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1.1. Euler–Lagrange Equation and Conserved Currents
Recall the derivation of the Euler–Lagrange equation from a given Lagrangian density L.

a) Assume that L only depends on a field φ and its derivative ∂µφ, but not explicitly
on xµ: L = L(φ, ∂µφ). Compute the variation δS of the action S =

∫
L d4x under

a general variation φ(x) → φ′(x) + δφ(x). Assume a closed system (surface terms
vanish). Express the result in the form δS =

∫
d4x f(φ, ∂µφ) δφ.

b) Starting from the Lagrangian density L = 1
2(∂µφ∂µφ−m2φ2)+φρ, derive the equation

of motion for the field φ.

c) Let Jµ be a conserved current, such that ∂µJµ = 0. Assuming a closed system, derive
from Jµ an expression for a conserved charge Q, for which ∂Q/∂t = 0.

1.2. The Field Strength Tensor
The electric and magnetic fields ~E and ~B are expressed in terms of the scalar potential V
and the vector potential ~A as

~E = −∇V − ∂ ~A/∂t , ~B = ∇× ~A . (1.1)

The potentials are in turn combined into the four-vector Aµ = (V ; ~A). Define the
antisymmetric tensor

F µν = ∂µAν − ∂νAµ . (1.2)

a) Express the components Ei and Bi of the electric and magnetic fields in terms of the
field strength tensor F µν . Write the matrix F µν in terms of Ei and Bi.

b) Show that the Lagrangian density

L = 1
2 ( ~E2 − ~B2)− ρV + ~J · ~A (1.3)

for electrodynamics can be written as

L = − 1
4 F

µνFµν − JµAµ , (1.4)

where the sources ρ and ~J are combined in Jµ = (ρ, ~J).

1.3. Maxwell’s Equations

a) Starting with the Lagrangian (1.3), apply the Euler–Lagrange equations for V and
the three components of ~A. Recover Maxwell’s equations from your results.

b) Starting with the Lagrangian (1.4), find an equation for F µν by applying the Euler–
Lagrange equations for the four components of Aµ. Verify that the equation is
equivalent to Maxwell’s equations.

−→
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1.4. Local Gauge Transformations
Show that the Schrödinger equation for a charged particle in the presence of an electro-
magnetic field

(i∂t + eV )ψ = 1
2m (−i∂ + e ~A)2ψ (1.5)

is invariant under the simultaneous local gauge transformations

ψ → ψ′ = eiχψ ,

~A→ ~A′ = ~A+ 1
e

(∂χ) ,
V → V ′ = V − 1

e
(∂tχ) . (1.6)

1.2
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2.1. Relativistic Kinematics
Consider a two-to-two scattering event a + b→ c + d. The four particles a, b, c, and d
have masses ma, mb, mc, md, and four-momenta pa = (Ea; ~pa) etc. It is convenient to
introduce the Mandelstam variables

s = (pa + pb)2 , t = (pc − pa)2 , u = (pd − pa)2 . (2.1)

The theoretical virtue of these variables is that they are Lorentz invariant, i. e. have the
same value in all inertial systems. Experimentally, the more accessible parameters are
energies and scattering angles.

a) Show that s+ t+ u = m2
a +m2

b +m2
c +m2

d.

b) Find the energy Ea in the frame where b is at rest.

From now on, consider the center-of-mass frame, where ~pa + ~pb = 0 (this is the relevant
case for particle colliders).

c) Express Ea in terms of s, t, u, and the masses.

d) Find the total energy Etot = Ea + Eb + Ec + Ed in terms of s, t, and u.

e) The scattering angle θ is defined via ~pa · ~pc = |~pa||~pc| cos θ. For negligible masses,
express θ in terms of s, t, and u.

2.2. Lie Algebras
Let V be a vector space with a bilinear product [·, ·] : V × V → V that satisfies the
conditions

[v, w] + [w, v] = 0 (antisymmetry) , (2.2)
[v, [w, u]] + [u, [v, w]] + [w, [u, v]] = 0 (Jacobi identity) , (2.3)

for all v, w, u ∈ V . Then (V, [·, ·]) is a Lie algebra. A basis {Ta} of the vector space is
spanned by the generators Ta of the Lie algebra. Evaluating the product on the generators
gives rise to the structure constants fabc via

[Ta, Tb] = fab
c Tc . (2.4)

a) Consider a three-dimensional vector space V with basis elements T1, T2, and T3. Define
the bilinear product as follows:

[T1, T2] = −[T2, T1] = iT2 ,

[T2, T3] = −[T3, T2] = iT3 ,

[T3, T1] = −[T1, T3] = iT1 . (2.5)

Does this define a Lie algebra?

