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1 Introduction
The Forces. This course is about the theory of fundamental interactions. The terms
“force” and “interaction” will be used interchangeably. At present, we know of four
fundamental forces:

• Gravity: Gravity acts on all masses. It is the only relevant force on large scales
(planetary systems, galaxies, the universe as a whole).

• Electromagnetism (electricity and magnetism).

• The weak nuclear force (subatomic).

• The strong nuclear force (subatomic).

All physical phenomena can ultimately be reduced to these four forces. The chemical
elements, the light of the sun, the colors, all materials, life, everything can be brought
down to the interplay between these four forces and the particles they act on. This is a
truly amazing fact of physics.

The Standard Model. The last three of these four forces are described by the Standard
Model of Particle Physics. Gravity is an outsider. It is extremely weak compared to the
other forces, and plays no role at microscopic scales. The Standard Model of particle
physics is the main subject of this lecture course. Some of its properties are:

• The Standard Model describes all forces and interactions between all elementary
particles. Except gravity, which is however completely negligible at the microscopic
scales of particle physics (except at enormous mass densities, for example near black
holes, or shortly after the big bang, that will not be relevant for us).

• Although called a “model”, it is as fully a mathematical theory as there ever has
been in the history of science.

• It is an incredibly successful theory that agrees with essentially all experimental data
with extraordinary precision, across a huge range of scales.

• It was essentially completed by the 1980s, combining the results and achieving the
goals of many centuries of physics. The theory completes the vision of the Greeks to
reduce nature to its fundamental constituents. As far as all our experiments can see,
all particles described by the Standard Model are indivisible and truly elementary.

• It is formulated in terms of relativistic quantum field theory, whose formulation began
in the 1930s, and has been continuously developed since then.

• The Standard Model was fully completed by the experimental discoveries of the top
quark at Fermilab in 1996 and of the Higgs boson at CERN in 2012.

• Just as electrodynamics depends on the electron mass and the strength of the
electromagnetic coupling, the Standard Model depends on

– the masses of the quarks, leptons, and gauge bosons, and
– the coupling strengths of the electromagnetic, weak, and strong interactions.
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Given these inputs, the Standard Model describes all known particle experiments!
In its domain, it remains unchallenged.

• Despite all its success, the Standard Model does not solve all problems. There are
still puzzles to solve!

Course Goals. The goals for this course are the following:

• We want to understand the way in which the Standard Model is formulated.

• We want to learn to understand (or estimate) some predictions of the theory, both
to see how it works, and to understand the tests of the theory.

• We want to understand why it is now widely accepted that the Standard Model
actually describes nature.

• We want to take a peek at what lies beyond the Standard Model.

Prerequisites. The level of this course is basic. The only required knowledge is intro-
ductory quantum mechanics (including spin), and some elementary classical mechanics
and electrodynamics.

1.1 The Framework of the Standard Model
To understand the physical world, we need three kinds of knowledge:

• The particles everything is made of,

• The interactions (forces) among those particles,

• The rules for calculating the resulting world.

In classical mechanics, for any force F , the motion follows from Newton’s law F = ma.
The force could have various origins, for example gravity,

F = GNmM

r2 , (1.1)

or the Coulomb force
F = KqQ

r2 . (1.2)

In quantum theory on the other hand, the dynamics are governed by the Schrödinger
equation

Hψ = i ∂ψ
∂t

. (1.3)

The Schrödinger equation replaces Newton’s law, and holds for any Hamiltonian H. The
Standard Model describes also massless particles that travel at the speed of light. Hence
the description necessarily has to be relativistic! In relativistic theories, it is often useful to
use Lagrangians, which are Lorentz scalars, rather than Hamiltonians, which are energies,
that is components of a four-vector, and therefore behave non-trivially under Lorentz
transformations.

The formalism to compute “the motion” (that is, cross sections, decay rates, etc.) in a
relativistic quantum field theory is to start with the appropriate Lagrangian, and extract
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Feynman rules from this Lagrangian to write matrix elements / amplitudes. The squared
matrix elements then yield transition probabilities, as is standard in quantum theory.

The combination of quantum theory with special relativity leads to quantum field theory.
Intuitively, one can understand this as follows: Suppose there are various interacting
particles. When one of these particles gets pushed, it will exert forces on the other particles.
But the resulting interaction forces cannot produce instantaneous changes in their motions,
since no signal can travel faster than the speed of light. Instead, the particle is the source of
various fields that carry energy (and perhaps other quantities) through space. Eventually,
those fields interact with the other particles. Because of quantum theory, the energy (and
other quantities) is quantized, that is it is carried by discrete energy quanta. These quanta
are identified as particles transmitting the force. Therefore, in a quantum field theory,
elementary interactions are interpreted in terms of exchanges of particles.

The Standard Model is a gauge theory. Gauge theories are a special class of quantum
field theory. They are based on an invariance principle that necessarily implies certain
interactions among the particles. The interaction strength is proportional to a charge.
This is familiar from electrodynamics: The charge e measures both the charge of the
particles and the interaction strength.

Based on the above description, the basic view of particle interactions is as follows:

(1.4)

An electron emits a photon and recoils. The photon is absorbed by another electron (or
other charged particle), which changes its motion in consequence. Such diagrams are
useful pictures of what is happening. But they are more! Every such Feynman diagram
can be converted to a mathematical expression for a matrix element / amplitude for a
certain process. The rules for this conversion are called Feynman rules. The diagram /
matrix element above gives Coulomb’s law (in the non-relativistic limit).

1.2 The Forces
As stated at the very beginning, we know of four fundamental forces. Let us describe them
in some more detail:

Gravity: Gravity is an attractive force between all masses. At the classical level, it is
fully described by general relativity. No satisfactory quantum theory of gravity exists
today (string theory is one approach). This is not a big problem in most cases, as the
gravitational force is extremely weak compared to all other forces, and is therefore
negligible for most of particle physics. Gravity is not part of the Standard Model.

Electromagnetism: The electric and magnetic interactions between all electrically
charged particles and light are described by electromagnetism. This force is re-
sponsible for almost all physical processes of everyday matter (solids being solid,
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heat, electrical conductivity, etc.). Electrodynamics is classically described by
Maxwell’s equations. The quantum theory is called quantum electrodynamics (QED).
It was developed in the 1930s and 40s, and was awarded with the Nobel Prize in 1965
for Tomonaga, Schwinger, and Feynman. QED served as the model and template
for all subsequent quantum field theories!

Weak force: The weak force is one of the two nuclear forces. It is an interaction between
subatomic particles that is responsible for radioactive decay. Its range is limited to
subatomic distances (less than the proton diameter of ≈1 fm). It is much weaker
than the electromagnetic force and the strong force. Correspondingly, the timescale
for weak interactions is 106 times larger than for electromagnetic interactions (10−13 s
vs. 10−19 s). The weak force plays a critical role for energy creation in the sun, and
for the generation of heavy elements in stars.
We do have a well-tested theory of the weak force (a quantum theory, there is no
useful classical limit in this case!), and the weak and electromagnetic interactions
are unified in the electroweak theory. The 1979 Nobel prize was awarded to Glashow,
Salam, and Weinberg for the formulation of this theory.

Strong force: The strong force is another nuclear (subatomic) force that holds atomic
nuclei (made of protons and neutrons) together, in spite of the electric repulsion of
the protons. It is much stronger than the electromagnetic force. The elementary
particles that experience the strong interaction are called quarks. The charge that
is carried by the quarks and that responds to the strong force is called color (even
though it has nothing to do with everyday colors). Quarks form color-neutral bound
states that are held together by the strong force, just as electrons, protons, and
neutrons form electrically neutral atoms. The quark bound states are called hadrons
(protons, neutrons, pions, kaons, . . . ). Just as the residual electromagnetic field
around neutral atoms causes them to form molecules, there is a residual strong force
(color) field around hadrons, which is the nuclear force that lets protons and neutrons
form nuclei.
The theory of the strong force is called quantum chromodynamics (QCD), a non-
Abelian gauge theory.

The success of past unifications (electricity and magnetism into Maxwell’s theory of
electromagnetism, electromagnetism and the weak force into the electroweak theory) has
prompted people to try to unify the electroweak theory with QCD to a “grand unified
theory”. Some approaches and candidates do exist, but none of them has been established
as a real theory of nature to date.

The Standard Model is a combination of the electroweak theory and QCD.

1.3 The Particles
The particles that compose the world fall in two categories

• Matter particles (quarks and leptons), and

• Gauge bosons (these are the particles that transmit the forces in gauge theories).

All matter particles are fermions with spin 1/2. By definition, all matter particles that
carry color charge are quarks. All other matter particles are called leptons. So far, we
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know of six different kinds of quarks (six quark “flavors”), and six different kinds of leptons
(six lepton “flavors”).

Quarks. The six quarks are called (for no particular reason except history): up, down,
strange, charm, bottom, top, or u, d, s, c, b, t for short. They naturally fall into pairs called
doublets (we will later see why) that are called families or generations:(

u
d

)
,

(
c
s

)
,

(
t
b

)
. (1.5)

The quarks in the top row have electric charge 2/3 e, the quarks in the bottom row have
charge −1/3 e, where e is the absolute value of the electron’s charge (which equals −e).

Each quark flavor comes in three different colors. Quarks carry another quantum
number called baryon number B. All quarks have B = 1/3. Baryon number is conserved
(experimentally). Because of the strong force, all colored particles are normally bound
inside colorless hadrons. Still, quarks exist as individual particles! Their masses cannot be
calculated or derived theoretically, they have to be measured experimentally, and are put
in a s parameters of the theory. As quarks only occur in bound states, measuring their
masses is a subtle analysis. Their masses are:

mu = 2.16 MeV , mc = 1.27 GeV , mt = 173 GeV , (1.6)
md = 4.67 MeV , ms = 93 MeV , mb = 4.18 GeV . (1.7)

Leptons. Also the leptons are arranged in three families:(
νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
. (1.8)

The leptons in the bottom row are the charged leptons: The electron e, the muon µ, and
the tau lepton τ . All of them have electric charge −e. Each charged lepton comes with its
own neutrino: The electron neutrino νe, the muon neutrino νµ and the tau neutrino ντ .
All neutrinos are electrically neutral, that is have zero electric charge. As far as we know,
the charged leptons e, µ, τ do not undergo transitions into each other.

As for quarks, the lepton masses have to be measured experimentally. The neutrino
masses are not measured, but we know that at least two of them are non-zero, albeit
extremely small. From cosmological arguments, we know that their sum must be smaller
than ≈0.2 eV. The masses of the charged leptons are

me = 511 keV , mµ = 105.7 MeV , mτ = 1.777 GeV . (1.9)

Gauge Bosons. All force-carrying particles (quanta of the force fields) are bosons (with
integer spin). Since the QFT of the Standard Model is a gauge theory, they are called
gauge bosons.

• The electromagnetic force is mediated by photons.

• The weak force is mediated by W± and Z0 bosons.

• The strong (color) force is mediated by gluons.

• Gravity is mediated by gravitons.
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The following table summarizes the properties of the various gauge bosons:

Gauge boson Interacts with Mass Spin
Graviton (gravity) all particles massless 2
Photon (EM force) all electrically charged particles massless 1
W±, Z0 (weak force) quarks, leptons, W±, Z0 bosons heavy 1
Gluons (strong force) all colored particles (quarks and gluons) massless 1

In a standard gauge theory, all gauge bosons are massless. Most of the Standard Model
gauge bosons are indeed massless, but the weak gauge bosons W± and Z0 are massive.
This is explained by the Higgs mechanism in the context of the electroweak theory.

• Photons are familiar.

• Individual gravitons interact too weakly to be detected.

• The gluons were predicted to exist, and were observed first at the electron-positron
collider PETRA in Hamburg in 1979.

• TheW± and Z0 bosons were predicted by the theory, and were observed at the proton-
antiproton collider at CERN in 1983, with the expected properties (mW = 80.4 GeV,
mZ = 91.2 GeV).

Higgs Boson. To make a consistent theory of particle masses and interactions, one
more class of particles is needed: The spin zero (or scalar) Higgs boson. The electroweak
theory requires one electrically neutral Higgs boson, but more could exist. The Higgs
boson was discovered experimentally in 2012 at the CERN LHC.

The prediction and subsequent discoveries of gluons, the W± and Z0 bosons, and of the
Higgs boson, all with the expected properties, is part of the incredible success of the
Standard Model.

Antiparticles. Lastly, each particle has an antiparticle, with the opposite values of
electric charge, color charge, and flavor charge (weak charge) than the corresponding
particle, but with the same mass and the same spin. Some particles are their own
antiparticle (e. g. the photon). We denote antiparticles either by an inverted charge label
(for example the positron e+ is the antiparticle of the electron e−), or by a bar (e. g.
proton p ↔ antiproton p̄). Antiparticles are nothing special, they are just particles with
specific properties.

1.4 Natural Units
We will mostly use a unit system called natural units, in which as many natural quantities
as possible are set to unity. This will make formulas simpler and more readable. In natural
units, ~ = 1 and c = 1. Then energy (mc2), momentum (mc), and mass (m) will all have
dimension of mass, and will usually be stated in GeV (1 GeV ≈ 1.6 · 10−10 J). To convert
any quantity back to SI units, one just has to multiply by the appropriate factors of ~ and
c, where

~ = 6.6 · 10−25 GeV s , c = 3 · 1010 cm/s . (1.10)
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Hence, for example

1 s = 3 · 1010 cm , (1.11)

1 fermi = 10−13 cm = 10−13 cm · 1
3 10−10 s/cm = 1

3 10−23 s

= 1
3 10−23 s · (6.6 · 10−25 GeV s)−1

= 1
20 100 GeV−1 = 5 GeV−1 , (1.12)

1 GeV−2 = (6.6 · 10−25 s)2 = (6.6 · 10−25 · 3 · 1010 cm)2

= (20 · 10−15 cm)2 = 400 · 10−30 cm2 = 0.4 · 10−27 cm2 . (1.13)

2 Lagrangians, Conserved Currents, Interactions
We want to get to the mathematical formulation of the Standard Model. In this course,
we want to describe the theory without going into the details of quantum field theory
and difficult computations. Many results can be determined quite simply to a good
approximation, which is fully sufficient to understand the physics. Nevertheless, before we
can formulate the Standard Model, we need to collect some theoretical concepts in this
and the next few sections.

2.1 Relativistic Notation
We will denote four-vectors by

aµ = (a0; a1, a2, a3) = (a0;a) , (2.1)

for example, the spacetime coordinate vector is

xµ = (x0;x1, x2, x3) = (t;x, y, z) = (t;x) , (2.2)

and the momentum four-vector is

pµ = (p0; p1, p2, p3) = (E; px, py, pz) = (E;p) . (2.3)

Four-vector indices are raised and lowered with the metric tensor

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (2.4)

that is
aµ = (a0; a1, a2, a3) = gµνa

ν = (a0;−a1,−a2,−a3) . (2.5)

We use the Einstein summation convention: Repeated indices are implicitly summed over:

gµνa
ν ≡

3∑
ν=0

gµνa
ν . (2.6)
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The Lorentz-invariant scalar product between two four-vectors aµ and bµ is given by

aµb
µ = aµgµνb

ν = a0b0 − a1b1 − a2b2 − a3b3 = a0b0 − a · b . (2.7)

Partial derivatives with respect to spacetime coordinates are collected in the covariant
vector

∂µ = ∂

∂xµ
=
(
∂

∂t
; ∂
∂x

,
∂

∂y
,
∂

∂z

)
= (∂0;∇) , (2.8)

such that
∂µ = ∂

∂xµ
= (∂0;−∇) , (2.9)

and
∂µa

µ = ∂a0

∂t
+∇a . (2.10)

Finally, by definition,

∂µ∂
µ = ∂2

∂t2
− ∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2 = ∂2
0 −∇2 = ∂µ∂µ . (2.11)

2.2 Lagrangians
Lagrangians are central objects in field theory. We will first recall the role of Lagrangians
in classical mechanics and electrodynamics, and only then consider Lagrangians for more
general field theories.

Classical Mechanics. In classical mechanics, the Lagrangian L is a function of the
phase space variables (positions and velocities). It is given by L = T − V , where T is the
kinetic energy, and V is the potential energy. The action functional

S =
∫ t1

t0
Ldt (2.12)

takes a path in phase space as its argument. Extremizing (minimizing) the action S
produces the Euler–Lagrange equation for the phase space variables, which are equivalent
to Newton’s laws of motion.

Electrodynamics. To write the Lagrangian for classical electrodynamics, we first have
to recall some definitions. The dynamical quantities are the electric and magnetic fields E
and B, which are sourced by the charge density ρ and the current density J . The fields
E and B are not independent. It is useful to write them in terms of the potentials V and
A (which are also fields) as

E = −∇V − ∂A

∂t
, B = ∇×A . (2.13)

In components, these equations read

Ei = ∂iA0 − ∂0Ai , Bi = εijk∂jAk , (2.14)

where εijk is the totally anti-symmetric tensor. The potentials, as well as the charge and
current densities, can be combined into Lorentz four-vectors:

Aµ = (V,A) , Jµ = (ρ,J) . (2.15)
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One then defines the (anti-symmetric) field strength tensor

F µν := ∂µAν − ∂νAµ , (2.16)

such that

F 0i = ∂0Ai − ∂iA0 = −Ei , F ij = ∂iAj − ∂jAi = εijkBk , (2.17)

that is

F µν =


0 −E1 −E2 −E3

+E1 0 −B3 +B2

+E2 +B3 0 −B1

+E3 −B2 +B1 0

 . (2.18)

Notice that under the transformation

Aµ → Aµ + ∂µφ , (2.19)

the field strength tensor transforms as

F µν → F µν + ∂µ∂νφ− ∂ν∂µφ = F µν , (2.20)

that is the field strength tensor is invariant. This is the first example of a gauge transfor-
mation.

