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0 Literature and Supplementary Material

• O. Babelon, D. Bernard, M. Talon, Introduction to Classical Integrable Systems, 2003

– Formal developments and motivation: Chapter 5

– Explicit computation for Toda model: Chapter 6

• E. Sklyanin, The Quantum Toda Chain, 1984 (historical paper, but very bare bones)

• E. Sklyanin, Separation of variables – new trends, 1995, arXiv:solv-int/9504001
(some motivation and formal developments)

• V. Kuznetsov, F. Nijhoff, E. Sklyanin, Separation of variables for the Ruijsenaars sys-
tem, arXiv:solv-int/9701004 (for Ruijsenaars-Schneider, but very general ex-
planation of the method)

• P. Ryan, Integrable systems, separation of variables and the Yang-Baxter equation, PhD
thesis, arXiv:2201.12057 [math-ph] (short introduction in chapter 6)

1 Overview of the general idea

Before proceeding with SoV applied to the Toda model, it is useful to briefly spell out
the general algorithm (insofar as it exists) for models of this type. The essence of the
SoV approach lies in finding a set of so-called separating equations

Φi
(

p̃i, q̃i, {Hj}
)
= 0 , i = 1, . . . , N , (1)

for a set of canonical variables ( p̃i, q̃i), which allow us to relate each momentum to its
conjugate position variable in terms of the integrals of motion Hj. One way of seeing
that this is useful is to consider the very common (albeit not general) case ˙̃qi = p̃i. In
this case, after solving for the momentum p̃i, we can use this relation to obtain an ODE,
which is easily solved
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˙̃qi = p̃i
(
q̃i, {Hj = const}

)
=⇒ t(q̃i) =

∫ dq̃i

p̃i
(
q̃i, {Hj = const}

) . (2)

In the general case, this result can also be achieved by considering the generating func-
tion of the canonical transformation to action-angle variables, which splits into a sum
of single-particle generating functions, determined by ODEs.

The question then is how to actually obtain such a set of variables and their separat-
ing equations. For this let us therefore consider the Lax formulation of a (at this stage
fairly generic) integrable model. Given a generic monodromy matrix M(λ) (or Lax, it
doesn’t really matter as long as it describes the equations of motion, and evolves by
conjugation) so far, we have constructed our conserved quantities in terms of the trace
T(λ) = tr M(λ). However, we may alternatively consider the set of eigenvalues Λ(λ),
which are also conserved in time, given by the roots of the characteristic polynomial

det(M(λ)− Λ(λ)1) = 0 . (3)

This defines the spectral curve Σ = {(λ, Λ(λ)) | (3)}, which will be the main object of
this lecture. Since we are imposing one complex constraint on two complex variables,
this is a smooth curve of complex dimension one, i.e. a Riemann surface. One benefit of
this parametrization is that we can more-or-less automatically obtain a set of separated
(i.e. obeying separating equations) variables by choosing points that lie on the spectral
curve, since evaluating eq. (3) then gives the separating equation. A convenient choice
for our separated variables turns out to be the poles of (one of) the eigenvectors of M(λ)
(given a fixed normalization, then called Baker-Akhiezer functions), and their associ-
ated eigenvalues. To see why this choice is good, consider that the spectral curve itself
(by construction) contains no information about the dynamics of the theory, seeing as it
is conserved. Ultimately the complete data describing the theory is encoded in M(λ),
meaning that in order to reconstruct the dynamics, we should also consider its eigen-
vectors (since that is then equivalent to knowing M(λ)). However fully determining
these functions is in some sense overkill, since we know (again, by construction) that
these are meromorphic functions on the spectral curve. It should therefore be sufficient
to understand their behavior at the poles. While still somewhat arbitrary, this gives
some motivation for why this might be a good choice for separated variables. From
here one has also opened the door to the theory of Riemann surfaces via the spectral
curve, which enables the use of numerous tools for solving the EoMs, notably the Abel
map (c.f. lecture 3).