−→
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b) What relations do the antisymmetry and the Jacobi identity imply for the structure
constants fabc of a general Lie algebra?

c) The exponential map allows to map a Lie algebra element X into a group element
exp(iX) of the corresponding Lie group. Show that

det(exp(X)) = exp(tr(X)) (2.6)

for any matrix X ∈ Mat(n,C), where tr(X) is the trace of X.
Hint: Proceed in three steps: Diagonal X, diagonalizable X, and generic X.

d) Determine the properties of the Lie algebra elements for the Lie groups

SU(n) =
{
U ∈ Mat(n,C) |UU † = U †U = 1, det(U) = 1

}
,

SO(n) =
{
O ∈ Mat(n,R) |OOT = OTO = 1, det(O) = 1

}
, (2.7)

by using the relation (2.6) and the expansion expX ≈ 1 +X + . . . .

2.3. Non-Abelian Gauge Transformations
Consider a scalar field φ and a gauge field Aµ subject to the (non-Abelian) gauge transfor-
mations

φ 7→ φU := Uφ , Aµ 7→ AUµ := UAµU
−1 − i

g
(∂µU)U−1 . (2.8)

Here, U = U(~x, t) is a smooth function on spacetime that takes values in a matrix repre-
sentation R(G) of a Lie group G. The field φ transforms as a vector in this representation.
The gauge field Aµ takes values in the Lie algebra associated to G, and therefore can be
expanded in the generators of R(G).

a) Show that the transformations (2.8) form a group.

b) Verify that the covariant derivative Dµ := (∂µ− igAµ), with DU
µ := (∂µ− igAUµ ), indeed

transforms covariantly under (2.8), that is (Dµφ)U = U(Dµφ), or, in other words,
DU
µ = UDµU

−1.

c) The field strenght Fµν can be defined by

Fµνφ = i
g

[Dµ, Dν ]φ for all φ . (2.9)

Find the explicit form of Fµν in terms of ∂µ and Aµ. Defining FU
µν in terms of DU

µ ,
derive the transformation behavior of Fµν under (2.8).

d) Derive the infinitesimal version of (2.8) by writing

U = eiX , X =
∑
a

ωaT
a , (2.10)

where ωa are smooth functions of spacetime called gauge parameters, and T a are
representation matrices for the generators of the Lie group of G.

e) Bonus problem:
Rewrite the infinitesimal gauge transformation of Aµ by using the covariant derivative
of the adjoint representation.

2.2
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3.1. Dirac’s Ansatz
Dirac made the following ansatz for an equation describing the wave function ψ of a
relativistic particle:

Dψ = 0 , D = −i
(
∂

∂t
+ αi

∂

∂xi

)
+ βm . (3.1)

a) Show that requiring consistency of equation (3.1) with the relativistic energy condition
(∂2
t − ~∇2 +m2)ψ = 0 is equivalent to the conditions

α2
i = 1 , αiαj + αjαi = 0 (i 6= j) , αiβ + βαi = 0 , β2 = 1 . (3.2)

b) Set γi = βαi, and γ0 = β. Show that (3.2) is equivalent to the Clifford algebra
relations

{γµ, γν} = 2gµν . (3.3)

Solutions ψ to the Dirac equation are four-component spinors. Under Lorentz rotations,
they transform as ψ 7→ ΛSψ, ΛS = exp(iθµνSµν), with generators Sµν = i

4 [γµ, γν ], where
the matrices γµ satisfy (3.3). Assume that γ0† = γ0, and γi† = −γi.

c) Show that ψ̄ψ is a Lorentz scalar, where ψ̄ = ψ†γ0.
Hint: Show first γ0γµγ0 = γµ†, then γ0Λ†Sγ

0 = Λ−1
S .

3.2. Plane Wave Solutions
We will investigate plane-wave solutions of the Dirac equation:

ψu = u(p)e−ipµxµ , pµ = (E; ~p) , E = +
√
m2 + ~p 2 ,

ψv = v(p)e+ipµxµ , pµ = (E;−~p) , E = +
√
m2 + ~p 2 . (3.4)

a) Show that the Dirac equation for the spinors u(p) (particles) and v(p) (antiparticles)
becomes

(γµpµ −m)u(p) = 0 , (γµpµ +m)v(p) = 0 . (3.5)

For the gamma matrices γµ, we use the Dirac representation:

γ0 =
(

1 0
0 −1

)
, γi =

(
0 σi
−σi 0

)
, (3.6)

where 1 is the 2× 2 identity matrix, and σi are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.7)

b) Show that the Pauli matrices satisfy [σi, σj] = 2iεijkσk, and are therefore generators
of the Lie algebra su(2). Show also that σiσj = iεijkσk + δij1.