In a field theory such as electrodynamics, the dynamical variables are no longer discrete
positions and velocities (or momenta), but rather fields that permeate all of space. The
Lagrangian L is therefore a function of the field configuration. It is given by an integral
over all of space,

L =
∫
L(x) d3x , (2.21)

where L(x) is a function of the field variables at position x called the Lagrangian density.
The action is again given by the integral of L over time,

S =
∫ t1

t0
dt L =

∫ t1

t0
dt
∫
d3xL(t,x) . (2.22)

In many cases, the boundary conditions are such that one can integrate from the infinite
past to the infinite future, such that the integral runs over all of spacetime:

S =
∫
dt L =

∫
dt d3xL(t,x) =

∫
d4xL(x) . (2.23)

The Lagrangian density for electrodynamics reads

L = 1
2 (E2 −B2)− ρV + J ·A . (2.24)

In terms of the field strength tensor, this reads (Problem 1.2)

L = − 1
4 FµνF

µν − JµAµ . (2.25)

Extremizing the action S =
∫
L(x) d4x by variation produces the Euler–Lagrange field

equations, which for this Lagrangian become Maxwell’s equations (Problem 1.3). We
conclude that all physics of electromagnetism is contained in the Lagrangian density L,
which is written in terms of the fields and potentials. The first term −1/4FµνF µν is the
kinetic term, it is quadratic in the fields and contains derivatives. The second term −JµAµ
is an interaction term that couples the dynamical potential A to the external source J .
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Particle Physics. Theories of particle physics are always defined in terms of a La-
grangian density. Since one mostly deals with the density L, and only rarely with the
integrated form L, one typically calls L simply “the Lagrangian”. Starting with the La-
grangian (density) L, and using the rules of quantum field theory, all physical observables
of particle physics can be calculated.

The Lagrangian is written in terms of the elementary fields, whose quanta are the
fundamental particles. For electrodynamics, the photon is the quantum of the electromag-
netic field, represented by Aµ, and the electron is the quantum of a fermion field ψ (we
will learn about such fields later).

The kinetic parts of the Lagrangian L are completely determined by the field content,
they only depend on the spins of the various fields/particles. The potential/interaction
parts of L specify the forces. The Lagrangian is a single function that determines the
dynamics of the theory. It must be a scalar in every relevant space. In particular, in
a relativistically invariant theory, L must be Lorentz invariant, which ensures that all
predictions computed from L will also be Lorentz invariant.

Real Scalar Field. Above, we wrote the Lagrangian for the electromagnetic field A.
We will also need the Lagrangian for a scalar field φ. Such a field can be thought of as
arising from some source, but as in electrodynamics, one can also consider φ just by itself,
without sources. The Lagrangian for a real scalar field is simply

L = 1
2
(
∂µφ∂

µφ−m2φ2
)
. (2.26)

The Euler–Lagrange equation of motion that follows from this Lagrangian is (Problem 1.1)

∂µ∂
µφ+m2φ = 0 , (2.27)

where m is the mass of the field (and of the associated particle). This is as expected:
The energy condition of a relativistic particle is E2 = m2 + p2. And in quantum theory,
E = i∂0 and p = −i∇, which implies

E2 − p2 = −∂2
0 +∇2 = −∂µ∂µ . (2.28)

Hence the equation of motion is consistent with the relativistic energy condition:

(E2 − p2 −m2)φ = 0 . (2.29)

Here, it is clear that ∂µ∂µ is the kinetic term (∼p2), and m2φ2 is a mass term. The
Lagrangian has no interaction term: The field φ in this case is non-interacting.

2.3 Conserved Currents
Another important concept in field theory is that of a conserved current, which is always
associated with a conservation law.

Quantum Mechanics. As a warm-up, consider ordinary quantum mechanics. Start
with the Schrödinger equation

2mi ∂ψ
∂t

+∇2ψ = 0 . (2.30)
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Multiply the Schrödinger equation by iψ∗, and add the complex conjugate to get

−2mψ∗∂tψ − 2mψ∂tψ∗ + iψ∗∇2ψ − iψ∇2ψ∗ = 0 . (2.31)

Dividing by −2m, this simplifies to

∂|ψ|2

∂t
+∇

(
− i

2m
(
ψ∗∇ψ − ψ∇ψ∗

))
= 0 . (2.32)

Now if we identify
ρ = |ψ|2 (2.33)

as a density, and
J = − i

2m
(
ψ∗∇ψ − ψ∇ψ∗

)
(2.34)

as a current, the above equation becomes the continuity equation

∂ρ

∂t
+∇J = 0 . (2.35)

To check whether this makes sense, consider a free particle with wave function

ψ = C exp(ip · x− iωt) . (2.36)

Then ρ = |C|2 is the probability density, and J = ρp/m is the probability current density.
Integrating the continuity equation, and assuming a closed system (such that boundary
terms vanish), one finds the conservation law

∂

∂t

∫
ρ d3x = −

∫
∇J d3x = 0 , (2.37)

which says that the total probability is preserved.

Complex Scalar. Now consider two free real scalar fields φ1 and φ2, with identical
masses m. The Lagrangian is

L = 1
2
(
∂µφ1∂

µφ1 −m2φ2
1

)
+ 1

2
(
∂µφ2∂

µφ2 −m2φ2
2

)
. (2.38)

Now define the complex field

φ := φ1 + iφ2√
2

, φ∗ = φ1 − iφ2√
2

. (2.39)

In terms of this complex field, the Lagrangian reads

L = ∂µφ
∗∂µφ−m2φ∗φ , (2.40)

which, accordingly, is the Lagrangian of a complex field with mass m.
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Global Symmetry. Now comes an important observation: Nothing fixed the particular
“direction” of φ within the two-dimensional space spanned by φ1 and φ2. We could as well
have used fields that are rotated by some constant angle α:

φ′1 = φ1 cosα + φ2 sinα , φ′2 = −φ1 sinα + φ2 cosα , (2.41)

and define the complex field

φ′ = φ′1 + iφ′2√
2

= e−iαφ , φ′∗ = φ′1 − iφ′2√
2

= eiαφ∗ . (2.42)

Clearly, L is not affected by this transformation:

L(φ, φ∗) = L(φ′, φ′∗) . (2.43)

This means that the physics is invariant under arbitrary rotations in the two-dimensional
field space spanned by φ1 and φ2.

We can extract very instructive implications from this example. Whenever a system is
invariant under some transformation of the coordinates and/or fields, interesting results
emerge. Consider a rotation by an infinitesimal angle α. One can then expand the
exponentials, and finds

φ′ = (1− iα)φ = φ+ δφ , δφ = −iαφ ,
φ′∗ = (1 + iα)φ∗ = φ∗ + δφ∗ , δφ∗ = +iαφ∗ . (2.44)

The change in L under such an infinitesimal transformation is of course zero. But we will
see that this zero can be written in a very useful way.

Conserved Current. Consider an arbitrary Lagrangian L(φ, ∂µφ) that depends on
some field φ and its derivative ∂µφ. For any infinitesimal transformation

φ→ φ+ δφ , φ∗ → φ∗ + δφ∗ , (2.45)

the variation of L is

δL = δφ
∂L
∂φ

+ δ(∂µφ) ∂L
∂(∂µφ) + (φ→ φ∗)

= δφ
∂L
∂φ

+ ∂µ

(
δφ

∂L
∂(∂µφ)

)
− δφ

(
∂µ

∂L
∂(∂µφ)

)
+ (φ→ φ∗) . (2.46)

Here we assumed that φ is complex. If it is real, the terms with φ∗ are simply absent.
Collecting terms, the above can be re-written as

δL = δφ

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
+ (φ→ φ∗)

+ ∂µ

(
δφ

∂L
∂(∂µφ) + δφ∗

∂L
∂(∂µφ∗)

)
. (2.47)

The term in parentheses in the first line is exactly the Euler–Lagrange equation, so the
first line is zero by the equations of motion for φ (and φ∗). Now, if the transformation is a
symmetry, that is if the Lagrangian L is invariant under the transformation, then

0 = δL = ∂µ

(
δφ

∂L
∂(∂µφ) + (φ→ φ∗)

)
. (2.48)
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This has the form of a conservation law! We can identify the conserved current

−αSµ := δφ
∂L

∂(∂µφ) + (φ→ φ∗) , (2.49)

where we have factored out a parameter −α. Every infinitesimal transformation will come
with an infinitesimal (real) parameter, which we call α, as in the example of the complex
scalar above. Then δφ ∼ α, and δφ∗ ∼ α. By construction, the current Sµ satisfies

∂µS
µ = 0 . (2.50)

Conserved Charge. What we have shown probably looks familiar: It is Noether’s
theorem. Invariance under a transformation implies a conserved charge. In components,
the invariance reads

0 = ∂µS
µ = ∂S0

∂t
+∇S . (2.51)

Defining the charge
Q :=

∫
S0(x) d3x , (2.52)

one finds
∂Q

∂t
=
∫
∂tS0(x) d3x = −

∫
∇S d3x . (2.53)

The last expression is the flow through the surface of spacetime. Assuming a closed system,
this flow is zero, and hence

∂Q

∂t
= 0 . (2.54)

The charge Q therefore is conserved, and S0 is the associated charge density. Since Q is
conserved, it is a good quantity to identify states (“quantum number”). This result is
completely general. Familiar examples of symmetries and associated conserved charges in
classical and quantum mechanics are:

Symmetry ↔ Conserved Charge
rotational invariance ↔ angular momentum
translational invariance ↔ (linear) momentum
time translation invariance ↔ energy

(2.55)

Complex Scalar Example. Coming back to our example of the free complex scalar
field with its two real components, the infinitesimal symmetry transformation was

δφ = −iαφ , (2.56)

hence the conserved current is

Sµ = i(φ∂µφ∗ − φ∗∂µφ) . (2.57)

We note that the current changes sign when φ is complex conjugated:

φ↔ φ∗ ⇒ Sµ → −Sµ . (2.58)

In particular, the charge density S0 and therefore the conserved charge Q changes sign.
Splitting the two degrees of freedom of the complex field φ into φ and φ∗, we see that φ
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and φ∗ have the same mass, same spin, but opposite charge. The component φ∗ therefore
describes the anti-particle of φ (and vice versa). We conclude that a complex scalar field
automatically describes both particles and the corresponding anti-particles. We will see
later that relativistic field theories inevitably include particles and the corresponding
anti-particles.

Quantum Anomalies. The analysis of conserved currents so far was classical. When
passing to quantum field theory, it can happen that quantum corrections lead to ∂µSµ 6= 0
even though ∂µSµ = 0 classically. Such violations of a classical invariance by quantum
corrections are called anomalies.

Requiring the absence of anomalies can be a guiding principle to determining the “right”
quantum theory. In particular, all gauge anomalies (quantum violations of gauge symmetry)
must vanish. Otherwise the quantum gauge theory contains unphysical negative-norm
states. The presence of symmetries (that remain symmetries at the quantum level) in a
theory can imply that certain anomalies vanish.

String theory became exciting in 1984 because it was shown to be anomaly-free
in ten spacetime dimensions (by Michael Green and John H. Schwarz), and therefore
possibly a consistent quantum theory of gravity. No such theory had been found before.
This discovery and the subsequent outburst of string theory research is called the “first
superstring revolution”.

2.4 Interactions
So far, we have only considered free fields. Now we add interactions. Recall the Lagrangian
for a free scalar field φ,

Lfree = 1
2
(
∂µφ ∂

µφ−m2φ2
)
, (2.59)

Consider adding to this a term

Lint = φρ(x, t) , L = Lfree + Lint , (2.60)

where ρ(x, t) is some function of the spacetime coordinates. Then, by the Euler–Lagrange
equations, the wave equation for φ gets a term,

∂µ∂
µφ+m2φ = ρ . (2.61)

By analogy with electrodynamics, we can think of ρ as a source for the field φ. In
electrodynamics, ∇ ·E = ρ, and E = −∇V − ∂tA, so in the static case, −∇2V = ρ.

Point Charge. To understand the effect of the new term, consider a time-independent
point source,

ρ = g δ3(x) . (2.62)

Here, δ3(x) is the Dirac delta function, and g is the strength (magnitude) of the souce.
We want to solve the equation for φ. Since ρ is not time dependent, we only consider
time-independent φ. Then (2.61) becomes

(−∇2 +m2)φ = g δ3(x) . (2.63)
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We can solve this equation by Fourier transform. Recall the Fourier transformation from
φ(x) to φ̃(k),

φ(x) = 1
(2π)3/2

∫
d3k eik·xφ̃(k) , φ̃(k) = 1

(2π)3/2

∫
d3x e−ik·xφ(x) .

To transform (2.63), we need the Fourier transform of the delta function:

δ̃3(k) = 1
(2π)3/2

∫
d3x e−ik·xδ3(x) = 1

(2π)3/2 e−ik·0 = 1
(2π)3/2 . (2.64)

The Fourier transform of (2.63) then becomes

(k2 +m2) φ̃(k) = g

(2π)3/2 ⇒ φ̃(k) = 1
(2π)3/2

g

k2 +m2 . (2.65)

Transforming back, we obtain the solution for φ(x),

φ(x) = g

(2π)3

∫
d3k

eik·x

k2 +m2 . (2.66)

The integral can be done by parametrizing k in spherical coordinates with the pole axis
pointing in the direction of x, such that k ·x = kr cos(θ), with k = |k| and r = |x|. Then

d3k = k2 sin(θ) dk dφ dθ = −k2 dk dφ d(cos θ) (2.67)

and the integral becomes

φ(x) = g

(2π)3

∫ ∞
0

k2 dk

k2 +m2

∫ 2π

0
dφ
∫ 1

−1
eikr cos θ d(cos θ)

= g

(2π)3
2π
ir

∫ ∞
0

1
k

k2 dk

k2 +m2

(
eikr − e−ikr

)
= g

(2π)2
1
ir

∫ ∞
−∞

k dk

k2 +m2 eikr . (2.68)

The integral can be done by residues: We can close the contour in the upper half plane,
where the semicircle at infinity gives no contribution. The contour encloses a single pole
at k = im. The integral then becomes

φ(x) = g

(2π)2
1
ir 2πi im

2im e−mr = g

4π
e−mr
r

. (2.69)

[To read off the residue, write the denominator as k2 +m2 = (k − im)(k + im).] Because
of the exponential factor, for particles of mass m, the field is significant in a range of
r ∼ 1/m around the source.

General static source. Since the equation (2.61) for φ is linear, the point-source
solution (2.69) directly generalizes to a general time-independent source field ρ1(x). Namely,

φ(x) = 1
4π

∫
d3x′ ρ1(x′) e−m|x−x′|

|x− x′|
. (2.70)
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Interaction. Let us see how one source would interact with another through its force
field. The interaction Hamiltonian between the force field φ and another source ρ2(x) is

H = −
∫
d3xφ(x) ρ2(x) . (2.71)

Plugging in the general solution (2.70), we find

H12 = − 1
4π

∫
d3x d3x′ ρ1(x)ρ2(x′) e−m|x−x′|

|x− x′|
. (2.72)

The interaction between two sources (charged particles) is therefore given by the potential

V (r) = − 1
4π

e−mr
r

. (2.73)

Due to the exponential falloff, the interaction range is ∼1/m (in natural units), where m
is the mass of φ.

Interpretation. The general interpretation is the following: The field φ acts as a force
carrier that is sourced by the particles it interacts with (ρ in the interaction term), just
as the electromagnetic field acts on and is sourced by electrically charged particles. In
quantum theory, the energy transferred by the field φ is quantized, and the energy quanta
form the (force) particles. This is the general quantum field theory picture: All interactions
are due to the exchange of field quanta. The concepts of force and interaction are used
interchangeably.

Remark: Propagator. In the equation for H12 (2.72), the interaction is written in
position space (with coordinates x). In particle physics, matrix elements (transition
amplitudes) are mostly written in momentum space. Looking at the expression (2.66) for
the point-sourced field φ, we see that the denominator in momentum space is k2 +m2. Had
we included a possible time-dependence of φ, the denominator would be −k2

0 + k2 +m2 =
m2− k2, where k2 = kµk

µ. This factor is very general: Whenever a particle of mass m and
four-momentum k is exchanged in an interaction, this exchange is represented by a factor

1/(k2 −m2) . (2.74)

This is called a propagator, and appears frequently in matrix elements. The full propagator
also has a phase factor and a numerator that depends on the spin of the exchanged particle.

Meson theory. The interaction studied above is a model for the strong force among
nucleons, proposed by Hideki Yukawa in 1934. Yukawa’s theory predicts the existence of
a new particle, the quantum of the force field φ, which is sourced by nucleons. He called
these particles mesons, and the field φ the meson field, from the greek word “mesos”,
which means “intermediate”. The reason was that the predicted mass of these mesons was
between that of the electron and the proton. 13 years later, in 1947, mesons were indeed
discovered experimentally, as short-lived subatomic particles that are produced in nucleon
collisions. For his prediction, Yukawa was awarded the Nobel Prize in 1949. Today, we
know that mesons are bound states of one quark and one antiquark, and there are various
different kinds (pions, rho mesons, eta mesons, Kaons, etc). They are indeed the primary
force carriers that hold atomic nuclei together.

20



Feynman rules. For understanding the Standard Model (and quantum field / gauge
theory in general), and especially for computing its predictions, we will need the Feynman
rules for the Standard Model. These are used to compute matrix elements (transition
amplitudes). To understand the general structure of the model, the interactions between
fermions and bosons are the most important. Let us summarize the basic arguments, all
of which were motivated in the discussion so far.

Consider the electromagnetic interaction. The interaction term in the Lagrangian is

Lint = −JµAµ = Qψ̄γµψA
µ . (2.75)

Here, Q is the electric charge (for electrons, Q = −e), ψ̄ and ψ are final and initial electron
states, and γµ is a spin factor that makes the combination ψ̄γµψ a relativistically covariant
four-vector. Aµ is the electromagnetic vector potential (photon field).

Suppose we want to describe an interaction where an electron with momentum p emits
a photon of momentum k, thereby changing its momentum to p′ = p− k.

The factor at the electron-electron-photon (eeγ) vertex is the interaction term in the
Lagrangian with the initial and final states (wave functions) removed. In this case, the
factor that remains is −eγµ. To first approximation, the matrix element for any process
can be constructed by

• writing the appropriate interaction factor for each vertex,

• putting a propagator factor 1/(k2 − m2) for any internal particle line of four-
momentum k and mass m,

• impose momentum conservation at every vertex.