Note that we cannot expect this strategy to work in general, since there are still some
potential points of failure. For one thing, it is not guaranteed that, for a given normal-
ization, there exist the right number of poles corresponding to the degrees of freedom of
our system. For another, since we have made no reference to the Poisson structure, we
have no reason to expect these variables to be canonical. Miraculously, as we will see
in the case of the Toda chain, the method is nonetheless successful in many cases if one
can find the right choice of normalization. In the absence of a more precise explanation,
it is therefore also called Sklyanin’s magic trick.
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2 Recap of the closed Toda chain

As a reminder, the closed Toda model consists of a “chain” of N particles (with periodic
boundary conditions) described by the Hamiltonian

H =
N

∑
n=1

p2
n

2
+ eqn−qn+1 , qN+1 ≡ q1 . (4)

Its equations of motion then read

q̇n = pn , ṗn = eqn−1−qn − eqn−qn+1 , (5)

which can be reformulated in terms of a (discrete) Lax pair

Ln(λ) =

(
0 eqn

−e−qn λ − pn

)
, Mn(λ) =

(
0 −eqn

e−qn+1 −λ

)
, λ : spectral parameter,

(6)
satisfying the “flatness condition” L̇n = Mn+1Ln − Ln Mn (c.f. Lukas’ notes from the
previous lecture). From this, we can define the monodromy matrix M(λ) (note the
absence of the index, distinguishing it from Mn in eq. (6), which we will no longer use)
and the transfer matrix T(λ)

M(λ) ≡ LN(λ)LN−1(λ) . . . L1(λ) ≡
(

A(λ) B(λ)
C(λ) D(λ)

)
, T(λ) = tr M(λ) ≡

N

∑
k=0

Hkλk ,

(7)
which is the generating function of the integrals of motion Hk. In particular, we have
HN−1 = −P (the total momentum), and HN−2 = P2/2 − H, while HN = 1.

Let us record some useful properties of the monodromy matrix M(λ). First, it is easy
to check at the level of the Lax matrices Ln, that det M(λ) = 1. In addition, an explicit
computation reveals the degree of the polynomials A, B, C, D to be

A(λ) ∼ λN−2 + . . . , B(λ) ∼ λN−1 + . . . , C(λ) ∼ λN−1 + . . . , D(λ) = λN + . . .
(8)

Aside from their conservation, the Liouville-Arnold theorem also requires the integrals
Hk to be in involution (i.e. to Poisson commute), which turns out to be equivalent to
the existence of a classical r-matrix, here given explicitly by r12(λ) = − 1

λ P12, expressing
the Poisson bracket of the components of Ln via

{L1,n(λ), L2,n(µ)} ≡ {Ln(λ)⊗ 1,1⊗ Ln(µ)} = [r12(λ − µ), Ln(λ)⊗ Ln(µ)] . (9)

Here the Poisson bracket is to be understood component-wise, and P12 is the permuta-
tion matrix which exchanges the two factors of C2, given explicitly by
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P12 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (10)

One can then show that the same relation also holds for the monodromy matrix M(λ).

3 Separation of Variables for the Closed Toda Model

Let us now try and apply the SoV to the Toda model. Since we are dealing with a 2 × 2
matrix, we can compute the spectral curve explicitly by expanding the determinant

det(M(λ)− Λ(λ)1) = det M+Λ(λ)2 −Λ(λ) tr M(λ) = 0 ⇐⇒ T(λ) = Λ(λ)+
1

Λ(λ)
.

(11)
Furthermore, one can easily show (by normalizing the first component to 1), that the
poles of the Baker-Akhiezer functions ψ(λ) are given precisely by the zeros of B(λ). We
therefore define our new variables (γr, Λr) by

B(λ) = γN

N−1

∏
r=1

(λ − γr) , (12)

as well as

Λr = Λ(γr) , r = 1, . . . , N − 1 , D(λ) = λN + ΛNλN−1 + . . . (13)

In particular, since at λ = γr, M becomes lower triangular, the eigenvalues are simply
given by A, and D. Here we choose Λr = D(γr). The variables γN , ΛN encode the
center of mass motion of the system (since ΛN = HN−1 = −P) and therefore decouple,
so we will not consider them further. By plugging these variables into our spectral
curve (11), we obtain the separating equation

T(γr) = Λr +
1

Λr
. (14)

What we have yet to determine are the Poisson brackets of our new “separated” vari-
ables. Using the expression (9) (for M(λ)), we find that the new variables (γr, Λr) are
(almost) canonical, i.e. we that have

{γr, γs} = {Λr, Λs} = 0 , {γr, Λs} = δrsΛs ⇐⇒ {γr, log Λs} = δrs . (15)

To show this, we expand eq. (9) using the fact that conjugation by P12 exchanges the
order of the tensor product, and P2

12 = 1
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{M(1)(λ), M(2)(µ)} = [r12(λ − µ), M(λ)⊗ M(µ)]

= r12(λ − µ) (M(λ)⊗ M(µ)− M(µ)⊗ M(λ)) . (16)

Since multiplying with P12 from the left simply exchanges the second and third row, we
can immediately read off

{A(λ), A(µ)} = {B(λ), B(µ)} = {C(λ), C(µ)} = {D(λ), D(µ)} = 0 . (17)

From here the first two equations follow from the Leibniz rule and evaluation at γr
respectively, while the third requires a combination of the two applied to {B(λ), D(µ)}.