−→
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c) Show that (~σ · ~p) · (~σ · ~p) = ~p 2 1.

d) Verify that the Dirac equation is solved by the following spinors:

u(p) =
√
E +m

(
ξ

~σ·~p
E+m ξ

)
, v(p) =

√
E +m

( −~σ·~p
E+m χ

χ

)
, (3.8)

where ξ and χ are (at this point arbitrary) constant two-component spinors.

e) For ~p = (0, 0, p) with p > 0, and

ξ1 = χ2 =
(

1
0

)
, ξ2 = χ1 =

(
0
1

)
, ui(p) ≡ u(p)|ξ=ξi , vi(p) ≡ v(p)|χ=χi , (3.9)

verify that

u1,2 =
( √

E +m ξ1,2
±
√
E −m ξ1,2

)
, v1,2 =

(
±
√
E −m χ1,2√
E +m χ1,2

)
. (3.10)

f) The spin operator for Dirac spinors is

~S = 1
2

(
~σ 0
0 ~σ

)
. (3.11)

Compute the eigenvalues of S3 = Sz for the spinors (3.10). What is the physical
interpretation of the four states?

g) Find expressions for the spinors (3.8) in the two limits (i) E = m (particle at rest),
and (ii) E � m (relativistic particle). How does the expression in case (ii) simplify
when ξ and χ are eigenvectors of ~p · ~σ?

The four independent solutions of the Dirac equation can be interpreted as different spin
states of the electron (u) and its antiparticle, the positron (v). So far, we have seen this
for the special case ~p = (0, 0, p). For general ~p, we will see in the following that not the
spin projection S3, but the helicity is a “good” quantum number for solutions to the Dirac
equation.

h) Show that the Hamiltonian for the states (3.4) takes the form

H =
(
m ~σ · ~p
~σ · ~p −m

)
. (3.12)

i) Show that in general H does not commute with the components of the spin opera-
tor (3.11).

j) Show that H does commute with the helicity operator h, defined (for non-zero ~p) as

h = 2 ~p · ~S
|~p|

. (3.13)

3.2
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In the following exercises, we explore three steps towards the so-called Higgs mechanism,
which generates mass terms in the Standard Model. First, we study spontaneous symmetry
breaking for a discrete symmetry. Secondly, we consider a continuous (global) symmetry
and find an example of the Goldstone theorem. Finally, we consider the simplest example
of the Abelian Higgs effect.

4.1. Spontaneous Symmetry Breaking I: Discrete Symmetry
Consider the following Lagrangian for a real scalar field φ:

L = T − V , T = 1
2 ∂µφ ∂

µφ , V = 1
2 µ

2φ2 + 1
4 λφ

4 , (4.1)

where λ > 0, but µ2 may have either sign. L is invariant under the Z2 symmetry φ 7→ −φ.
a) Assuming a constant field φ(x) ≡ φ, find the value φ = v that minimizes the total

energy density T + V . Sketch the potential V for µ2 > 0 and for µ2 < 0.

b) Expand the theory around the minima (i) v = 0 for µ2 > 0 and (ii) v =
√
−µ2/λ for

µ2 < 0 by setting φ(x) = v + η(x) in L and expanding in powers of η(x).
c) Is the original Z2 symmetry visible in the re-written L? What are the masses of the

scalar field η(x) in both cases? To identify the mass term, recall the Lagrangian for a
massive real scalar field.

We learn that the choice of one of the two equivalent vacua v = ±
√
−µ2/λ for µ2 < 0

breaks the original Z2 symmetry. This means that the vacua do not have the symmetry of
the original Lagrangian, which is called spontaneous symmetry breaking.