The precise rules for arbitrary processes are a bit more complicated, but a good semi-
quantitative understanding of the Standard Model and its tests and predictions can be
obtained with these approximate rules. This is basically the Born approximation for
transition amplitudes M in quantum theory: M ' 〈f |V |i〉 for initial state i, potential V ,
and final state f .

3 Gauge Invariance
Gauge invariance is one of the most important concepts of the Standard Model of particle
physics. It is a symmetry principle that determines from the beginning how particles have
to interact to make the theory consistent. For example, it explains why the electromagnetic
interaction is due to a massless spin-one particle, the photon, that is being exchanged
between electrically charged particles. More generally, if given types of matter particles
exist and are to interact, gauge invariance predicts the existence of further particles that
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mediate this interaction (by particle exchange), and it determines the properties of these
particles as well as the precise form of the interaction terms in the Lagrangian.

This is very different from the historical situation where forces and interactions had to
be postulated in a clever way to match experimental observations. Theories where the
interactions are determined by gauge invariance are called gauge theories or Yang–Mills
theories (after Chen Ning Yang and Robert Mills), and the force-carrying particles (quanta
of the interaction field) are called gauge bosons. The theories for the electroweak and the
strong interactions are of this type. The existence of the respective gauge bosons (W±,
Z0 bosons and gluons) was predicted by gauge theory, and indeed they were all found
experimentally. All their measured properties agree with the theoretical predictions.

We will first look at gauge invariance in classical electrodynamics, and then in quantum
theory. Afterwards, we move on to Abelian gauge theory. Finally, we will look at
non-Abelian gauge theory, which is the case of interest for the Standard Model.

3.1 Gauge Invariance in Electrodynamics
In classical electrodynamics, the electric and magnetic fields E and B are expressed in
terms of the vector potential A and scalar potential V as

B = ∇×A , E = −∇V − ∂A/∂t . (3.1)

If we transform the potentials A and V simultaneously as

A→ A′ = A+∇χ , V → V ′ = V − ∂χ/∂t , (3.2)

where χ is an arbitrary (differentiable) scalar, then the equations (3.1) for the fields are
unchanged, or invariant. If we combine A and V into the four-vector Aµ = (V ;A), then
the transformation (3.2) can be written in the uniform way

Aµ → A′µ = Aµ − ∂µχ . (3.3)

These transformations are called gauge transformations. They have been known since the
1800s, but were largely viewed as a curiosity for a long time.

The uniform notation (3.3) emphasizes the correlation between the transformations for
A and V . Turning the argument around, one could say that the electric and magnetic
fields have to be related in the very specific way (3.1) in order to be invariant under gauge
transformations. This is closer to the point of view we will adopt in the following.

3.2 Gauge Invariance in Quantum Mechanics
In quantum theory, gauge invariance takes a different form, which leads to the modern
viewpoint. Observable quantities depend on wave functions ψ through probabilities |ψ|2.
Hence it is reasonable to demand that the theory is invariant under an overall phase
change of the wavefunction,

ψ → ψ′ = e−iαψ , (3.4)
where α is a constant. This is called a global gauge transformation (since the change of
phase is the same everywhere in space).

One would imagine that it should also be possible to change the phase of ψ differently
at different points in space and time without affecting the theory (since the probabilities
|ψ|2 would still be unchanged by this). That is, the theory should be invariant under

ψ(x, t)→ ψ′(x, t) = e−iχ(x,t)ψ(x, t) . (3.5)
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This is called a local gauge transformation.
Now consider the Schrödinger equation for a free particle described by the wavefunc-

tion ψ,
i ∂
∂t
ψ(x, t) = − 1

2m ∇
2ψ(x, t) . (3.6)

If ψ satisfies the Schrödinger equation, then the locally transformed ψ′ for a general χ(x, t)
will not satisfy it, since the derivatives of χ do not cancel! The Schrödinger equation is
therefore not invariant under local gauge transformations.

For electrically charged particles in the presence of an electromagnetic field, we know
that the Schrödinger equation is modified to

(i∂t + eV )ψ = 1
2m (−i∇+ eA)2ψ , (3.7)

where e is the absolute value of the charge of the electron. But if we now apply the
local gauge transformations for the wave function and for the electromagnetic potentials
simultaneously,

ψ(x, t)→ ψ′(x, t) = e−iχ(x,t)ψ(x, t) ,
A(x, t)→ A′(x, t) = A(x, t) + 1

e
∇χ(x, t) ,

V (x, t)→ V ′(x, t) = V (x, t)− 1
e
∂tχ(x, t) , (3.8)

then the modified Schrödinger equation (3.7) is unchanged, that is invariant under this
transformation.

What happened? At first, the Schrödinger equation was (unexpectedly) not invariant
under local gauge transformations, but once we add the electromagnetic field and properly
transform it along with ψ, invariance under local gauge transformations is achieved. We
can turn the logic around and say that requiring local gauge invariance enforces both
the presence of the field Aµ = (V,A), and the very specific way it enters the Schrödinger
equation. Since Aµ is a four-vector, it is a vector field, and its quanta (the photons) are
vector particles, that is particles of spin one. Note that we made no use of any particular
properties of ψ except that it satisfies the Schrödinger equation. Hence the effect applies
to all particles in the same way: Whenever a particle is electrically charged, its interaction
with photons is fixed by gauge invariance. The only quantity that remains undetermined
is the charge (e in the above equations), it remains an input to the theory that has to be
measured experimentally.

To summarize, the existence and specific form of electromagnetic interactions has in a
certain sense been derived from requiring invariance under local gauge transformations. As
we shall see, this principle generalizes to other interactions. Whenever a particle carries a
certain charge, and the theory is invariant under certain “phase” transformations (generally
called gauge transformations), then specific interaction fields of spin one (called gauge
fields) must exist with their associated quanta (called gauge bosons), and the interaction
Lagrangian is fixed, up to the numerical values of the charges.

3.3 Covariant Derivatives
We can rewrite the Schrödinger equation for a particle in an electromagnetic field in a form
that makes its invariance under local gauge transformations very transparent. This form
of the equation will generalize to other gauge theories. Define the differential operators

D = −∇− ieA and D0 = ∂t − ieV . (3.9)
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Then the Schrödinger equation (3.7) becomes

iD0ψ = 1
2m (iD)2ψ . (3.10)

Now let us see how Dψ changes when we apply a local gauge transformation:

D′ψ′ = (−∇− ieA′)ψ′ =
(
−∇− ieA− i(∇χ)

)
e−iχψ

= e−iχ(−∇− ieA)ψ = e−iχ(Dψ) . (3.11)

Similarly,

D′0ψ′ = (∂t − ieV ′)ψ′ =
(
∂t − ieV + i(∂tχ)

)
e−iχψ

= e−iχ
(
∂t − ieV

)
ψ = e−iχ(D0ψ) . (3.12)

We see that both Dψ and D0ψ transform in the same way as the wavefunction ψ itself.
The four-vector

Dµ = (D0;D) (3.13)
is called the covariant derivative. Remarkably, any equation for ψ written in terms of
the covariant derivative will automatically be gauge invariant! When Dµ gets applied
repeatedly, the result will still transform as a wave function: Since Dµψ transforms like a
wave function, also DµD

µψ does, etc.
This principle is very general: We can apply it for any interaction that is due to a

“charge”, not only the electromagnetic one. Let us say we want our theory to be invariant
under some transformation

ψ → ψ′ = Uψ , (3.14)
where U is some operator acting on the wavefunction ψ. We want to define an operator

Dµ = ∂µ − igAµ , (3.15)

where g is a constant, and Aµ represents the interacting field that has to be added to
make the theory invariant, but we do not know how Aµ transforms. What we want to
impose is that Dµψ transforms in the same way as ψ, that is

D′µψ′ = U(Dµψ) ⇔ (∂µ − igA′µ)Uψ = U(∂µ − igAµ)ψ . (3.16)

Solving this equation for A′µ, we get

−igA′µUψ = −∂µ(Uψ) + U∂µψ − igUAµψ
= −(∂µU)ψ − igUAµψ . (3.17)

Since we want this equality to be true for any state ψ, it has to hold at the operator level,
that is we can drop the ψ. Multiplying by U−1 from the right, one finds

A′µ = UAµU−1 − i
g

(∂µU)U−1 . (3.18)

This is the transformation rule that Aµ has to follow for Dµ = ∂µ− igAµ to be a covariant
derivative. Here, U was an arbitrary transformation operator acting on the state ψ. If
U is a phase, U = e−iχ, then UAµU−1 = Aµ, and we recover the known result for the
electrodynamic field, with g = −e. In general, g is the charge that couples to the gauge
field Aµ. U could be (and will be) a matrix operator acting on an internal state space.
Then also Aµ will be a matrix operator, and the ordering of factors in (3.18) matters.
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4 Some Group Theory
Before we get to the non-Abelian gauge theories of the Standard Model, let us review
some group theory. This will serve two purposes: Firstly, all matter particles are spin 1/2
fermions, so we will need the theory of spinors later on. Secondly, the electroweak gauge
group is SU(2)× U(1), and the gauge group of QCD (the strong interactions) is SU(3),
which is a generalization of SU(2). So we will need some basics about the representations
of these groups to understand the Standard Model.

This review will be mostly mathematical and a bit technical. Don’t be intimidated
by this! When we continue with the physics part later on, we will for the most part only
need the simplest examples of the concepts introduced in the following.

4.1 Groups
Groups. Let us recall the basic definition of a group. A group (G, ·) is a set G of
elements and a composition rule

· : G×G→ G , (g, h) 7→ g · h = gh (4.1)

which satisfies
• If g, h ∈ G, then also g · h ∈ G.

• The composition is associative: (g · h) · u = g · (h · u) for all g, h, u ∈ G.

• There is an identity element 1 ∈ G, such that g · 1 = 1 · g = g for all g ∈ G.

• For every g ∈ G, there is a unique inverse g−1 ∈ G, such that g · g−1 = g−1 · g = 1.
An example is the group of permutations of n elements, called Sn (a discrete group).
Another is the set of complex phase factors U(θ) = eiθ for real θ, called U(1) (a continuous
group).

Groups as Transformations. In physics in general, and in particle physics in particular,
groups appear mainly because
• Physical quantities behave in a specific way under some transformations,

• Physical systems may be invariant under certain transformations of (some or all)
their constituents.

Some examples are
• Vectors in classical mechanics and electrodynamics transform in a specific (the
well-known) way under rotations, represented by the rotation group SO(3): v 7→ Rv,
R ∈ SO(3).

• Quantum states are invariant under multiplication by a phase factor: ψ 7→ eiθψ, all
phase factors form the group U(1) 3 eiθ.

• Spinors transform in representations of the spin group SU(2).
In all these examples, the groups are continuous, which means that the elements depend
on continuous parameters that can take infinitely many different values. Discrete groups
also play a role in physics (for example rotations of lattices by discrete angles), but will
not be important for us.
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4.2 Lie Groups and Algebras
Lie Groups. Continuous groups whose elements are differentiable functions of their
continuous parameters (such that the group is at the same time a differentiable manifold)
are called Lie groups. This is the case for all continuous transformation groups that we
consider. The simplest example is U(1), where U(θ) = eiθ ∈ U(1) is clearly a differentiable
function of θ.

Exponential Map and Lie Algebras. It can be shown that for all Lie groups G, every
element g ∈ G can be written in the form

g = exp(iX) , X =
∑n

k=1 θkTk . (4.2)

The quantities Ti are called the generators of the Lie group, and for a Lie group that
depends on n parameters (an n-dimensional Lie group), there are n such generators.
The generators form an algebra called the Lie algebra of the Lie group. Expanding the
exponential map

g = exp(iX) = 1 + i
∑n

k=1 θkTk +O(θ2
k) , (4.3)

one sees that the generators Tk define group elements 1 + iεTk that are infinitesimally close
to the identity 1 ∈ G.

More on Lie Algebras. The Lie algebra g is the tangent space of the Lie group G
at the identity element 1 ∈ G. The exponential map exp : g → G maps itX ∈ g to the
integral curve in G whose derivative at t = 0 equals iX, that is ∂/∂t exp(itX)|t=0 = iX.
When the group is represented by matrices, then the exponential map is equivalently
defined by its Taylor series expansion:

exp(iX) =
∞∑
n=0

1
n! (iX)n . (4.4)

A Lie algebra g can be defined abstractly, and independently of its corresponding Lie
group, as a vector space with a bilinear product [., .] : g × g → g that obeys the two
properties

Antisymmetry: [X, Y ] = −[Y,X] ,
Jacobi identity: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 , (4.5)

for all X, Y, Z ∈ g. The basis elements of the vector space are called generators, and are
typically denoted by Ta. The product is fully defined by the structure constants fabc via

[Ta, Tb] = i fabc Tc , (4.6)

where {Ta} is a basis of generators.

Example. Let us illustrate these concepts with an example. Arguably the most important
transformation group for quantum theory is SU(2), defined by

SU(2) =
{
U ∈ Mat(2,C) |UU † = U †U = 1, det(U) = 1

}
. (4.7)
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A general element of this group can be written as

U =
(
α −β̄
β ᾱ

)
, |α|2 + |β|2 = 1 . (4.8)

This shows that SU(2) is clearly a Lie group. One verifies easily that infinitesimal group
elements 1 + iεTk are generated by the three matrices

T1 = 1
2

(
0 1
1 0

)
, T2 = 1

2

(
0 −i
i 0

)
, T3 = 1

2

(
1 0
0 −1

)
. (4.9)

These are the generators of the Lie algebra su(2), and are recognized as the familiar
Pauli matrices, Tk = σk/2. The factor of 1/2 is a convention that is chosen such that
exp(2πTk) = −1.

The generators satisfy the commutation relations of angular momentum:

[Ta, Tb] = iεabcTc , (4.10)

so the structure constants are fabc = fabc = εabc (the totally antisymmetric tensor). One
can verify that the commutator (4.10) satisfies the Jacobi identity.

4.3 Representations
Representations. (Lie) groups and algebras are abstract objects that can be defined
purely in terms of their algebraic properties. In practice, they take concrete realizations in
terms of matrices. Such realizations are called representations. A representation of a Lie
group G is a map R from G to the space of n× n complex matrices:

R : G→ Mat(n,C) , R(g)R(h) = R(gh) . (4.11)

The condition on the right must hold for all elements g, h ∈ G. It says that R must be a
homomorphism that preserves the product structure of the group.

Similarly, a representation of a Lie algebra g is defined as a map ρ from g to the space
of n× n complex matrices that preserve the algebra product (commutator):

ρ : g→ Mat(n,C) , [ρ(X), ρ(Y )] = ρ([X, Y ]) , (4.12)

for all X, Y ∈ g.
The representations of a Lie group G and its Lie algebra g are related in the obvious

way: Given a representation R of G, the tangent space of R(G) at the identity defines
a representation ρ of the corresponding Lie algebra. Similarly, a representation ρ of g
induces a representation R of G by exponentiation. In other words:

exp(iX) = g ⇔ exp(iρ(X)) = R(g) . (4.13)

Fundamental and Adjoint Representations. Because representations are bijective
homomorphisms, every group can be defined by giving one of its representations. This
is typically the case for Lie groups. For example, the group SU(n) can be defined as the
space of unitary n× n complex matrices with unit determinant, as we did for SU(2) above.
For SU(n), this realization is called the fundamental representation. As we saw above, the
generators of su(2) in the fundamental representation are the Pauli matrices: Ta = σa/2.
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Every Lie algebra g with n generators is also an n-dimensional vector space. We can
construct a representation of g in terms of n × n matrices ρ(X) that act on the vector
space g by the commutator [X, .] with X:

ρ(X) : g→ g , Y 7→ ρ(X) · Y ≡ [X, Y ] . (4.14)

This is called the adjoint representation. In terms of the generators, it becomes

ρ(Ta) · Tb = [Ta, Tb] = ifabc Tc . (4.15)

In the generator basis, the generators vectors have entries (Ta)i = δai, so the above equation
becomes

[ρ(Ta)]ib = [ρ(Ta)]ij(Tb)j = ifabc(Tc)i = ifabi . (4.16)
Writing everything in lower indices, and using the fact that fabc is totally antisymmetric
(this is true for all Lie algebras we consider), one finds

[T adj
a ]bc ≡ [ρ(Ta)]bc = −ifabc . (4.17)

At the level of the group, the adjoint representation acts by conjugation:

R(g) : G→ G , h 7→ R(g)(h) ≡ ghg−1 . (4.18)

Example: su(2). To have a concrete example, let us look again at su(2). As we saw
above, the fundamental generators are T fund

i = σi/2, where σi are the Pauli matrices. They
satisfy the commutation relations

[Ta, Tb] = i εabc Tc , (4.19)

and hence the adjoint generators T adj
a have matrix elements

[T adj
a ] = −i εabc . (4.20)

Let us check this explicitly:

[T1, T2] = iT3 , [T1, T3] = −iT1 , (4.21)

and similar relations hold for T2 and T3. The adjoint generators are therefore:

T adj
1 =

0 0 0
0 0 −i
0 i 0

 , T adj
2 =

 0 0 i
0 0 0
−i 0 0

 , T adj
3 =

0 −i 0
i 0 0
0 0 0

 . (4.22)

Example: su(3). Another example that is important for the Standard Model is SU(3),
the group of 3× 3 unitary matrices. For completeness and reference, we list some of its
properties here. The Lie algebra su(3) of this group has eight generators Ta = λa/2 with

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,
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λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 . (4.23)

Its structure constants, defined by

[λa, λb] = 2i fabcλc (4.24)

are

f123 = 1 ,
f458 = f678 =

√
3 /2 ,

f147 = f516 = f246 = f257 = f345 = f637 = 1/2 , (4.25)

and all other values fabc follow from the total antisymmetry.

4.4 Quantum Theory
Unitary Representations. In quantum theory, states are represented by elements
of a Hilbert space. All (measurable) observables are expressed in terms of projections
〈φ|ψ〉 of states onto other states, that is in terms of the inner product 〈.|.〉 on the Hilbert
space. Any transformation |ψ〉 7→ |ψU〉 = U |ψ〉 that is supposed to be a symmetry of the
quantum system therefore has to preserve the inner product. Because a general projection
transforms as

〈φ|ψ〉 7→ 〈φU |ψU〉 = 〈φ|U †U |ψ〉 , (4.26)
this means that any symmetry U has to obey U †U = 1, or in other words U † = U−1,
which means that the transformation must be unitary. In particular, this implies that
every symmetry group must be represented on quantum states by a unitary representation
(a representation whose matrices are unitary).