We can also deduce the (generalized) equations of motion for the γ’s, i.e. their Pois-
son bracket with the transfer matrix T(λ) (which contains the Hamiltonian, thereby
justifying the name EoM)

{T(λ), γs} =
√

P(γs)∏
r ̸=s

λ − γr

γs − γr
, P(λ) = T(λ)2 − 4 . (18)

Evidently these equations of motion are still very much coupled and nonlinear. How-
ever, by this new choice of variables, we have now mapped the problem of solving
the EoMs on the full 2N-dimensional phase space, to that of the dynamics of N − 1
points on a Riemann surface. In order to better understand their motion, we first need
to determine the topology of the spectral curve Σ. To do so, it is useful to slightly repa-
rameterize it by completing the square and rearranging slightly, which gives

µ2 = P(λ) , µ = 2Λ − T(λ) , P(λ) = T(λ)2 − 4 . (19)

Let us now compute the genus of the spectral curve Σ = {(µ, λ) | µ2 = P(λ)}. Clearly,
for any nonzero value of P(λ), there are always two solutions µ± = ±

√
P(λ), such

that we start with a double cover of the complex plane. However when P(λ) = 0,
there is only one solution, meaning that we should identify the roots on both “sheets”,
and connect them by branch cuts, across which a smooth curve is transported to the
other branch. By a slight deformation of this picture, it is analogous to gluing together
the two planes (with discs cut out) with a cylindrical tube for every pair of branch
points connected by a branch cut (one also needs to flip one of the sheets to account
for orientation). One can also show by a change of coordinates that the equations of
motion are smooth at infinity, such that we can consider the compactification where we
add a point “at each infinity” respectively (equivalently, we could have started with
µ ∈ CP1). Since P(λ) is of degree 2N by construction, the result is a compact Riemann
surface of genus N − 1.

Next, we would like to understand the motion of our separated variables γr on the
spectral curve. A first (and quite nontrivial) observation, is that the variables γr are
all real. This involves showing that they are related to the eigenvalues of a Hermitian
matrix, but goes beyond the scope of this lecture (c.f. chapter 6.8 of Babelon et al.). It
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is therefore sufficient to study the spectral curve for real values of λ. From eq. (19), or
equivalently eq. (11), we see that there are two regimes given by{

|T(λ)| < 2 =⇒ Λ ∈ [1, ∞) , allowed zone
|T(λ)| > 2 =⇒ Λ ∈ U(1) , forbidden zone .

(20)

Since by construction the Λr are real when the γr are real, this means that the γr must
be confined to the allowed zones. From here we can make a collection of observations
which will give us the qualitative motion of the γr on the spectral curve.

1. All roots of P(λ) are real, meaning that all branch points lie on the real line, and
we have exactly N − 1 (bounded) allowed regions separated by branch cuts, along
with one at infinity.

2. Each bounded allowed region contains exactly one γr.

3. The vector field {T(λ), •} (for generic values of λ) is non-singular in the allowed
zones. This is not immediately obvious, since the rhs of eq. (18) appears to vanish
at the branch points. However this is just an artifact of our choice of coordinate,
since we are essentially only considering the projection of a circle onto the allowed
interval. It can be shown by a change of coordinates that {T(λ), •} has no fixed
points anywhere on the circle, and is therefore non-singular.

With this knowledge, we conclude that the γr must undergo periodic motion around
the allowed zones, which is equivalent to saying that they travel along the a-cycles of
the spectral curve Σ.

λ

T(λ)

2

-2

γ1 γ2

FIGURE: Real part of the spectral curve for N = 3 depicted by plotting T(λ), split into
forbidden (red) and allowed (green) zones. The branch cuts lie in the forbidden zones
(which is just convention), while the γr are confined to the allowed zones.
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