4.2. Spontaneous Symmetry Breaking II: Goldstone Theorem
For the complex scalar field φ = (φ1 + iφ2)/

√
2 , we consider the Lagrangian

L = T − V , T = ∂µφ
∗ ∂µφ , V = µ2φ∗φ+ λ(φ∗φ)2 , (4.2)

which has a continuous global U(1) ' SO(2) symmetry under φ(x) 7→ exp(iχ)φ(x).
a) Find the minima of the total energy density T + V for a constant scalar field, for

µ2 > 0 and for µ2 < 0, and sketch the potential in the (φ1, φ2) plane.
b) Assume that µ2 < 0. Now, there is an entire circle of equivalent vacua. We pick the

vacuum point φ1 = v, φ2 = 0, with v2 = −µ2/λ. To expand around this vacuum, set

φ(x) = v + η(x) + iρ(x)√
2

, (4.3)

with ρ and η real, and expand around η = 0 and ρ = 0. What are the masses of the
two real scalar fields η(x) and ρ(x)?

You should see in this example that spontaneous breaking of the continuous global U(1)
symmetry leads to a massless scalar field, called the Goldstone boson. Intuitively, the
massless particle corresponds to the flat direction of the potential in the vicinity of the
vacuum. The massive scalar field describes excitations in the radial (non-flat) direction.

−→
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4.3. Spontaneous Symmetry Breaking III: Abelian Higgs Effect
Now, we promote the global U(1) symmetry of the previous problem to a local symmetry
(gauge symmetry). This is done in three steps: (i) introduce local gauge transformations

φ(x) 7→ exp(iχ(x))φ(x) , (4.4)

(ii) replace the partial derivative by the gauge covariant derivative:

∂µ → Dµ = ∂µ − igAµ , (4.5)

and (iii) introduce the kinetic term FµνF
µν for the Abelian gauge field Aµ. The resulting

Lagrangian reads

L = T − V , T = (Dµφ)∗(Dµφ)− 1
4 FµνF

µν , V = µ2φ∗φ+ λ(φ∗φ)2 . (4.6)

This situation is a bit more involved, but we can employ the insights gained in the previous
problem. The minima of the scalar potential remain the same, for µ2 < 0 they are given
by |φ|2 = v2 = −µ2/λ, and the complex scalar φ is re-written as in (4.3). With a suitable
gauge transformation (4.4), φ can always be made real, hence we can expand it as

φ(x) = v + h(x)√
2

, (4.7)

with a real field h(x).

a) Insert (4.7) into the Lagrangian, and sort the terms corresponding to kinetic terms,
mass terms, and interaction terms.

b) What do you observe for the scalar field h and for the gauge field A? What are their
masses? Can one infer the mass of h from the mass of Aµ?

c) Since we broke a continuous symmetry, one may ask the following: What happened to
the degree of freedom that previously was the massless Goldstone boson? Compare
the degrees of freedom before and after the symmetry breaking.

In conclusion, breaking a local symmetry evades the Goldstone theorem, i. e. there is
no massless scalar field. In addition, the gauge field has acquired a mass term due to
the symmetry breaking. Note that a mass term for gauge fields is not gauge invariant,
but can still be introduced in a gauge theory by spontaneous symmetry breaking. This
phenomenon is the celebrated Higgs effect.

4.2
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5.1. Proton Wave Function
In this problem, we consider bound states consisting of up quarks u and down quarks d,
held together by strong interactions. Because the strong interactions act identically on
all quark flavors, and because the two light quarks have similar masses, mu ≈ md, the
strong interactions possess an approximate flavor symmetry under exchanging u ↔ d.
This symmetry is expressed as an invariance under SU(2) isospin transformations(

u
d

)
7→
(
u′

d′

)
= U

(
u
d

)
, U ∈ SU(2) , (5.1)

where U is a 2× 2 special unitary matrix.1 The properties of SU(2) transformations are
familiar from the theory of spin. We know that the group SU(2) has three generators
Ti = τi/2, where τi are the three Pauli matrices

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
, (5.2)

such that U = exp(i∑i αiTi) for all U ∈ SU(2). The generators satisfy [Ti, Tj] = iεijkTk.
From quantum mechanics, we know that one can find simultaneous eigenstates of the total
isospin T 2 and the third isospin component T3. Eigenbasis states |I, I3〉 are labeled by
their eigenvalues under these two operators, such that

T 2|I, I3〉 = I(I + 1)|I, I3〉 , T3|I, I3〉 = I3|I, I3〉 . (5.3)

The two light quarks are the two eigenbasis states u = |12 ,+
1
2〉 and d = |12 ,−

1
2〉. The action

of the isospin ladder operators T± = T1 ± iT2 on any isospin eigenstate are given by

T±|I, I3〉 =
√
I(I + 1)− I3(I3 ± 1) |I, I3 ± 1〉 , (5.4)

such that
T+u = 0 , T+d = u , T−u = d , T−d = 0 . (5.5)