Internal Rotations. The states may depend on continuous parameters (such as the
position in space, or the momentum), but may also have discrete degrees of freedom. In
such cases, a general state is represented as a vector, whose entries are the amplitudes
for the various possible discrete values. A familiar example is spin: We can distinguish
spin-up and spin-down states, and a general state is a superposition of the two:

|↑〉 =
(

1
0

)
, |↓〉 =

(
0
1

)
, |ψ〉 =

(
a
b

)
. (4.27)

Consider more generally a quantum system that can be in one of two discrete states. The
two states span a (complex) two-dimensional state space, and a general state is represented
as a two-dimensional vector in this space, as in (4.27). Assume further that the system is
symmetric under rotations in this space. By the above argument, any symmetry must be
represented by unitary matrices. In the case of a two-state system, the relevant matrices
are unitary 2× 2 matrices, and such matrices form the group SU(2). If a system has three
discrete states, the relevant group would be SU(3).

4.5 SO(3) and SU(2) and Spin
We will close this review of group theory by recalling the relevance of SU(2) for spin and
rotations in quantum systems.
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Rotations. Rotations in space are represented by matrices R ∈ SO(3), where SO(3) is
the group of orthogonal matrices. As we said above, any quantum system must transform in
a unitary representation U of SO(3) under spatial rotations R, such that |ψ〉 7→ U(R)|ψ〉.
Any rotation by an angle of 2π equals the identity operation, R(2π) = 1. Using the
property

U(R)U(R′) = U(RR′) ⇒ U(R)U(1) = U(R · 1) = U(R) , (4.28)

one finds that also U(R(2π)) = U(1) = 1, therefore every state will be mapped to back to
itself under full 2π rotations.

And of course any reasonable quantum system must be invariant under rotations by
an angle of 2π. But quantum states |ψ〉 are only well-defined up to arbitrary complex
prefactors, so one could also allow transformations that map states to themselves up to a
constant prefactor.

SU(2) and Spin. This is where SU(2) comes into the game: SU(2) is a double cover of
SO(3), which means that there is a mapping (a group homomorphism) f : SU(2)→ SO(3)
that is two-to-one: If f(U) = R, then also f(−U) = R. In particular, both 1 ∈ SU(2) and
−1 ∈ SU(2) are identified with 1 ∈ SO(3). And because the mapping is continuous, a full
rotation in space is represented by −1 ∈ SU(2).

So a state |ψ〉 transforming under SU(2) under rotations gets mapped to −|ψ〉 under
rotations by a full angle 2π. And this is admissible, since |ψ〉 and −|ψ〉 represent the same
state. The upshot is that to represent spatial rotations on quantum states, we can also
consider unitary representations of SU(2)!

And this is indeed what happens for spin.

Spin 1/2. A spin-1/2 system is represented by a two-component vector |ψ〉 that trans-
forms in the fundamental representation of SU(2) under spatial rotations. The fundamental
generators for SU(2) are the Pauli matrices, Ti = σi/2. So for a rotation by α:

|ψ〉 7→ exp(iα · σ/2) |ψ〉 . (4.29)

Spin One. For a spin-one system, states are represented by three-component vectors
|ψ〉 that transform in a three-dimensional representation of SU(2). That three-dimensional
representation is the adjoint representation of SU(2), whose generators we stated above
in (4.22). So for a rotation by α:

|ψ〉 7→ exp(iα · T adj)|ψ〉 (4.30)

Upon closer inspection, the generators T adj
i are exactly the fundamental generators of

ordinary SO(3) rotations! So the adjoint representation of SU(2) equals the fundamental
representation of SO(3), and spin-one states transform as regular vectors under spatial
rotations.

5 Non-Abelian Gauge Theory
After having gone through a review of group theory, we are ready to move on to non-Abelian
gauge theory.
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5.1 Strong Isospin
Strong isospin

• is an approximate symmetry,

• had an important conceptual impact historically.

• There is also weak isospin, which is a more fundamental symmetry. Here, we consider
strong isospin to get familiar with the concept.

Nucleons. Strong isospin is a symmetry between the two types of nucleons: Protons
and neutrons. They have almost identical masses:

mproton = 939.57 MeV , mneutron = 938.27 MeV . (5.1)

The difference in masses is only ∼0.1%. The proton carries electric charge, the neutron
is electrically neutral. Apart from that, they are very similar particles, especially from
the point of view of the strong interaction. At nuclear scales, the strength of their EM
interaction is only about ∼1% of their strong interaction.

Consider the proton p and the neutron n as two states of the same object, the nucleon
N . Imagine a 2d state space, the strong isospin space:

• Assume that forces that describe nucleon interactions (the strong force) are invariant
under rotations in this space. This can only be approximately true due to the EM
interactions, but we will neglect those for now.

• The EM charge is merely a label that distinguishes the p from the n state.

• Similar to spin, write general states as

N =
(
p
n

)
⇒ Probabilities: Pp = |p|2

|N |2
= pp∗

pp∗ + nn∗
. (5.2)

For properly normalized states: pp∗ + nn∗ = |N |2 = 1.

• Invariance under rotations in 2d complex strong isospin space is equivalent to
invariance under

N 7→ UN , U ∈ SU(2) . (5.3)

Such unitary rotations preserve total probability (normalization). In other words, N
forms an SU(2) doublet (fundamental representation of SU(2)).
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• The standard basis of SU(2) is given by the generators τi/2, where τi are the Pauli
matrices. We will call the Pauli matrices σi when they act on spinors, and τi when
they act on some other space, like here.
The generator τ3 is diagonal, hence the states p and n have definite eigenvalues
±1/2. Analogous to regular spin, we say that p has (strong) isospin +1/2, and n
has (strong) isospin −1/2.

Pions. Besides p and n, do more particles form strong isospin multiplets, that is transform
in representations of strong isospin SU(2)? Yes! For example pions. There are three
species of pions: π+, π−, and π0. The π± has electric charge ±1, the π0 is neutral. Their
masses are:

m± = 139.57 MeV , m0 = 134.96 MeV . (5.4)
Again, the three pion states have very similar strong interactions. The differences in their
masses and interactions are ∼1% EM-size effects. The three pions form an isospin-one
state

π =

π1
π2
π3

 , (5.5)

which means that π transforms in the spin-one, or adjoint, representation of SU(2). This
representation works as follows: First, one transforms π to a 2× 2 matrix via

πab = τ iabπi = τab · π . (5.6)

Then, the generators of strong isospin SU(2) act on this state by commutation:

T iadj = [τ i, ·]
⇒ T iπ = T iadjπ = [τ i, π] = [τ i, τ j]πj = i εijkπjτ k . (5.7)

The eigenvalue of a state under T 3 is called I3 (“strong isospin”). Experimentally, we know
that the electric charge eigenstates π±, π0 have strong isospin I±3 = ±1, I0

3 = 0. Writing
T 3 as a 3× 3 matrix in the basis of (5.7), it reads

T 3 =

 0 i 0
−i 0 0
0 0 0

 . (5.8)

This matrix indeed has eigenvalues {1, 0,−1}, with eigenstates

π± = (π1 ± iπ2)/
√

2 , π0 = π3 . (5.9)

This shows the relationship between the charge eigenstates π±, π0 and the isospin-one
multiplet (5.5).

The pions π± have opposite charges (electric and I3), but are otherwise identical: π−
is the antiparticle of π+ and vice versa. π0 is its own antiparticle.

Symmetry. If strong isospin is a symmetry, also interactions must respect it. What is
the most general symmetric Lagrangian for nucleon-pion interaction? Assume that the
number of nucleons is preserved (but not the number of pions). We can build a Lagrangian
out of the following operators:

32



p† creates a proton / destroys an antiproton
p destroys a proton / creates an antiproton
n† creates a neutron / destroys an antineutron
n destroys a neutron / creates an antineutron
π+ creates a π+ / destroys a π−

(π+)† = π− creates a π− / destroys a π+

π0 creates/destroys a π0

The most general nucleon-number preserving Lagrangian that also preserves I3 then is

Lint = gpn p
†nπ− + gnp n

†pπ+ + gpp p
†pπ0 + gnn n

†nπ0 , (5.10)

where gxy are coupling constants. Here, each term stands for a three-point interaction. For
example, the first term stands for a process where a neutron n emits a pion π−, turning
into a proton p:

Even though it preserves I3, the Lagrangian Lint is not invariant under rotations in strong
isospin space for general values of the couplings gxy. For example, when we rotate p and
n, then p†p and n†n mix with each other, and therefore gpp and gnn must be related.

How can we write Lint in a way that it is automatically – “manifestly” – invariant?
The answer is, we have to make use of representation theory. We need to form a singlet (a
trivial representation) of strong isospin SU(2) out of a fundamental N , an anti-fundamental
N † = (p†, n†), and an adjoint π. This is exactly what the Pauli matrices τ iab do! They carry
one adjoint index i, and one fundamental/anti-fundamental index pair a, b. By contracting
them with N , N †,

N †τ iN = (N †)aτ iabN b , (5.11)
the fundamental index of N and the anti-fundamental index of N † are transformed into
an adjoint index i. Contracting this index with the adjoint index of π, we can form a
scalar that is invariant under strong isospin SU(2) rotations. The most general invariant
Lagrangian therefore is

Lint = g N †τN · π = g (N †)aτ iabN b πi . (5.12)

More explicitly,

τ · π = π1

(
0 1
1 0

)
+ π2

(
0 −i
i 0

)
+ π3

(
1 0
0 −1

)

=
(

π3 π1 − iπ2
π1 + iπ2 −π3

)
=
(

π0 √
2 π−√

2 π+ −π0

)
, (5.13)

hence the interaction Lagrangian becomes

Lint = g N †τ · πN = g
(
p† n†

)( π0 √
2 π−√

2 π+ −π0

)(
p
n

)
= g

(
p†p π0 +

√
2 p†nπ− +

√
2 n†p π+ − n†nπ0

)
. (5.14)

We see that all parameters gpp, gnn, gpn, and gnp are related to the single coupling g.
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Remark. As mentioned, strong isospin is not an exact symmetry, but this example
illustrates the idea of invariance under internal “rotations”. Later, we will look at weak
isospin, which is a true symmetry of the strong, weak, and electromagnetic interactions,
and where the adjoint (isospin one) particle consists of the W bosons instead of pions.

5.2 Non-Abelian Gauge Theories
In the Abelian case, we considered states ψ that are invariant under phase transformations
ψ 7→ eiχψ, and local phase invariance implied the existence of and precise interaction with
the gauge field Aµ, identified as the electromagnetic field. This is the essence of gauge
theory.

Non-Abelian Transformations. For the example of strong isospin, general transfor-
mations are of the form

N 7→ UN , N =
(
p
n

)
, U = eiε·τ/2 ∈ SU(2) . (5.15)

Here, invariance under phase transformations are generalized to invariance under SU(2)
transformations. This transformation is non-Abelian, since applying two successive trans-
formations in different orders gives different results:

U, V ∈ SU(2) : UV N 6= V UN ⇔ [U, V ] 6= 0 . (5.16)

The non-commutativity is directly related to the non-trivial commutation relations of the
Pauli matrices:

[τ i, τ j] = 2i εijkτ k . (5.17)
One could equally well consider particles transforming in representations of other groups
and demand invariance. Besides SU(2), another group that is important for the Standard
Model is SU(3). States q = (a1, a2, a3) that transform in the fundamental representation
of SU(3) transform as

q 7→Mq , q =

a1
a2
a3

 , M = eiα·λ/2 ∈ SU(3) , (5.18)

where λ = (λ1, . . . , λ8) are the eight SU(3) generators, and α = (α1, . . . , α8) are the
corresponding eight transformation parameters. Quarks, the constituents of nucleons,
indeed have such an SU(3) degree of freedom called color.

Non-Abelian Gauge Theory. By promoting such non-Abelian symmetries to local sym-
metries, one obtains non-Abelian gauge theory. Consider a general state ψ = (ψ1, . . . , ψn)
that transforms in a matrix representation of a general gauge group G:

ψ 7→ Uψ , ψ =

ψ1
ψ2
ψ3

 , U = eiω·T = eiωaTa ∈ G . (5.19)

Here, to simplify the notation we do not distinguish between the abstract group G and
its concrete representation: U is an element of G in a matrix representation. The gauge
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group G will always be a Lie group, and T = (T1, . . . , Td) are the generators of the
corresponding Lie algebra, where d is the dimension of the gauge group (and its associated
algebra).

When we promote the transformations (5.19) to local symmetries, they are called gauge
transformations, and the spacetime-dependent transformation parameters

ω = ω(t;x) (5.20)
are called gauge parameters. As in Abelian gauge theory, free particles by themselves cannot
be gauge invariant, since the derivatives in the Schrödinger equation (or its relativistic
equivalent) produce extra terms when acting on the gauge parameters ω(t;x). We again
have to construct a covariant derivative

Dµ = ∂µ − igAµ (5.21)
to achieve invariance. Here, g is a coupling constant, and Aµ is a field that transforms in
the adjoint representation of the gauge group. That is, Aµ takes values in the Lie algebra
g associated to the gauge Lie group G. It can therefore be expanded in the fundamental
generators T a:

Aµ = AµaT
a , Aµa ∈ C , T a ∈ g . (5.22)

Earlier, we constructed the transformation rule of a gauge field Aµ for a general (in general
non-commutative) transformation U :

Aµ 7→ A′µ = UAµU−1 − i
g

(∂µU)U−1 . (5.23)

This transformation rule guarantees that the covariant derivative
Dµψ 7→ (Dµψ)′ = UDµψ (5.24)

transforms in the same way as the state ψ 7→ Uψ under general gauge transformations
U . We can find the infinitesimal form of the transformation (5.23) as follows: Write the
transformation U in terms of generators, U = eiω·T = eiωaTa , and expand to linear order in
ωa:

A′µ = (1 + iω · T )Aµ(1− iω · T )− i
g

i(∂µω) · T +O(ω2)

= Aµ + iω · [T , Aµ] + 1
g

(∂µω) · T +O(ω2) (5.25)

Further expanding Aµ in terms of generators, this becomes

A′µa T
a = AµaT

a + iωa[T a, T b]Aµb + 1
g

(∂µωa)T a +O(ω2)

= AµaT
a + iωaifabcT cAµb + 1

g
(∂µωa)T a +O(ω2)

=
[
Aµa − ωcf cbaA

µ
b + 1

g
(∂µωa)

]
T a +O(ω2)

=
[
Aµa + f bcaA

µ
bωc + 1

g
(∂µωa)

]
T a +O(ω2) . (5.26)

The infinitesimal change of the components Aµa therefore is

A′µa = Aµa + δAµa , δAµa = f bcaA
µ
bωc + 1

g
(∂µωa) (5.27)

This shows that there is a consistent transformation for Aµa that makes the theory gauge
invariant, by writing the Lagrangian in terms of the covariant derivative Dµ.
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5.3 Quarks and Leptons
No theoretical principle predicts what internal spaces particles transform in. The invariance
of the theory under such transformations is simply observed. The complete set of spaces
needed for the Standard Model is U(1), SU(2) (the electroweak spaces), and SU(3) (the
color space).

Weak Isospin. In the Standard Model, both quarks and leptons can be put in SU(2)
doublets of a weak isospin space:

quarks leptons(
u
d

)
,

(
c
s

)
,

(
t
b

)
,

(
νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
,

(5.28)

and the theory is invariant under local weak isospin SU(2) transformations. The weak
isospin SU(2) gauge transformations are

U = eiε·τ/2 ∈ SU(2) , (5.29)

with the local (space-time dependent) gauge parameters

ε = ε(t;x) . (5.30)

The covariant derivative Dµ and gauge field Aµ therefore are

Dµ = ∂µ − ig2A
µ , Aµ = τ

2 ·W
µ = τi

2 W µ
i , (5.31)

where g2 is the coupling constant, and the components of Aµ are the weak gauge bosons
W µ
i . According to our general formula (5.27), the gauge bosons transform as

W µ
i 7→ W µ

i + δW µ
i , δW µ

i = εjkiW
µ
j εk + 1

g2
(∂µεi) , (5.32)

where εjki = fjki = f jki are the structure constants of su(2).

Color. In addition, quark states transform in an SU(3) triplet (fundamental representa-
tion) in color space:

q =

rg
b

 , q ∈ {d, u, s, c, b, t}. (5.33)

Again, the theory is invariant under local color SU(3) transformations. The story for SU(2)
repeats with different labels: The color SU(3) gauge transformations are

U = eiα·λ/2 ∈ SU(3) , (5.34)

with the SU(3) generators λ = (λ1, . . . , λ8) and the local (space-time dependent) gauge
parameters

α = α(t;x) . (5.35)
The covariant derivative Dµ and gauge field Aµ in this case are

Dµ = ∂µ − ig3A
µ , Aµ = λ

2 ·G
µ = λa

2 Gµ
a , (5.36)
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where g3 is the coupling constant, and the components of Aµ are the gluons (strong gauge
bosons) Gµ

a . According to the general formula (5.27), the gluons transform as

Gµ
a 7→ Gµ

a + δGµ
a , δGµ

a = f bcaG
µ
bαc + 1

g3
(∂µαa) , (5.37)

where f bca are the structure constants of su(3).

Covariant Derivative of the SM. By adding several terms to ∂µ, we can make a
covariant derivative Dµ that guarantees invariance under gauge transformations in several
spaces (simultaneously or separately). The full covariant derivative of the Standard Model
is

Dµ = ∂µ − ig1
Y

2 Bµ − ig2
τi
2 W µ

i − ig3
λa
2 Gµ

a (5.38)

Here,

• Y is a generator of U(1): hypercharge,

• 1
2 τi are generators of SU(2): weak isospin,

• 1
2 λa are generators of SU(3): color.

The full space thatDµ acts on is a representation of the product group U(1)×SU(2)×SU(3),
which is the full gauge group of the Standard Model. The hypercharge generator Y acts
trivially (as a unit matrix) in the SU(2) × SU(3) space. Similarly, τi acts trivially in
U(1)× SU(3), and λa acts trivially in U(1)× SU(2).

