I didn't do it. (Bart Simpson)

using shell scripts
associative arrays

- arrays with strings as indices
- syntax similar to maps in STL

#! /bin/zsh
#typeset is a very powerful formatting command
typeset -A ass_array; ass_array=(one 1

 two 2
 three 3

 four 4)

print $ass_array[one]
print $((ass_array[three]*ass_array[two]))
print ${(k)ass_array} # returns list of keys
print ${(v)ass_array} # returns list of values

msteder@h1trinidad:~>./test.zsh
1
6
four three two one
4 3 2 1

using shell scripts
unnamed temporary variables 1

- $(cmd) returns output of cmd execution
- [n] returns nth “word” of that output
- [n,m] returns nth - mth “word” of that output
- nested use possible

#! /bin/zsh

print date
print $(date)
print “ “${$(date)[4]}
#nested to retrieve time from date without seconds
print “ “${$(date)[4][1,5]}

msteder@h1trinidad:~>./test.zsh
date
Fr Nov 3 04:17:23 CET 2006
 04:17:23
 04:17

using shell scripts
unnamed temporary variables 2

- #String cuts of “String” at the beginning of the word

#! /bin/zsh

print ${${$(LC_ALL=de_DE /sbin/ifconfig eth0)[7]}}
print ${${$(LC_ALL=de_DE /sbin/ifconfig eth0)[7]}#Adresse:}

msteder@h1trinidad:~>./test.zsh
Adresse:131.169.103.233
131.169.103.233

using shell scripts
unnamed temporary variables 3

- get a specific line out of a file

#! /bin/zsh
#This is the 2nd line of test.zsh

#print 2nd line from file test.zsh
print -l ${"$(< test.zsh)"[(f)2]}
print

#print 1st line containing “root”
print -l ${"$(< /etc/passwd)"[(fr)*root*]}

#print 1st line containing “root” cut off userID
print -l ${"$(< /etc/passwd)"[(fr)*root*]#root:}

msteder@h1trinidad:~>./test.zsh
#This is the 2nd line of test.zsh

root:x:0:0:root:/root:/bin/bash
x:0:0:root:/root:/bin/bash

using shell scripts
calculating with the z shell

- the mathfunc module offers a lot of functions
- load module with zmodload zsh/mathfunc

#! /bin/zsh

zmodload zsh/mathfunc
print “sin(1+2) = “$((sin(1+2)))
print “sqrt(2) = “$((sqrt(2)))
print “2^2 = “$((2**2))

msteder@h1trinidad:~>./test.zsh
sin(1+2) = 0.14112000805986721
sqrt(2) = 1.4142135623730951
2^2 = 4

- output in different bases
[#base] prints base and number
[##base] prints only number
for ((i=1; i<20; i++)){ print $(([#10] i))} #dec

 -”- { print $(([#16] i))} #hex
 -”- { print $(([##16] i))} #hex only num

using shell scripts
testing files

- various tests on file conditions can be made

returns true, if file...
-e exists
-d is a directory
-g has setgid bit set
-h is symbolic link
-k has sticky bit set
-r is readable
-s has size > 0
-w is writeable
-x is executable
-O is owned by UID
-G is owned by GID

two argument test [[a test b]]
-nt a newer than b
-ot a older than b
-....

#! /bin/zsh
if test -e test.zsh
then
print "test.zsh exists";
else
print "test.zsh missing";
fi

msteder@h1trinidad:~>./test.zsh
test.zsh exists

summary
overview over zsh features

- not really brief
- nevertheless very fragmentary
- see H1Tools/submit_oosubsetuser.sh to learn about the use of scripts

many commands make life more comfortable
- on the shell
- in shell scripts

all other script languages can be used
- Perl, Python, Ruby, ...
- not mentioned here
- listen to Mira (regExp in perl, 27.11.) or Christian (perl introduction, 18.12.)

more features of the zsh
- a free programmable TAB completion
- compatible with bash, ksh, tcsh
- very flexible prompt
- use ~/.zshrc to configure your personal zsh

Love your shell and your shell will love you...