We want to derive a wave function for a three-quark state. We first study the combined
system of two quarks. Then, we will add the third quark.

a) The isospin doublet q = (u, d)T representation is denoted by 2. Decompose the product
representation 2⊗ 2 into irreducible isospin representations. Mathematically, this is
the same as decomposing a state of two spin 1/2 particles into multiplets of T 2 and
T3 eigenstates. Determine all appearing states and express them in terms of product
states |q1q2〉 := |q1〉 ⊗ |q2〉 with qi ∈ {u, d}. What are the eigenvalues of T 2 in the
appearing multiplets?
Hint: Use the ladder operators T± and the orthogonality of irreducible representations
in the product decomposition.2

1These isospin transformations are not to be confused with weak isospin transformations, which only
act on left-handed states. Rather, the flavor symmetry becomes the strong isospin symmetry at the level
of nucleons (protons and neutrons).

2If you are not familiar with SU(2) tensor product decompositions, see for example Chapter VI.3.3
in the lecture notes by N. Borghini at https://www.physik.uni-bielefeld.de/~borghini/Teaching/
Symmetries/Symmetries.pdf.

5.1
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b) Now, we add the third quark by taking the tensor product of another doublet 2 with
the direct sum of the triplet 3 and the singlet 1 found in a). Thus, decompose 3⊗ 2
and 1⊗ 2 into irreducible isospin multiplets, and express the states in triple products
|q1q2q3〉 := |q1〉 ⊗ |q2〉 ⊗ |q3〉 of qi ∈ {u, d}.

c) Investigate the symmetry properties of the states in the isospin quadruplet 4 and the
two isospin doublets 2 under pairwise exchanges qi ↔ qj of the three quark constituents.
Denote the two doublets by 2S (for symmetric) and 2A (for anti-symmetric).

The total wave function of a multi-quark state factorizes as ψ = φflavor χspin ξcolor ηspace. It
is known that the color wave function ξcolor for all bound states qqq is anti-symmetric under
exchange of any two quarks. We furthermore restrict to vanishing angular momentum,
such that ηspace is symmetric under pairwise quark exchange. The total wave function ψ
has to be anti-symmetric under exchange of any two of its constituents.

d) What symmetry property must φflavor χspin obey?

e) We have already determined the possible flavor wave functions φflavor. What are the
possible spin wave functions χspin for a three-quark state made of u and d quarks?
Recall that isospin and spin have the same mathematical structure.

f) Knowing the symmetry properties of the isospin and spin multiplets from c), what are
the possibilities to obtain a valid wave function φflavor χspin? Ignore for the moment
the required symmetry under q1 ↔ q3 and q2 ↔ q3 exchange.

g) For the proton wave function, both φflavor and χspin are built from the mixed-symmetry
doublets 2S and 2A. Consider the combinations (φχ)S := φ(2S)χ(2S) and (φχ)A :=
φ(2A)χ(2A). How do (φχ)S and (φχ)A transform under quark exchanges q1 ↔ q2 and
q2 ↔ q3? Find a combination of (φχ)S and (φχ)A that is totally symmetric under
exchanges qi ↔ qj , i, j ∈ {1, 2, 3}. The proton wave function is given by the I3 = +1/2
component, the I3 = −1/2 component is identified as the neutron wave function.

Remark: The combination φ(4)χ(4) gives the isospin 3/2 quadruplet of ∆ resonances.

5.2. Light Mesons
The light anti-quarks ū and d̄ transform in the anti-fundamental representation 2̄ of flavor
isospin SU(2). Denoting q̄ = (−d̄, ū)T, their transformation rule

q̄ 7→ q̄′ = Uq̄ , U ∈ SU(2) (5.6)

is the same as for the fundamental quarks q = (u, d)T.

a) Compute the isospin eigenvalues I3 and the action of the ladder operators T± (5.4) for
the ū and d̄ states. Compare the result to the case of quarks from Problem 5.1.

b) Decompose the tensor product 2⊗ 2̄, and express the normalized states in terms of
product states |qq̄〉 := |q〉 ⊗ |q̄〉. You should find an isospin triplet 3 (these are the
pions π±, π0) and a singlet 1 (this is the η meson).

Remark: The next-lightest quark is the strange quark s. The triplet (u, d, s) enjoys an
approximate SU(3) flavor symmetry. Extending the above considerations to this case,
many of the hadrons (multi-quark states) found in the 1950s and 1960s can be identified
as components of SU(3) flavor multiplets (singlets/triplets/octets/decuplets) as part of
the “eightfold way”.