Some comments:

• The three parameters g1, g2, and g3 are arbitrary real numbers that have to be fixed
by comparison to experiment.

• Various states (particles) have various charges (eigenvalues) under the generators
Y , τi, and λa. These charges serve as state labels that identify the various particles
(quarks and leptons).

• As for (Abelian) electrodynamics, the three terms in Dµ mean that several spin-one
gauge bosons must exist: One Bµ, three W µ

i , and eight Gµ
a . All these are confirmed

experimentally.

• No one knows why the gauge group is U(1) × SU(2) × SU(3) and not some other
group.

• The equation for Dµ is the main equation of the Standard Model: It tells about the
internal spaces, the gauge bosons that must exist, and their interactions, all based
on the postulate of gauge invariance.

6 Relativistic Fermions
The elementary fields/particles of matter, the quarks and leptons, are all spin-1/2 fermions.
To describe them, it is necessary to generalize the Schrödinger equation to include the
spin degrees of freedom. Also, the theory should be relativistically invariant: Special
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relativity dictates that the laws of physics must be the same in all inertial systems. In
mathematical terms, this means that all physical equations must be invariant, that is
should not change their form, when we apply Lorentz transformations that relate one
inertial frame to another. This leads to the Dirac equation. The formulation will provide
a concise notation that is useful for computations within the Standard Model.

6.1 The Dirac Equation
At the time of Dirac, physicists were looking for a relativistically invariant equation that
describes the electron, including its spin. The Schrödinger equation

−i∂tφ = − 1
2m ∇

2φ (6.1)

is linear in the time derivative, but quadratic in the spatial derivatives. Lorentz rotations
mix spatial directions with the time direction, therefore time and spatial derivatives have
to appear with identical degrees in a relativistically invariant equation.

Klein–Gordon Equation. A first guess would be to start with the relativistically
invariant equation

E2 = p 2 +m2 (6.2)
and replace E and p by their quantum mechanical operators acting on a state φ:

−∂2
t φ = (−∇2 +m2)φ ⇔ (∂µ∂µ +m2)φ = 0 . (6.3)

But this results in a problem: A quantum mechanical state φ that satisfies the Schrödinger
equation describes a probability density

ρ = φ∗φ (6.4)

that obeys the continuity equation

∂

∂t
ρ+∇ · J = 0 (6.5)

with the probability current

J = − i
2m (φ∗∇φ− φ∇φ∗) . (6.6)

Writing the continuity equation in the form(
∂

∂t
;∇
)
· (ρ;J) = 0 , (6.7)

it is clear that it cannot be relativistically invariant. To make it relativistically invariant,
(ρ;J) would have to be a relativistic four-vector. To complete J to a four-vector, the
probability density ρ has to take the form

ρ = i
2m (φ∗∂tφ− φ∂tφ∗) , (6.8)

so that the full probability density four-current is relativistically covariant:

Jµ = i
2m (φ∗∂µφ− φ∂µφ∗) , (6.9)
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and the continuity equation becomes

∂µJ
µ = 0 . (6.10)

Everything is consistent with relativity now. But there is a problem: Because the
equation (6.3) is of second order in time, the initial values of both φ and ∂tφ may be freely
chosen, and ρ = J0 may become negative! That should be impossible for a probability
density. So we cannot get a relativistically invariant generalization of the Schrödinger
equation that is of second order in the time derivative.

The equation (6.3) is still relevant in quantum field theory, it is called the Klein–
Gordon equation. When interpreted as a probability amplitude, its wave function φ (or the
probability density φ∗φ) does not obey the laws of relativity. And the relativistic density
ρ ∼ (φ∗∂tφ− φ∂tφ∗) can become negative and therefore cannot be a probability. But ρ
can be interpreted as a charge density, for which negative values are admissible. The
Klein–Gordon equation therefore can describe relativistic spinless particles with positive,
negative, and zero charge, for example pions.

Dirac’s Ansatz. As we saw above, a relativistically invariant equation for a probability
amplitude cannot be quadratic in time derivatives. Dirac was looking for an equation that
was linear in the time derivative, and therefore, by relativistic invariance, had to be linear
in spatial derivatives. He wrote down the most general such equation that is also linear in
the state ψ:

i ∂
∂t
ψ =

[
−i
(
α1

∂

∂x1 + α2
∂

∂x2 + α3
∂

∂x3

)
+ βm

]
ψ . (6.11)

The coefficients αi and β are constrained by physics requirements. Using the relation
E2 = p 2 +m2 and replacing E and p by their quantum-mechanical operators, any solution
ψ should satisfy the Klein–Gordon equation (6.3),

−∂2
t ψ = (−∇2 +m2)ψ . (6.12)

We will see later that this is not in contradiction to what we discussed above. Moving all
terms in (6.11) to the same side, the equation takes the form Dψ = 0, which implies that
also D2ψ = 0. Multiplying this out, assuming that αi and β are constant, and sorting
terms, this becomes

− ∂2

∂t2
ψ =

[
−α2

i

∂2

∂xi2
−
∑
i<j

(αiαj + αjαi)
∂

∂xi
∂

∂xj
− im(αiβ + βαi)

∂

∂xi
+β2m2

]
ψ . (6.13)

Requiring that this is compatible with the relativistic energy relation (6.12) gives the
following constraints:

αiαj + αjαi = 0 (i 6= j) ,
αiβ + βαi = 0 ,
α2
i = β2 = 1 . (6.14)

These relations cannot be satisfied by numbers. But Dirac had just worked on Heisenberg’s
new matrix mechanics, and immediately realized that αi and β had to be matrices.
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Massless Fermions. For massless fermions, the term with β is absent, and the conditions
on αi are

αiαj + αjαi = {αi, αj} = 2δij , (6.15)
where

{a, b} ≡ ab+ ba (6.16)
is the anticommutator. These are exactly the anticommutation relations of the Pauli
matrices, so one can set

αi = −σi , (6.17)
where the minus sign is a convention. Then Dirac’s ansatz (6.11) becomes the massless
Dirac equation

i∂tψ = σ · pψ , pi = i ∂

∂xi
. (6.18)

and ψ is a two-component spinor.

Massive Fermions. With a non-zero mass m, the first guess would be to find a 2× 2
matrix β that satisfies the conditions (6.14) together with αi = −σi. A complete basis
for all 2 × 2 matrices is formed by the Pauli matrices σi together with the unit matrix.
The second condition αiβ + βαi = 0 together with α2

i = 1 shows that β cannot have αi
components. Setting β = 1, the unit matrix, also fails. Hence the conditions cannot be
satisfied with 2× 2 matrices.

It turns out that to satisfy the conditions (6.14), the matrices αi, β have to be at least
4× 4 in size. A particular solution to the constraints is

αi =
(

0 σi
σi 0

)
, β =

(
1 0
0 −1

)
, (6.19)

where each matrix entry stands for a 2× 2 submatrix. So for example,

α1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (6.20)

Gamma Matrices. The choice of 4×4 matrices for αi, β is not unique. We will multiply
Dirac’s ansatz (6.11) by β from the left:

iβ∂tψ = (−iβα · ∇+m)ψ , (6.21)

and rename the coefficient matrices as

γ0 = β , γi = βαi . (6.22)

These gamma matrices can be combined into a four-vector,

γµ = (γ0; γi) . (6.23)

The massive Dirac equation then can be written in the compact form

(iγµ∂µ −m)ψ = 0 , (6.24)
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where ψ now is a four-component spinor. The conditions (6.14) on αi and β are equivalent
to the relations

γµγν + γνγµ = {γµ, γν} = 2gµν (6.25)
for the gamma matrices. Here, gµν are the components of the metric tensor

g =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (6.26)

The relations (6.25) for the gamma matrices are the defining relations for a Clifford algebra.
The particular solution for αi and β (6.19) give the standard representation, also called
Dirac representation, for the gamma matrices:

γ0 =
(

1 0
0 −1

)
, γi =

(
0 σi
−σi 0

)
, (6.27)

where again each entry stands for a 2× 2 submatrix.

Relativistic Invariance. We have been calling γµ a four-vector, suggesting that it
transforms as a vector under Lorentz transformations, such that γµ∂µ is a Lorentz scalar.
This cannot be correct if the gamma matrices are constant. What we really want is that
the Dirac equation (6.24)

(iγµ∂µ −m)ψ = 0 (6.28)
is relativistically invariant, meaning that it does not change its form when we apply a
Lorentz transformation. We know how ∂µ transforms under Lorentz transformations (as a
covariant vector), but we do not yet know how γµ and ψ should transform.

If γµ∂µ is to be invariant, γµ has to transform as a contravariant four-vector. Because
Lorentz transformations are 4× 4 matrices ΛL ∈ SO(1, 3) that preserve the metric tensor
gµν , the transformed set γ′µ will still satisfy the Clifford algebra relations. Now, it is a
theorem that, if two sets of matrices γ′µ and γµ satisfy the Clifford algebra, they must be
related by a similarity transformation

γ′µ = Λ−1
S γµΛS . (6.29)

With γµ∂µ = γ′µ∂′µ, the Dirac equation can be re-written as

(iΛ−1
S γµΛS∂

′
µ −m)ψ(x′) = 0

⇔ Λ−1
S (iγµ∂′µ −m)ΛSψ(x′) = 0 , (6.30)

where in the second step we have used that ΛS is constant and Λ−1
S ΛS = 1. Now if we

identify ΛSψ as the transformed spinor ψ′,

ψ′ = ΛSψ , (6.31)

then the Dirac equation becomes

Λ−1
S (iγµ∂′µ −m)ψ′(x′) = 0 ⇔ (iγµ∂′µ −m)ψ′(x′) = 0 , (6.32)

which is of the same form as the original equation, with the same gamma matrices γµ, but
with Lorentz-transformed coordinate x′, derivative ∂′, and spinor ψ′.
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What have we shown? We have shown that the Dirac equation (with constant gamma
matrices) is relativistically invariant provided that the spinor state ψ transforms according
to (6.31), where ΛS is the transformation (4 × 4 matrix) acting in spinor space that
corresponds to the applied Lorentz transformation ΛL via

γ′µ = (ΛL)µνγν = Λ−1
S γµΛS . (6.33)

Lorentz Transformations. In order to understand the spinors ψ better, we have to
note some facts about representations of the Lorentz group. The Lorentz group SO(1, 3)
comprises all transformations of space-time that relate different inertial frames. On
contravariant four-vectors, like xµ, Lorentz transformations act by multiplication with a
matrix ΛL ∈ SO(1, 3) that preserves the metric tensor gµν , such that xµ 7→ (ΛL)µνxν . For
example, a boost in the x1 direction takes the form

ΛL =


cosh β sinh β 0 0
sinh β cosh β 0 0

0 0 1 0
0 0 0 1

 ⇔ K1 = i


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 ,
where the matrix on the right is the infinitesimal generator. A rotation in the (x1, x2)
plane is represented by

ΛL =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 ⇔ J3 = i


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 .
We can arrange all generators of SO(1, 3) (boosts and rotations) in a 4× 4 matrix:

Lµν =


0 K1 K2 K3
−K1 0 J3 −J2
−K2 −J3 0 J1
−K3 J2 −J1 0

 , (6.34)

where each entry is again a 4× 4 matrix, for example L23 = J3. The matrices Lµν then
satisfy the Lorentz algebra

[Lµν , Lρσ] = i(gνρLµσ − gνσLµρ − gµρLνσ + gµσLνρ) . (6.35)

The generators for the matrices ΛS that represent Lorentz transformations on four-
component (Dirac) spinors, and that we derived from the gamma matrices via (6.33), are
given by

Sµν = i
4 [γµ, γν ] , (6.36)

where we use the same notation as in (6.34): For fixed values of µ and ν, Sµν is a 4× 4
matrix. One can check that these generators indeed satisfy the Lorentz algebra (6.35) for
any set of gamma matrices that satisfy the Clifford algebra relations (6.25).

Now, it is a fact that all finite-dimensional representations of the Lorentz group are
non-unitary.1 All unitary representations of the Lorentz group are infinite dimensional,

1The reason is that the Lorentz group is non-compact. It can be understood by noting that the Lie
algebra of the Lorentz group is su(2)⊕ su(2), and therefore representations of the Lorentz group can be
built from the representations of su(2), which are familiar from non-relativistic spin (Pauli matrices).
Those representations are unitary, but the mapping from pairs of SU(2) representations to SO(1, 3)
representations is complex, which spoils the unitarity.
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which means that states that transform in such a representation must have infinitely many
(a continuum of) degrees of freedom. This implies that relativistic quantum states must
be quantum fields with a continuum of degrees of freedom. In this sense, one can say that
relativistic invariance necessitates quantum field theory.

Coming back to our representation Sµν (6.36), one can indeed check that not all
the matrices Sµν are hermitian (neither are all the Lµν). For example, in the Dirac
representation for the gamma matrices, γ0 is hermitian, but γi are anti-hermitian:

(γ0)† = γ0 , (γi)† = −γi . (6.37)

This means that ψ†ψ, contrary to naive intuition, is not a Lorentz scalar, since under
Lorentz transformations:

ψ†ψ 7→ ψ†Λ†SΛSψ , (6.38)
which is not equal to ψ†ψ, since ΛS is not unitary, and therefore Λ†S 6= Λ−1

S . In order to
write Lorentz scalars, we introduce the combination

ψ̄ ≡ ψ†γ0 . (6.39)

It can be shown from the properties of the gamma matrices and the definition ΛS =
exp(iθµνSµν) that

Λ†Sγ
0 = γ0Λ−1

S , (6.40)
and therefore

ψ̄ψ (6.41)
is a Lorentz scalar. Similarly, one can show that ψ̄γµψ transforms as a Lorentz vector,
that is

ψ̄γµψ 7→ (ΛL)µν ψ̄γνψ (6.42)
under Lorentz transformations.

For more details on representations of the Lorentz group and spinors, see for example
Chapter 10 of Matthew Schwartz’ excellent book “Quantum Field Theory and the Standard
Model”.

6.2 Conserved Current
We can construct a conserved current from ψ. Starting with the Dirac equation

(iγµ∂µ −m)ψ = 0 , (6.43)

we take its adjoint (hermitian conjugate):

−i∂µψ†γµ† −mψ† = 0 , (6.44)

and then multiply with γ0 from the right, noting that

γi†γ0 = −γ0γi† = γ0γi and γ0† = γ0 , (6.45)

to obtain

0 = i∂µψ†γ0γµ +mψ†γ0

= i∂µψ̄γµ +mψ̄ . (6.46)
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This equation is also sometimes written in the form

ψ̄(iγµ←−∂µ +m) = 0 (6.47)

to resemble the Dirac equation for ψ more closely. Here, it is understood that the derivative
operator ←−∂µ acts to the left. Now we multiply the original Dirac equation (6.43) by ψ̄
from the left, and the conjugate equation (6.46) by ψ from the right, and sum the two
equations. The mass terms cancel, and what remains is

0 = ψ̄γµ∂µψ + (∂µψ̄)γµψ = ∂µ(ψ̄γµψ) . (6.48)

Hence, we found a current that is conserved:

jµ = ψ̄γµψ , ∂µj
µ = 0 . (6.49)

Recall from the beginning of this section that the conserved current following from the
Klein–Gordon equation could not be interpreted as a continuity equation for a probability
density, because the time component of the conserved current was not positive definite.
Hence the Klein–Gordon equation could not describe the probability amplitude of a
relativistic particle. This problem is solved by the Dirac equation: The time component of
the current is

j0 = ψ̄γ0ψ = ψ†ψ ≡ ρ , (6.50)
which is positive definite. It satisfies the continuity equation

∂tρ = −∇ψ̄γψ , γ = (γ1, γ2, γ3) , (6.51)

and its integral over all of space is preserved:

Q =
∫
ρ d3x , ∂tQ = 0 . (6.52)

The current component ρ therefore has a consistent interpretation as a probability density
for a fermion. The conserved charge Q is the total particle number, and the spatial
components of jµ describe the particle number flow.

6.3 Free Particle Solutions
After this mostly abstract treatment, we can get more familiar with the Dirac equation by
looking at its solutions.

Wave Equation. The Dirac equation is a wave equation for massive relativistic particles
with spin. The fact that it is a wave equation can be seen as follows: Multiply the Dirac
equation

(iγµ∂µ −m)ψ = 0 (6.53)
from the left with (iγν∂ν +m) to find

(γνγµ∂µ∂ν +m2)ψ = 0 . (6.54)

Since ∂µ∂ν is symmetric in µ and ν, we can replace also γµγν by their symmetric combina-
tion,

γµγν → 1
2 {γ

µ, γν} = gµν , (6.55)
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which, by the Clifford algebra, equals the metric tensor. So our equation becomes

(∂µ∂µ +m2)ψ = 0 . (6.56)

This looks exactly like the Klein–Gordon equation, but now applied to the four-component
spinor ψ. The differential operator is proportional to the identity matrix, therefore each
component of ψ satisfies the Klein–Gordon equation. It is a wave equation, hence its
solutions, and therefore also the solutions to the Dirac equation, can be expanded in plane
waves.

Plane-Wave States. We have seen that solutions to the Dirac equation can be expanded
in plane-wave states. These take the form

ψ = u(p) e−ipµxµ , (6.57)

where u(p) is a four-component spinor that may depend on p, but not on x. Plugging this
plane-wave state into the Dirac equation directly gives an equation for the spinor u(p):

(γµpµ −m)u(p) = 0 . (6.58)

Here, pµ can take any value that is compatible with E2 = p2 +m2. In particular, nothing
prevents us from choosing E = p0 < 0 negative. Because a particle with momentum pµ is
indistinguishable from an antiparticle with momentum −pµ, we re-interpret particles with
momentum pµ and E < 0 as antiparticles with momentum −pµ and E > 0. In other words,
when expanding a state in terms of plane waves, instead of summing over all momenta
pµ, we sum only over momenta with E > 0, but count particles and antiparticles for each
value of pµ. For antiparticles, we rename the spinor u(p) to v(p). Since the mass does not
change sign, v(p) satisfies the equation

(γµpµ +m) v(p) = 0 . (6.59)

6.4 Particles and Antiparticles
Four Particle States. We saw that spinors described by the Dirac equation have four
components. Spin 1/2 particles have two components, so what is the meaning of these four
components? The answer is that the Dirac equation automatically describes both particles
and antiparticles. To understand this, let us again look at the free-particle solutions. As we
saw earlier, the Dirac equation (iγµ∂µ −m)ψ = 0 for a plane-wave state ψ = u(p)e−ipµxµ

becomes an equation for the four-component spinor u(p):

(γµpµ −m)u(p) = 0 . (6.60)

For a particle at rest, p = 0, this becomes

(γ0E −m)u = 0 . (6.61)

Recall that in the Dirac basis,

γ0 =
(

1 0
0 −1

)
, (6.62)
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and therefore 
E −m 0 0 0

0 E −m 0 0
0 0 E +m 0
0 0 0 E +m

u = 0 . (6.63)

This means that E = m for two of the solutions, and E = −m for the two other solutions.
More explicitly, we set ui to be the i’th unit vector:

(ui)j = δij e. g. u1 =


1
0
0
0

 . (6.64)

we find the four solutions

E = +m : ψ1,2 = u1,2 e−imt ,

E = −m : ψ3,4 = u3,4 e+imt . (6.65)

Two of these solutions have negative energies. This leads to a problem: For non-zero
momentum, the energies of these states becomes −

√
m2 + p2 , which is not bounded from

below. In particular, a particle could radiate away an infinity of energy by increasing its
momentum. Physical energies are always bounded from below. So what are these states
with E = −m? The resolution is that these states represent antiparticles with positive
energies.

CPT Inversion. To understand this fully requires quantum field theory, but we can
also get an intuitive understanding with more basic methods. The energy is the eigenvalue
of the Hamiltonian, which is the generator of time translations. In other words, the energy
is the eigenvalue of the time-shift operator i∂t. Now if we reverse the orientation of the
time coordinate,

t→ t′ = −t , (6.66)

the time-shift operator, and therefore also the energy switches sign. Therefore, a negative-
energy particle can be re-interpreted as a positive-energy particle for which time runs
backwards: A negative-energy particle moving forwards in time is equivalent to a positive-
energy particle moving backwards in time. A particle “moving backwards in time” makes
no sense physically, it is merely a theoretical construct. There is no experimental evidence
whatsoever of anything actually moving backwards in time. Now, a particle moving in
some direction as we go back in time is equivalent to a particle moving in the opposite
direction as we go forwards in time. Since moving backwards in time makes little sense,
we compensate the time inversion by also inverting all spatial directions x, which inverts
the momentum p of our particle. In order to preserve the physics, we need to do one
further transformation. A particle with some charge q moving with a velocity v produces
a measurable current j = qv. When we invert the velocity (momentum), we need to invert
also the charge to preserve the current. This is true for all types of charges.

All in all, we have applied a CPT transformation to our particle states, where

C (charge conjugation) : q → −q
P (parity) : p→ −p (x→ −x)
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T (time reversal) : E → −E (t→ −t) . (6.67)

As far as we know, the combined CPT transformation is an exact symmetry, not only of one-
particle states, but of all of nature. Since all charges q are inverted, the transformation turns
particles into anti-particles (and vice versa). This actually defines antiparticles: Under a
CPT transformation, every particle turns into its anti-particle. Particle/antiparticle pairs
have identical mass and spin, but opposite charges.

Interpretation. This is the Feynman-Stückelberg interpretation: The negative-energy
states ψ3,4 are re-interpreted as positive-energy antiparticles (that move forward in time).
In view of this interpretation, it is sometimes convenient to invert the overall sign of pµ
for these states, such that p0 > 0 for all states. One often rewrites the states ψ3,4 as

ψ3,4 = u3,4(p) e−ipµxµ pµ→−pµ−−−−−→ ψ3,4 = v2,1(p) e+ipµxµ , (6.68)

where p0 > 0 is positive in the right-hand expression, and

v1(E,p) = u4(−E,−p) , v2(E,p) = u3(−E,−p) . (6.69)

History. The inevitability of negative-energy states and their interpretation as (positive-
energy) antiparticles led Dirac in 1931 to predict the existence of the electron’s antiparticle,
the positron. The positron was experimentally confirmed by Anderson (in cosmic ray
measurements) in 1932, and this was one of the triumphs of quantum field theory at the
time.

6.5 Chirality, Helicity, and Spin
Two further important concepts for elementary particles are chirality and helicity. Both
are related to each other, and to spin.

Chirality. For the following discussion, it is useful to not consider the Dirac representa-
tion of the gamma matrices that we used above, but a slightly different representation
called the Weyl representation, given by:

γ0 =
(

0 1
1 0

)
, γi =

(
0 σi
−σi 0

)
. (6.70)

Again, every entry is a 2×2 submatrix. The matrices γi are the same as in the Dirac repre-
sentation, only γ0 is different. In this basis, the generators Sµν of Lorentz transformations
are block-diagonal:

Sµν = i
4 [γµ, γν ] =

(
∗ 0
0 ∗

)
, (6.71)

ψ 7→ eiθµνSµνψ =
(

exp((iθi − βi)1
2σi) 0

0 exp((iθi + βi)1
2σi)

)
ψ .

Here, θi and βi, i = 1, 2, 3 parametrize the three rotations and the three boosts that make
up the Lorentz group. One can see that the first two components of ψ only transform among
each other, and similarly the last two components. This means that the four-dimensional
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representation Sµν is reducible, it consists of two two-dimensional representations (that are
irreducible). One can further see that the two blocks of Sµν are independent fundamental
representations of su(2): θ+

i = iθi− βi and θ−i = iθi + βi are 3 + 3 independent parameters.
This means that the Lorentz algebra so(1, 3) of the Lorentz group SO(1, 3) is a direct sum
of two copies of the Lie algebra su(2):

so(1, 3) = su(2)⊕ su(2) . (6.72)

The decomposition can be seen explicitly by combining the boost generators Ki and the
rotation generators Ji into

J+
i := 1

2 (Ji + iKi) , J−i := 1
2 (Ji − iKi) , (6.73)

which separately satisfy the commutation relations of su(2),

[J+
i , J

+
j ] = iεijkJ+

k , [J−i , J−j ] = iεijkJ−k , [J+
i , J

−
j ] = 0 . (6.74)

The finite-dimensional unitary representations of su(2) are labeled by half integers

j = {0, 1
2 , 1,

3
2 , 2, . . .} , (6.75)

and therefore the finite-dimensional unitary representations of the Lorentz algebra are
labeled by pairs of half-integers (j1, j2). The Weyl representation (6.71) is the (1

2 , 0) ⊕
(0, 1

2) representation, since it consists of two independent spin-1/2 representations of the
spin group SU(2). The spinor ψ is correspondingly called a Weyl spinor. Because the
representation is block-diagonal, the spinor ψ decomposes into two two-component spinors,

ψ =
(
ψL
ψR

)
, (6.76)

that transform separately under Lorentz transformations: ψL transforms in the (1/2, 0)
representation and is called a left-handed spinor, ψR in the (0, 1/2) representation and
is called a right-handed spinor. The handedness of a spinor is called its chirality. The
fact that any four-component spinor ψ, and hence any fermion, can be separated into
left-handed and right-handed parts ψL and ψR is one of the most important technical
points in the structure of the Standard Model.

Equations of Motion. Let us look at the equations of motion for a free spinor. In the
Weyl basis, the Dirac equation becomes(

−m iσµ∂µ
iσ̄µ∂µ −m

)(
ψL
ψR

)
= 0 , (6.77)

where
σµ := (σ0,σ) , σ̄µ := (σ0,−σ) , σ0 := 1 . (6.78)

For plane-wave states ψ = ue−ipµxµ , this implies

σµpµψR = (E − σ · p)ψR = mψL , (6.79)
σ̄µpµψL = (E + σ · p)ψL = mψR . (6.80)

One can see that the mass term mixes left-handed and right-handed spinor states.
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Massless Case: Helicity. In the massless case, left-handed and right-handed states
do not mix with each other, and they are eigenstates of the helicity operator

ĥ = σ · p
|p|

. (6.81)

This operator measures the spin projection on the direction of motion (momentum), called
helicity. In the massless case, the energy is E = ±|p|, and therefore the eigenvalues of
ĥ are ±1. Hence the left-handed and right-handed chirality eigenstates are also helicity
eigenstates, with opposite eigenvalues. We therefore have the following:

chirality helicity

massless particles, E = +|p|: L −1
R +1

massless antiparticles, E = −|p|: L +1
R −1

(6.82)

Massive Case. In the massive case, the equations of motion mix left-handed and
right-handed fields with each other. But the helicity operator still commutes with the
Hamiltonian, hence helicity is conserved, and it can make sense to consider helicity
eigenstates. But these are no longer the chirality eigenstates ψL and ψR. Also, the helicity
of a massive particle can be changed by a Lorentz transformation by going to the rest
frame and rotating. So helicity is not a good quantum label for massive particles.

Projection Operators. We have defined the left-handed and right-handed chirality
states using the Weyl representation for the gamma matrices. Depending on the context /
type of particles considered, other representations (like the Dirac representation) are more
useful. We can define left-handed and right-handed chirality states independently of the
basis by using the matrix

γ5 := iγ0γ1γ2γ3 = i
4! εµνστγ

µγνγσγτ . (6.83)

In the Weyl basis,

γ5 =
(
−1 0
0 1

)
, (6.84)

and therefore left-handed and right-handed spinors are eigenstates of γ5 with eigenvalues
∓1. We can define projection operators that project onto left-handed and right-handed
states:

PL = 1− γ5

2 , PR = 1 + γ5

2 . (6.85)

The fact that these are projection operators follows from the identities

P 2
L = PL , P 2

R = PR , PL + PR = 1 , PLPR = 0 . (6.86)

In the Weyl representation,

PL =
(

1 0
0 0

)
, PR =

(
0 0
0 1

)
, (6.87)
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and therefore
PL

(
ψL
ψR

)
=
(
ψL
0

)
, PR

(
ψL
ψR

)
=
(

0
ψR

)
. (6.88)

Independently of the gamma matrix representation, the eigenstates of PL and PR are
chirality eigenstates that transform in the (1

2 , 0) and the (0, 1
2) representations of the

Lorentz group. Hence the projectors PL and PR can always be used to separate spinors
into their left-handed and right-handed parts.

Parity. The concept of chirality is related to parity. As we saw above, the parity
operation inverts all spatial directions, x→ −x, but leaves the time direction unchanged.
Under this operation, momenta switch sign: p→ −p. Recall from above that the equations
of motion for a free massless particle were

(E + σ · p)ψL = 0 , (E − σ · p)ψR = 0 . (6.89)

Clearly the parity operation flips the signs in these two equations, and therefore interchanges
the meaning of left-handed and right-handed states. Hence parity interchanges the (1

2 , 0)
and (0, 1

2) representations of the Lorentz group:

P: (1
2 , 0)↔ (0, 1

2) , ψL ↔ ψR . (6.90)

Summary. To summarize, we have seen that the left-handed and right-handed chirality
states ψL and ψR

• do not mix under Lorentz transformations: They transform in separate irreducible
representations,

• each have two components, which are the two spin states of the spin 1/2 particle
(e. g. the electron),

• are helicity eigenstates (only) in the massless limit.

Let us summarize the three spin-related quantities considered above:

Spin is a vector quantity, i. e. it has a direction. It is the eigenvalue of the spin operator
S = σ/2 (for fermions). One also calls the spin s the number (scalar) that defines
the eigenvalue s(s+ 1) of S2. For example, fermions have s = 1/2 and are therefore
called spin 1/2 particles.

Helicity is the projection of the spin on the direction of motion. Helicity eigenstates exist
for any spin. The two helicity eigenstates of the photon (which is a massless spin-1
particle) are what we call circularly polarized light.

Chirality is a concept that only exists for spinors. More precisely, it only exists for
representations (j1, j2) of the Lorentz group with j1 6= j2. Something is chiral if it is
not symmetric under spatial reflections (e. g. DNA molecules), that is under the parity
transformation. The parity transformation interchanges the (j1, j2) with the (j2, j1)
representation, and therefore exchanges left-handed spinors ψL and right-handed
spinors ψL.
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6.6 The Dirac Lagrangian
Field theories are typically described in terms of Lagrangians. Quarks and leptons are
spin-1/2 fermions and therefore obey the Dirac equation of motion. The Lagrangian that
gives rise to the Dirac equation is

L = ψ̄(iγµ∂µ −m)ψ (6.91)

Even without knowing the Dirac equation, this Lagrangian is very constrained: Starting
with a spinor ψ, the only CPT-invariant Lorentz scalars that one can write are ψ̄ψ and
ψ̄γµ∂µψ. So the only degree of freedom is the relative coefficient between the two terms.
Now, we have seen earlier that the Dirac equation implies that each component of ψ
satisfies the Klein–Gordon equation, which is equivalent to the relativistic energy condition
E2 = p2 +m2. Imposing this condition thus fixes the relative coefficient in the Lagrangian.
This in fact provides an alternative way of deriving the Dirac equation.

6.7 Chirality in Field Theory
Which of spin, helicity, or chirality is important depends on the physical context. For free
massless spinors, the spin eigenstates are also helicity and chirality eigenstates. We call
theories that are symmetric under parity transformations non-chiral. In such cases, it is
mostly unnecessary to separately consider the chirality eigenstates. Theories that are not
parity-symmetric are called chiral theories. In such theories, it is important to distinguish
left-handed and right-handed states.

We can see how left-handed and right-handed states may interact by looking at typical
terms that can appear in a Lagrangian.

Mass Terms. For example, mass terms have the form mψ̄ψ. we can expand such terms
into left-handed and right-handed parts by using the chirality projection operators PL and
PR:

ψ̄ψ = ψ̄(P 2
L + P 2

R)ψ = ψ̄PLPLψ + ψ̄PRPRψ . (6.92)

We note that

ψ̄L = (PLψ)†γ0 = ψ†PLγ
0 = ψ†γ0PR = ψ̄PR , ψ̄R = ψ̄PL . (6.93)

The mass term hence becomes

ψ̄ψ = ψ̄RψL + ψ̄LψR . (6.94)

A mass term therefore flips the chirality of a particle. This is consistent with the fact that
the mass term in the equations of motion mixes left-handed and right-handed spinors.
Still, ψL and ψR appear symmetrically, hence mass terms are non-chiral.

Currents. How about interactions? Standard interactions between matter particles and
gauge bosons occur through currents. We saw earlier that fermion currents are of the form
ψ̄γµψ. Again, this can be expanded into left-handed and right-handed parts. Using the
projection operators, current terms can be written as

ψ̄γµψ = ψ̄(PL + PR)γµ(PL + PR)ψ . (6.95)
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From the definition of γ5, it follows that {γ5, γµ} = 0. Therefore,

PLγ
µ = γµPR , PRγ

µ = γµPL . (6.96)

Using the projection operator property PLPR = PRPL = 0, we see that only the mixed
terms survive, and the current hence becomes

ψ̄γµψ = ψ̄PRγ
µPLψ + ψ̄PLγ

µPRψ

= ψ̄Lγ
µψL + ψ̄Rγ

µψR . (6.97)

This means that currents preserve the chirality, and all interactions of the form ψ̄γµψ are
parity-symmetric. This is for example the case in electrodynamics, where the interaction
term is

ψ̄γµAµψ = Aµψ̄γ
µψ = Aµ(ψ̄Lγ

µψL + ψ̄Rγ
µψR) . (6.98)

Electrodynamis therefore is non-chiral, that is it is symmetric under the parity operation
that swaps left-handed and right-handed spinors.

Chiral Currents. What happens when only the left-handed part of a current appears
in an interaction? In this case, one has

ψ̄Lγ
µψL = ψ̄PRγ

µPLψ = ψ̄γµPLψ = 1
2 ψ̄γ

µ(1− γ5)ψ (6.99)

Let us see how the two terms transform under parity transformations. Parity inverts
all spatial directions, and exchanges left-handed and right-handed spinors. In the Weyl
representation, one can easily see that this means

Parity: ψ(t;x)→ γ0ψ(t;−x) ,
ψ̄(t;x) = ψ†(t;x)γ0 → ψ†(t;−x)γ0γ0 = ψ̄(t;−x)γ0 . (6.100)

This transformation rule is in fact independent of the representation. The first term in
the current therefore transforms as

ψ̄γµψ(t;x)→ ψ̄γ0γµγ0ψ(t;−x) = ψ̄(γµ)†ψ(t;−x) . (6.101)

Recall that
(γ0)† = γ0 , (γi)† = −γi . (6.102)

Therefore,
ψ̄γ0ψ → ψ̄γ0ψ , ψ̄γiψ → −ψ̄γiψ , (6.103)

which is the transformation rule of a vector, and hence ψ̄γµψ is a true Lorentz vector. For
the second term in the current, we need to use that {γ5, γµ} = 0, which follows from the
definition γ5 = iγ0γ1γ2γ3. One finds

ψ̄γµγ5ψ → ψ̄γ0γµγ5γ0ψ = −ψ̄γ0γµγ0γ5ψ = −ψ̄(γµ)†γ5ψ . (6.104)

Compared to (6.101), we find an additional sign. Hence, ψ̄γµγ5ψ transforms like a vector,
but picks up an extra sign under parity transformations. It is therefore a pseudovector, also
called axial vector. The left-handed current (6.99) is therefore also called V–A current.
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Weak Interactions. Interactions with such V–A currents indeed appear in the weak
interactions, hence the weak interaction is chiral. This shows that the Standard Model
treats left-handed and right-handed fermions differently, and nature is not invariant
under the parity transformation. In particular, there are left-handed neutrinos, but no
right-handed neutrinos have ever been observed.

6.8 Coupling to the Photon
We have studied in detail the theory of a free spin-1/2 fermion. How do such particles
(like the electron) interact with photons?