5.2
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6.1. Two-Particle Decay: Fermi’s Golden Rule
For the decay 1→ 2 + 3, where particle 1 is assumed to be at rest, the decay rate is given
by

Γ = S

32π2m1

∫
|M|2 δ(p1 − p2 − p3)√

m2
2 + ~p2

2

√
m2

3 + ~p2
3

d3~p2 d3~p3 . (6.1)

Here, mi is the mass of the i’th particle, and pi = (Ei, ~pi) its four-momentum. S is a
symmetry factor that corrects double-counting for identical particles: S = 1/2! if particles
2 and 3 are identical. The dynamics of the decay process is contained in the amplitude
M =M(p1, p2, p3), which we assume to be averaged over the spin degrees of freedom of
the three particles.

a) Verify that formula (6.1) is correct, based on the equations given in the lecture.

b) Split the four-dimensional delta function into the temporal and the three-dimensional
spatial delta function. Perform the integral over ~p3, using that particle 1 is at rest.

c) The amplitudeM depends on all three four-momenta, subject to the delta-function
constraint. However, in the rest frame of particle 1, p1 is fixed. Because of the delta
function,M thus only depends on ~p2. Moreover,M must be a Lorentz scalar, and
therefore invariant under rotations. It hence only depends on the magnitude ~p2

2.
For the remaining integral over ~p2, change to spherical coordinates (r, θ, φ) and perform
the angular integrations over θ and φ.

d) Simplify the remaining integration over r by the substitution

u =
√
m2

2 + r2 +
√
m2

3 + r2 . (6.2)

Evaluate the final integral with the help of the remaining delta function, and verify
that

Γ = S|~p2|
8πm12 |M(~p2

2)|2 , (6.3)

where the magnitude of ~p2 takes the particular value

|~p2| =
1

2m1

√
m4

1 +m4
2 +m4

3 − 2m2
1m

2
2 − 2m2

1m
2
3 − 2m2

2m
2
3 (6.4)

determined from the conservation laws.

Without knowing the amplitudeM, we could evaluate all integrals for the two-body decay,
only using the conservation of energy and momentum. Formula (6.3) is called Fermi’s
Golden Rule for two-body decay.
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6.2. Z-Boson Decay Width
The Standard Model Lagrangian contains an interaction vertex between the Z-boson Zµ
and a fermion anti-fermion pair ff̄ . The vertex can be written as

g2

2 cos θW
γµ
(
cVf − cAfγ

5
)
. (6.5)

Here, cV and cA denote the vector and axial-vector couplings of the fermion to the Z-boson.
They are given by

cVf = T3f − 2Qf sin2 θW , cAf = T3f , (6.6)

where T3f denotes the third component of the weak isospin, and Qf the electric charge
of the respective fermion f . The amplitudeMZ→ff̄ is computed by (i) multiplying the
vertex (6.5) with the polarization vector Zµ of the Z-boson, the fermion wavefunction f
(from the right), and the anti-fermion wavefunction (from the left), and (ii) averaging
over the spin and color degrees of freedom of the particles. In the approximation that
mf � mZ, where mZ is the Z-boson mass, one obtains

|MZ→ff̄ |
2 = Nc

3
g2

2
cos2 θW

m2
Z

(
c2

Vf + c2
Af

)
, (6.7)

where Nc is the number of different color states the fermion f can occupy.

a) Verify that formula (6.5) is correct, based on the equations given in the lecture.

b) What are the possible fermion anti-fermion pairs that a Z-boson can decay to? You
should identify four distinct cases for each family of quarks and leptons.

c) Using (6.3) in the limit mf � mZ as well as (6.7), verify that the decay width Γff̄ of
the Z-boson into a fermion anti-fermion pair ff̄ is given by

Γff̄ = Nc

48π
g2

2
cos2 θW

mZ
(
c2

Vf + c2
Af

)
. (6.8)

d) Evaluate the couplings cVf and cAf for the four different cases identified in b), and
write the explicit formulas for the four different Γff̄ .

e) Compute the numerical values for the partial widths Γff̄ , as well as the total Z-boson
decay width

Γtot =
∑
f

Γff̄ , (6.9)

using sin2 θW = 0.23, g2 = e/ sin θW (or g2
2 ≈ 4π/30), and mZ = 91.19 GeV. Which of

the six quarks and six leptons have to be included in the sum?

To compare the numerical results to measurements, one can look up all available experi-
mental data at https://pdg.lbl.gov (the Particle Data Group).

6.2
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