Covariant Dirac Equation. The photon is a gauge boson, and its interactions follow
from gauge theory. As we learned earlier, to obtain a gauge-invariant theory, we have to
use the covariant derivative. Under gauge transformations, spinors transform just like
scalars, that is

ψ → e−iαψ . (6.105)

Therefore, we have to use the same covariant derivative as for scalars,

Dµ = ∂µ + ieAµ , (6.106)

where e is the charge of the fermion (e. g. electron). Replacing the ordinary derivative in
the Dirac Lagrangian with the covariant derivative, one finds

L = ψ̄(iγµDµ −m)ψ = ψ̄(iγµ∂µ − eγµAµ −m)ψ . (6.107)

Correspondingly, the Dirac equation becomes

0 = (iγµDµ −m)ψ = (iγµ∂µ − eγµAµ −m)ψ . (6.108)

The term −eψ̄γµAµψ provides the interaction between the spin 1/2 fermion and the
electromagnetic field in the form of the vector potential Aµ.

Quadratic Equation. Something interesting happens when we compare this equation
for a fermion to the Klein–Gordon equation for a scalar φ coupled to the photon field Aµ,(

(i∂µ − eAµ)2 −m2
)
φ = 0 . (6.109)

Multiplying (6.108) with (iγµDµ +m) gives

0 = (iγµDµ +m)(iγνDν −m)ψ = (γµγν iDµiDν +m2)ψ . (6.110)

In the first term, we can split both factors γµγν and iDµiDν into their symmetric and
antisymmetric parts:

γµγν = 1
2 {γ

µ, γν}+ 1
2 [γµ, γν ] ,

iDµiDν = 1
2 {iD

µ, iDν}+ 1
2 [iDµ, iDν ] . (6.111)
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In the contraction γµγν iDµiDν , the cross terms vanish, leaving us with

0 =
(1

4 {γ
µ, γν}{iDµ, iDν}+ 1

4 [γµ, γν ][iDµ, iDν ]−m2
)
ψ (6.112)

If the covariant derivatives Dµ were ordinary derivatives ∂µ, the second term would vanish
and we would recover the Klein–Gordon equation in the same form as for a scalar (6.109).
But here, the second term becomes

[iDµ, iDν ] = [i∂µ − eAµ, i∂ν − eAν ]
= −e([i∂µ, Aν ] + [Aµ, i∂ν ])
= −ei(∂µAν − ∂νAµ) = −eiFµν , (6.113)

where we recognize the field strength tensor (cf. Problem 1.2)

Fµν = ∂µAν − ∂νAµ . (6.114)

Recalling that
{γµ, γν} = 2gµν , i

4 [γµ, γν ] = Sµν , (6.115)

we find

0 =
(
iDµiDµ − eSµνFµν −m2

)
ψ

=
(
(i∂µ − eAµ)2 − eSµνFµν −m2

)
ψ . (6.116)

Magnetic Moment. Compared to the equation (6.109) for a scalar, we find the extra
term −eSµνFµν . What is this extra term? In the Weyl representation, the generators Sµν
take the form

S0i = − i
2

(
σi 0
0 −σi

)
, Sij = − 1

2 ε
ijk

(
σk 0
0 σk

)
. (6.117)

The components of the field strength tensor are

F0i = −Ei = Ei , Fij = −εijkBk . (6.118)

Hence the extra term expands to (using that εijkεij` = 2δk` )

−eSµνFµν = −2eS0iF0i − eSijFij

= e

(
(B + iE) · σ 0

0 (B − iE) · σ

)
. (6.119)

The term B ·σ represents a magnetic dipole term. (The term iE is also a magnetic dipole
term, in a boosted frame). In the non-relativistic limit, the equation (6.116) indeed becomes
the Schrödinger–Pauli equation that describes spin-1/2 particles in electromagnetic fields.
In the conventional normalization, the magnetic moment µe (coefficient of B · σ/2) is
µe = 2µB, with the Bohr magneton µB = e/(2m). Historically, the Pauli equation was
inspired by experimental data for the electron. Here, we see that this equation inevitably
follows for all spin 1/2 particles from the Dirac equation plus gauge theory principles. We
therefore have a testable prediction: All charged fermions should have a magnetic dipole
moment of size µ = 2q/(2m). Experimentally, the magnetic moment of the electron is
indeed ∼2.002µB. The factor 2.002 is a quantum effect that is beautifully matched by
quantum field theory corrections (see below).
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Quantum Electrodynamics. By promoting the derivative in the Dirac Lagrangian to
the gauge covariant derivative, we have obtained the interaction between light and matter
in the form of the interaction term −eψ̄γµAµψ. The only further term that we have to add
is the kinetic term for the electromagnetic field. We found earlier (cf. Problem 1.2) that this
has the form −1/4FµνF µν . Adding this term to the covariant Dirac Lagrangian (6.107),
we get

L = − 1
4 FµνF

µν + iψ̄γµDµψ −mψ̄ψ ,

= − 1
4 FµνF

µν + iψ̄γµ∂µψ − eAµψ̄γµψ −mψ̄ψ . (6.120)

This is the full Lagrangian of electrodynamics. The quantization of this Lagrangian
provides a complete theoretical description of the interaction between light and electrons.
It was awarded with the 1965 Nobel prize (Richard Feynman, Julian Schwinger, Shin’ichirō
Tomonaga).

QED Precision. This theory is incredibly accurate: Experimental measurements and
theoretical predictions agree to extreme precision. The most prominent example is the
magnetic dipole moment µe of the electron. We saw above that the Dirac Lagrangian
predicts

µe = geµB , µB ≡
e

2me

, ge = 2 , (6.121)

with the g-factor ge. Quantum effects lead to a correction of the g-factor, and therefore
to the magnetic moment. The magnetic moment is one of the best measured physical
quantities, it is known experimentally up to a relative uncertainty of ∼10−13. On the
theoretical side, the first QED correction to ge comes from the Feynman one-loop diagram

(6.122)

Further corrections come from further diagrams with more loops. Adding all diagrams
with up to four loops (the current computational limit) gives a prediction for ge in terms
of the fine structure constant α = e2/(4π) ≈ 1/137.036. The latter is not computable, so
it must be measured and is an input to the theory.

The most precise experimental value of α is again determined from measuring the
g-factor and fitting it to the theoretical value expressed in terms of α. Hence to non-
trivially check the theoretical prediction, one needs two independent measurements of the
g-factor. Comparing the two independent values of α obtained from the two measurements
gives identical values up to a relative uncertainty of 10−8. The uncertainty comes from
our current limits on the computational as well as the experimental side. The precise
agreement makes QED the best confirmed quantum theory ever devised.
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6.9 *Photon Polarizations and Helicity
This is a side note explaining in some detail why the helicity eigenstates of the photon are
identified with circularly polarized light. It is not essential for the remainder of these notes,
and can therefore safely be skipped.
The electromagnetic field is described by the vector potential Aµ, which is a massless
spin-1 field. Let us first consider how many degrees of freedom (physically independent
components) the field Aµ has. We will see that the four components of Aµ are reduced
to three independent components by the equations of motion. One of those is a gauge
degree of freedom, which leaves us with two physically independent degrees of freedom.
The Lagrangian for a free field Aµ is

L = − 1
4 F

2
µν , Fµν = ∂µAν − ∂νAµ . (6.122)

The equations of motion that follow from this Lagrangian are

�Aµ − ∂µ∂νAν = 0 . (6.123)

where � = ∂µ∂
µ. These are the Maxwell equations. Separating space and time components,

the equations of motion expand to

−∇2A0 + ∂t∇A = 0 , �Aj − ∂j(∂tA0 −∇A) = 0 . (6.124)

Importantly, the Lagrangian (6.122) is invariant under the gauge transformations

Aµ(x) 7→ Aµ(x) + ∂µα(x) (6.125)

for any function α(x): Two field configurations Aµ that differ by the derivative of a scalar
are physically equivalent. We can use the freedom of re-defining Aµ via (6.125) to impose
constraints on the components of Aµ. This procedure is called gauge-fixing. For the
three-vector A, the transformation (6.125) implies

∇A 7→ ∇A+∇2α . (6.126)

Hence we can always pick α(x) so that

∇A = 0 . (6.127)

This is known as the Coulomb gauge. In this gauge, the equation of motion for A0 becomes

∇2A0 = 0 . (6.128)
Once we fix the Coulomb gauge, are there further gauge transformations that preserve this
gauge? We could still apply gauge transformations with any α for which ∇2α = 0. This is
the same constraint that A0 satisfies. Within this class of functions, one can always find
α(x) for which ∂tα = −A0. Applying a further gauge transformation with this α gives

A0 = 0 . (6.129)

Imposing this constraint in addition to the Coulomb gauge exhausts all gauge freedom,
i. e. it completely fixes the gauge. The equation of motion for the spatial components Aj
then becomes

�Aj = 0 . (6.130)

56



Expanding in plane waves (by Fourier transformation),

Aµ(x) =
∫ d4p

(2π)2 εµ(p)e−ipνxν , (6.131)

with polarization vectors εµ(p), we find the constraints

pµp
µ = 0 (equations of motion) ,

p · ε = 0 (gauge choice) ,
ε0 = 0 (gauge choice) . (6.132)

In particular, the second constraint implies that only polarizations transverse to the
momentum p are physical. Without loss of generality, we consider the momentum

pµ = (E, 0, 0, E) , (6.133)

so that the particle moves along the z-direction. We see that the constraints (6.132) only
have two independent solutions, and hence the field Aµ has only two physically independent
components. A basis of solutions is

εµ1 = (0, 1, 0, 0) , εµ2 = (0, 0, 1, 0) . (6.134)

Using the expressions for the electric and magnetic fields

E = Re(−∇V − ∂A/∂t) , B = Re(∇×A) , (6.135)

one finds that plane-wave solutions

Aµ(x) = εµ(p)e−ipνxν (6.136)

with the above polarizations yield linearly polarized light. Another common basis are the
circular polarizations

εµL = 1√
2

(0, 1,−i, 0) , εµR = 1√
2

(0, 1,+i, 0) . (6.137)

Plane waves with these polarizations yield circularly polarized light. Let us see how they
are related to helicity. The helicity operator is

ĥ = S · p
|p|

, (6.138)

where S is the spin operator. Photons have spin one, which means that they transform
in the 3× 3 matrix representation of the spin group SU(2). This is called the vector or
adjoint representation of SU(2). The generators in this representation are simply the SO(3)
rotation generators Ji, that is S = J . Since p = (0, 0, E), the helicity operator is

ĥ = J3 =

0 −i 0
i 0 0
0 0 0

 . (6.139)

One now easily sees that the circular polarization vectors are at the same time the two
helicity eigenstates:

ĥ εL = −εL , ĥ εR = +εR . (6.140)
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7 The Standard Model Lagrangian
We are now ready to go into the formulation of the Standard Model. In the preceding
sections, we have learned

• the rules of spinors and the Dirac equation, which are needed for spin-1/2 fermions
(i. e. all matter particles),

• the idea of internal symmetry as a symmetry group that acts on multiplets of
particles,

• the basic principles of gauge theory, which tell us to begin with a free-particle
Lagrangian and rewrite it with a covariant derivative to find the interactions between
matter particles and gauge bosons (force-carrying particles).

These are all the ingredients we need to write down and understand all terms in the
Standard Model Lagrangian. Before we do that, let us briefly recall the basic meaning
and features of Lagrangians, in particular how they give rise to the Feynman diagrams
that describe particle interactions.

7.1 Lagrangians and Feynman Diagrams
Lagrangians. The dynamics of a local field theory are encoded in its action

S =
∫
L(t) dt , L(t) =

∫
L(t;x) d3x , (7.1)

where L is the Lagrangian. More accurately, L is the Lagrangian, and L is the Lagrangian
density. For simplicity, L is often simply just called the Lagrangian. The Lagrangian
(density) L is a local function of all fields and their derivatives, as well as all parameters
of the theory. It is typically a polynomial consisting of various terms that describe the
propagation and interaction of field quanta (particles). To understand this completely
requires a course in quantum field theory. But we can still outline the basic qualitative
picture without going into all the QFT details.

The most direct way to understand how the Lagrangian is connected to probability
amplitudes is via the path integral. In quantum mechanics, the probability to find a system
in a final state |ψF〉 at time t, assuming that it was in some initial state |ψI〉 at an earlier
time t0 is given by the transition amplitude

〈ψF|e−iĤT |ψI〉 , (7.2)

where T = t− t0, and we assumed that the Hamiltonian Ĥ is time-independent. Inserting
two complete bases of position states 1 =

∫
dq |q〉〈q|, one finds as a central object the

propagator
〈qF|e−iĤT |qI〉 . (7.3)

In the quantum mechanical description of a particle, this propagator is the transition
probability amplitude for the particle to travel from position qI at time t0 to position qF
at time t. Now, Feynman famously showed in 1948 that the propagator can be expressed
as the path integral

〈qF|e−iĤT |qI〉 =
∫
Dq ei/~S[q] =

∫
Dq ei/~

∫
dtL(q(t),q̇(t)) . (7.4)
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Here,
∫
Dq is the integral over all paths q(t) between q(t0) = qI and q(t) = qF, and S[q]

is the action of the theory evaluated on the path q. This path integral expression for
the propagator can be obtained by discretizing T = N · δt into small time intervals δt,
and taking the δt→ 0 limit. The path integral expression shows that all paths leading
from point qI to point qF contribute to the amplitude with equal magnitude, only with
different phase factors. In the classical limit, where the action S is much larger than ~,
the classical path that extremizes S strongly dominates, as all other paths are suppressed
by interference. But in the quantum regime, where S ∼ ~, virtually all paths become
important. The intuitive picture is that the quantum system explores all possible histories
between the two states at times t0 ant t.

The path integral generalizes to quantum field theory: The transition amplitude from
an initial field configuration φ(t0,x) = φI(x) at time t0 to a final field configuration
φ(t,x) = φF(x) at time t is given by

〈φ(t,x)|e−iĤT |φ(t0,x)〉 =
∫
Dφ ei/~S[φ] =

∫
Dφ ei/~

∫
d4xL(φ,φ̇) , (7.5)

where now
∫
Dφ is the integral over all field configurations φ(t, x) with boundary conditions

given by the initial and final field configurations: φ(t0,x) = φI(x) and φ(t,x) = φF(x),
and the action S is the integral over the Lagrangian density L. Again, the system explores
all possible histories between the initial and final states, and all these possible histories
contribute to the total transition amplitude.

Feynman Diagrams. How the path integral translates to probabilities for all kinds of
processes via Feynman rules is the subject of quantum field theory. It goes beyond the
scope of this course, but we can outline the general schematics: For a free-field Lagrangian
Lfree, it is a theorem (Wick’s theorem) that the amplitude between a number of incoming
field quanta and a number of outgoing field quanta is given by the sum of all ways of
connecting the incoming and outgoing quanta pairwise with propagator factors. For
example, with two incoming and two outgoing particles, the amplitude is the sum

〈p3, p4|p1, p2〉 = (7.6)

In the free theory, summing over these propagator connections exhausts all possible
histories of the system. The free Lagrangian Lfree contains the kinetic terms (∂µφ∂µφ for
scalars, iψ̄γµ∂µψ for fermions) and the mass terms (m2φ2 for scalars, mψ̄ψ for fermions),
and these are accounted for by the propagators in (7.6). The propagators for scalars and
fermions are

〈φ2|φ1〉 = δ4(p1 − p2)
p2

1 −m2 , 〈ψ2|ψ1〉 = δ4(p1 − p2)(γµpµ +m)
p2 −m2 . (7.7)

The delta functions imply that the amplitude is only non-zero if the set of incoming
momenta equals the set of outgoing momenta.

Besides the free part Lfree, the Lagrangian of any interacting theory L = Lfree + Lint
has an interaction part Lint that is composed of terms that are at least cubic in the fields.
For example, we saw that the Lagrangian of quantum electrodynamics contains a term

eAµψ̄γ
µψ , (7.8)
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which is an interaction between the fermion ψ (the electron) and a gauge boson Aµ (the
electromagnetic field / photon). In quantum field theory, all fields in the Lagrangian
become creation or annihilation operators. For example, ψ becomes an operator that
creates a quantum of the electron field, and ψ̄ becomes the corresponding annihilation
operator. The interaction term (7.8) therefore absorbs a fermion (via the annihilation
operator ψ̄), emits a fermion (via the creation operator ψ), and absorbs or emits a photon
– since the photon is its own antiparticle, the operator Aµ is both creation and annihilation
operator for the photon field. Graphically, this can be depicted as:

eAµψ̄γ
µψ ∼ (7.9)

In the amplitude (7.5) ∫
Dφ ei/~

∫
d4x(Lfree+Lint) , (7.10)

the interaction part can be Taylor-expanded:

ei
∫
d4xLint = 1 + i

∫
d4xLint + 1

2

(
i
∫
d4xLint

)2
+ . . . (7.11)

Each term in the interaction Lagrangian comes with a coefficient called the coupling, and
the Taylor expansion (7.11) makes sense as long as this coupling constant is small. For
electrodynamics, the coupling constant is e, the charge of the electron. The various powers
of Lint in the Taylor expansion (7.11) imply that any number of interaction terms (at
least cubic in the fields) can be inserted into the possible histories of the system. As in
the free case of propagator connections (7.6), the possible histories can be represented
graphically in terms of Feynman diagrams. Each interaction term becomes an interaction
vertex as in (7.9), and all interaction vertices are connected by propagators (from the free
part Lfree). Each Feynman diagram then consists of any number of interaction vertices
connected by propagators in any way possible. Each such diagram represents one possible
history of the system. The total transition amplitude between two states is therefore
given by the sum of all possible Feynman diagrams (histories) between these two states.
For example, to describe electron-electron scattering, we have to compute the transition
amplitude between two two-electron states, which expands as follows:

〈ψ3, ψ4|ψ1, ψ2〉 =

+ + . . . (7.12)
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Since each interaction vertex is weighted by the (small) coupling constant, terms with
more vertices are suppressed by small numerical prefactors. Hence the terms with the
fewest possible number of vertices are the dominant terms.

Summary of Free Lagrangians. To close this general discussion of Lagrangians, let
us recall the Lagrangians for the various types of free particles:

• For a real spin-zero field of mass m, the Lagrangian is

L = 1
2
(
∂µφ∂

µφ−m2φ2
)
. (7.13)

• For a complex spin-zero field of mass m, the Lagrangian is

L = (∂µφ)∗(∂µφ)−m2φ∗φ (7.14)

• For a spin 1/2 fermion field of mass m, the Lagrangian is

L = ψ̄(iγµ∂µ −m)ψ . (7.15)

• For an Abelian vector field Bµ of mass m, we use the field strength tensor

Fµν = ∂µBν − ∂νBµ . (7.16)

The Lagrangian then is

L = − 1
4 FµνF

µν + 1
2 m

2BµB
µ , (7.17)

• A non-Abelian vector field W µ
a carries an additional internal index a. In the case

of non-Abelian gauge fields (such as the gluons of QCD), this index is an adjoint
index of the gauge group: The gauge field takes values in the Lie algebra of the
gauge group, and hence can be expanded in the generators T a of the gauge group as
W µ = W µ

a T
a. In this case, the field strength tensor gets an additional term:

W µν
a = ∂µW ν

a − ∂νW µ
a + gfa

bcW µ
b W

ν
c , (7.18)

where g is the coupling constant, and fa
bc are the structure constants of the Lie

algebra. The Lagrangian for a field of mass m is a generalization of the Abelian case:

L = − 1
4 W

µν
a W a

µν + 1
2 m

2W µ
aW

a
µ . (7.19)

Because of the extra term in the field strength tensor that is quadratic in the field
W , the Lagrangian contains cubic and quartic terms, which means that the gauge
field is self-interacting. This term is inevitable to make the theory gauge and Lorentz
invariant, which shows that a non-Abelian gauge field is necessarily self-interacting.

This closes our general discussion of Lagrangians. Let us now take a look at the gauge
group of the Standard Model.
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7.2 The Gauge Group
The basic principle of gauge theory tells us that we have to start with the Lagrangian of
free fermions (and/or possibly scalars), and promote the ordinary derivatives in the kinetic
terms to covariant derivatives of the respective gauge groups. There is no principle that
prescribes what the correct gauge groups are, these have to be inferred from experimental
data. As discussed earlier, the gauge group of the Standard Model is the product group

U(1)× SU(2)× SU(3) . (7.20)

Let us look at the individual factors in turn:

• The U(1) group is the group of rotations in the complex plane (by phase factors)
that the Standard Model is invariant under. This U(1) invariance is not directly
the U(1) invariance of electromagnetism, but is related to it. The gauge boson
required by invariance under U(1) transformations will be called Bµ. The symbol
Aµ will be reserved for the photon field. The precise relation between this U(1) and
electromagnetism as well as the relation between Bµ and Aµ will be described later.

• The second factor in the gauge group is an SU(2) group, and invariance under its
transformations is responsible for the weak interactions. The invariance under the
weak SU(2) works analogously to the strong isospin invariance explained earlier. For
this reason, the weak SU(2) gauge transformations of the Standard Model are also
called weak isospin transformations. The associated gauge bosons required for the
invariance of the theory are the weak gauge bosons W µ

i . As for all gauge fields, the
index µ is required for the field to transform in the same way as the partial derivative
under Lorentz transformations, which means that it has to be a spin-one field (this
is true for all gauge fields).
There is one gauge boson for each of the three generators of SU(2), hence i = 1, 2, 3.
As in the case of strong isospin, the vector (W µ

1 ,W
µ
2 ,W

µ
3 ) forms an adjoint multiplet

(triplet) of the weak isospin SU(2). In other words, the gauge boson W µ has weak
isospin one (a doublet would have weak isospin 1/2). Keep in mind that weak
isospin is unrelated to Lorentz spin! Weak isospin SU(2) transformations are internal
transformations, they act on an internal structure of the particles. Lorentz spin on the
other hand is also an internal property of the particle, but it is an angular momentum
that transforms if and only if we apply an external spacetime transformation.
As in the case of strong isospin, we pick a basis of particle states that are eigenstates
of the third weak isospin generator T 3. The eigenvalue of any particle under
this generator is called the weak isospin charge of that particle. In the adjoint
representation, the generators are 3× 3 matrices, and the eigenvalues of T 3 are ±1
and 0. The eigenstates are

W± = (−W1 ± iW2)/
√

2 , W 0 = W3 . (7.21)

As their names suggest, the states W± have weak isospin charges ±1, while W 0 has
weak isospin charge 0. As in the case of strong isospin, the W boson weak isospin
eigenstates are at the same time the states with definite electromagnetic charge. The
states W± have electromagnetic charges ±1 (in units of the electron’s charge), while
W 0 has electromagnetic charge 0.
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Note that one must distinguish various types of charges: Electromagnetic charge,
U(1) charge, weak isospin SU(2) charge, and “color” SU(3) charge. Every type of
particle has a unique set of charges that, taken together, fully describe its internal
(non-spacetime) properties.

• The third gauge group factor is SU(3), which gives another, independent set of
internal transformations that are responsible for the strong nuclear interactions.
Invariance under these transformations again require the existence of the associated
gauge bosons. They are called gluons and are labeled Gµ

a , where a = 1, 2, . . . , 8, since
there is one Gauge boson for each of the eight generators of SU(3). The theory of
gluon interactions is called quantum chromodynamics (QCD).
The force that arises due to interactions with gluons is called the strong force
or sometimes also color force, and it gives rise to the strong nuclear interactions.
The associated internal charge that each particle carries and that determines its
interaction with gluons is called the color charge. Since SU(3) is non-Abelian, its
gauge bosons (the gluons) are necessarily self-interacting, which means that the
gluons themselves carry color charge. (Just as the weak gauge bosons W± carry
weak isospin charge.)
The strong force and the color charge have nothing to do with everyday color. The
name “color” is used because some of the properties of color interactions are similar
to properties of everyday color. For example, protons and neutrons each consist
of three particles (quarks) that carry three different color charges in such a way
that both protons and neutrons have no color charge (are color neutral). This is
reminiscent of white light being composed of three primary colors.

7.3 Quark and Lepton States
Next, we have to specify how the various matter particles (quarks and leptons) transform
under the different gauge group factors. In other words, we need to know in which
representations of the three different gauge group factors the various matter particles
transform, that is how they behave when acted upon by the gauge group generators. This
determines the form of the new interaction terms that arise in the Lagrangian when the
ordinary derivative is promoted to the covariant derivative.

Weak Representations. How particles behave under the weak SU(2) transformations
is familiar from the theory of Lorentz (spacetime) spin, since particles with different spin
also transform in different representations of SU(2). Remember that the SU(2) of spacetime
spin is different from the weak SU(2): They are mathematically the same groups, but
their physical transformations are completely independent from each other! To distinguish
the two transformations groups, we could denote them as SU(2)spin and SU(2)W. Coming
back to the different representations of SU(2)spin: Particles with spin zero are singlets,
they transform trivially (i. e. do not transform) under SU(2)spin. Particles with spin 1/2
transform as doublets (↑, ↓) in the fundamental representation of SU(2)spin. Particles with
spin one form triplets, they transform in the adjoint representation of SU(2)spin. In the
basis where the third generator T 3 = Jz is diagonal, the three entries of the triplet have
charges (eigenvalues) Jz = (+1,−1, 0).

For the weak isospin SU(2)W, we have already seen an example of a triplet: The weak
gauge bosons Wi. How all of the observed particles making up our world transform in
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the weak SU(2)W is an experimental question, it has to be determined by measurements.
All known quarks and leptons are observed to be either weak SU(2)W singlets or parts of
weak isospin doublets. The way in which the various particles are assigned to weak isospin
singlets and doublets is a subtle and important aspect of the Standard Model.

Weak Multiplets: Leptons. We will start by looking at the leptons. Consider the
electron state, given by a four-component Dirac spinor ψe. We have learned previously
that every Dirac spinor can be separated into left-handed and right-handed chirality
components, using the projectors PL and PR. Hence we can define

e−R = PRψe , e−L = PLψe , (7.22)

such that
ψe = e−L + e−R . (7.23)

Similar separations into left-handed and right-handed parts are made for all other fermions.
The superscript “−” indicates the (negative) electric charge. Remarkably, the right-handed
and left-handed states transform differently under the weak isospin SU(2)! Right-handed
electrons are weak isospin singlets:

e−R = (SU(2) singlet) . (7.24)

But left-handed electrons are components of weak isospin doublets

L :=
(
νe
e−

)
L
≡
(
νe,L
e−L

)
. (7.25)

The doublet partner of the left-handed electron e−L is the left-handed electron neutrino
νe,L. Note that the L on the left-hand side of (7.25) stands for lepton (doublet), whereas
the subscript L stands for left-handed. When L points “up” in weak isospin SU(2)W
space, it represents the electron neutrino νe,L, when it points down, it represents the
left-handed electron e−L . Since the third generator of SU(2)W in the doublet representation
(fundamental representation) is

T 3 = τ 3

2 = 1
2

(
1 0
0 −1

)
, (7.26)

the electron neutrino L1 = νe,L carries weak isospin charge +1/2, while the electron
L2 = e−L carries weak isospin charge −1/2.

Weak isospin SU(2)W transformations rotate left-handed electrons into electron neu-
trinos and vice versa. The W gauge bosons are su(2)W algebra-valued, in particular the
combinations W± act as raising and lowering operators that connect the two components
of the lepton state L, just as angular momentum raising and lowering operators connect the
spin-up and spin-down states. Physically, this means that W bosons can turn left-handed
electrons into electron neutrinos and vice versa! This matches with their charges. For
example, the W+ has weak isospin charge +1 and electric charge +1, and can therefore
lift the electron state with charges (−1/2,−1) to the electron neutrino state with charges
(+1/2, 0).

The right-handed electron state e−R is a singlet and therefore not affected by weak
SU(2) rotations. Remarkably, right-handed neutrino states have never been observed. To
our knowledge, they do not exist. Recall that left-handed and right-handed components of
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any Dirac fermion ψ are only coupled to each other through the mass terms. Neutrinos
have no (or at most an extremely tiny) mass, so it is consistent to only have left-handed
but no right-handed neutrinos. We therefore often drop the subscript “L” for “left-handed”
and just write νe instead of νe,L.

Weak Multiplets: Quarks. Next, we consider the up and down quarks, represented by
four-component spinors u and d. Again, we split them into left-handed and right-handed
components

uL = PLu , uR = PRu , dL = PLd , dR = PRd . (7.27)

As for the leptons, the left-handed quark parts are combined in a weak isospin quark
doublet

QL :=
(
u
d

)
L
≡
(
uL
dL

)
(7.28)

that transforms in the fundamental representation of weak isospin SU(2) The right-handed
parts

uR , dR (7.29)
are weak isospin SU(2) singlets. So, as for the leptons, the left-handed up quark uL has
weak isospin charge +1/2, while the left-handed down quark dL has weak isospin charge
−1/2. The right-handed quarks have no weak isospin charge. Hence again the W± bosons
can convert left-handed up quarks into left-handed down quarks and vice versa.

Beta Decay. We will discuss some physical implications of the weak interactions later,
but can already make one remark: We noted that W bosons can convert up quarks to
down quarks and electrons to neutrinos (and vice versa). This is how β-decay works!
Neutrons have quark content (u, d, d). By emitting a W−, one of the down quarks can
turn into an up quark, turning the neutron (u, d, d) into a proton (u, d, u). The W− then
decays into an electron and an anti-neutrino:

β decay : (7.30)

Here, the right-handed anti-neutrino ν̄e,R is the anti-particle of the left-handed neutrino
νe = νe,L. It is part of the anti-lepton doublet

L̄ :=
(
ν̄e
e+

)
R
≡
(
ν̄e,R
e+

R

)
. (7.31)

The second component L̄2 is the right-handed positron e+
R, which is the anti-particle

of the left-handed electron. It has weak isospin +1/2, whereas ν̄e,R has weak isospin
−1/2. The anti-particles not only have opposite charges as the corresponding particles,
but also opposite chirality. We can understand this by recalling that any particle turns
into its anti-particle under a CPT transformation (by definition). In particular, this
involves a parity transformation (P), which, as we saw earlier, exchanges left-handed and
right-handed chirality states.
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Parity. Because the left-handed and right-handed components of the quark and lepton
states transform in different multiplets of the weak isospin gauge group, parity symmetry
is clearly broken: The Standard Model is a chiral theory. This is in accordance with
experimental data (we will see that in more detail later), so nature is not invariant under
parity transformations. In the Standard Model, this fact is beautifully accounted for by
putting the particles in the respective multiplets. But of course this does not fundamentally
explain why parity symmetry is broken. Understanding why parity symmetry is broken at
a deeper level is still desirable and remains a goal of particle physics.

Color: Quarks. Next, let us turn to the color gauge group SU(3). Besides the weak
gauge group SU(2), quarks also transform non-trivially under color SU(3) transforma-
tions. Just as the fundamental SU(2) representation is a doublet, the fundamental SU(3)
representation is a triplet. Both the up and the down quark form fundamental triplet
representations, so they carry an additional index α that can take values α ∈ {1, 2, 3} and
that makes both u and d three-dimensional vectors in “color space”. The three components
are also called r, g, and b, for “red”, “green”, and “blue”. So the quark states really are

QL,α =
(
uL,α
dL,α

)
, uR,α , dR,α , (7.32)

with α ∈ {1, 2, 3}, or equivalently α ∈ {r, g, b}. The color group SU(3) has 8 generators.
Two of these can be simultaneously diagonalized. In other words, the maximal Abelian
subalgebra of the Lie algebra su(3) is two-dimensional. In the standard basis, the two
diagonal generators are

λ3

2 = 1
2

1 0 0
0 −1 0
0 0 0

 ,
λ8

2 = 1
2
√

3

1 0 0
0 1 0
0 0 −2

 . (7.33)

The color charge of any vector in the three-dimensional color space therefore has two
components, which are the eigenvalues under λ3/2 and λ8/2. The basis vectors

r :=

1
0
0

 , g :=

0
1
0

 , b :=

0
0
1

 (7.34)

have charges

qr =
(

+ 1
2 ,+

1
2
√

3

)
, qg =

(
− 1

2 ,+
1

2
√

3

)
, qb =

(
0,− 1√

3

)
. (7.35)

All leptons (electrons and neutrinos) are color singlets, which means they transform
trivially (not at all) under the color SU(3) group, and hence they do not carry a color
index α.

Gauge-invariant combinations of states have to be colorless, that is they have to have
“white” color (0, 0). In other words, they must form color singlets, i. e. trivial representations
of the color group. Also, there are no solitary quarks, they always form bound states that
are colorless. This phenomenon is called confinement. For example, protons and neutrons
each consist of three quarks, one red, one green, and one blue, such that the total nucleon
charge is qr + qg + gb = (0, 0).
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For every quark, there is a corresponding anti-quark with opposite charges and opposite
chirality. The anti-up and anti-down quark states therefore are

Q̄R :=
(
ūR,ᾱ
d̄R,ᾱ

)
, ūL,ᾱ , d̄L,ᾱ . (7.36)

The anti-quarks transform in the anti-fundamental representation of SU(3), with generators

T aanti−fund = −(T afund)∗ = −λ∗a/2 , (7.37)

where T afund = λa/2 are the fundamental generators under which the up and down quarks
transform. The color index of the anti-quarks takes values “anti-red”, “anti-green”, or
“anti-blue”, that is ᾱ ∈ {r̄, ḡ, b̄}. The charges of the three basis anti-quarks are opposites
of the corresponding quark charges (because the relevant generators are T 3

anti−fund = −λ3/2
and T 8

anti−fund = −λ8/2):

qr̄ =
(
− 1

2 ,−
1

2
√

3

)
, qḡ =

(
+ 1

2 ,−
1

2
√

3

)
, qb̄ =

(
0,+ 1√

3

)
. (7.38)

In particular, this means that colorless objects can also be composed from a quark and
the corresponding anti-quark. Such particles are called mesons. For example, a meson
may contain a red quark and an anti-red anti-quark, whose color charges add up to zero.

Color: Gluons. Gluons are responsible for the strong interactions. They are the gauge
bosons Gµ of the color gauge group factor SU(3), and therefore they transform in the
adjoint representation of the color group, which means that they can be expanded in the
generators λa/2 of the color group SU(3):

Gµ = Gµ
a

λa

2 . (7.39)

The color group has 8 generators, hence there are 8 different gluons. We have seen that
quarks and leptons can emit and absorb weak gauge bosons W µ and thereby change their
weak isospin charge. Similarly, quarks can emit and absorb gluons and thereby change
their color charge. For example, a red quark may turn into a green quark by emitting a
red/anti-green gluon:

(7.40)

Further Families. In all of the above discussion, we have only considered one family of
leptons: (νe, e), and one family of quarks: (u, d). It is by now well established that there
are two more families of both leptons and quarks. The two further lepton families are the
muon with the muon neutrino (νµ, µ) and the tau with the tau neutrino (ντ , τ). On the
quark side, the second family (c, s) consists of the charm and the strange quark, and the
top and bottom quarks form the third family (t, b).

Remarkably, all of the discussion above exactly replicates for the two further families
of particles. The second and third families fall into exactly the same weak and strong
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multiplets as the first family, with the same weak and strong charges. In particular,
all three families interact via the same set of weak and strong gauge bosons. The only
distinction between the families are the different masses of the various particles.

A further remarkable fact is that the known universe is made entirely of particles of
the first family: Electrons, up quarks, and down quarks. (Neutrinos are a bit special since
they interact only extremely weakly with all other matter). All the heavier particles of the
second and third families are only created at accelerators, or in cosmic ray collisions. They
have very short lifetimes of <10−6 s, and quickly decay into particles of the first family. No
fundamental reason for the existence of the second and third families has yet been found.

In the following lectures, we will mostly restrict the discussion to the first family of
particles. Since the other families behave identically (except for their masses), the theory
is easily generalized to include the second and third families.

7.4 The Quark and Lepton Lagrangian
Now that we have reviewed the Standard Model gauge group, and have learned in which
representations of the various gauge group factors each particle transforms, we are ready
to state the Lagrangian for quarks and leptons. Quarks and leptons are fermions, so we
have to take the kinetic energy term of the Dirac Lagrangian, and replace the ordinary
derivative ∂µ with the covariant derivative Dµ:

ψ̄γµ∂µψ → ψ̄γµDµψ . (7.41)

Here, ψ can be any fermion state. We will collectively denote the fermion states of the
Standard Model by f . For the first family of leptons and quarks, f can be any of

f ∈ {L, eR, QL, uR, dR} , (7.42)

and we have to sum over terms of the form (7.41) for each possible f . Recall that the
covariant derivative of the Standard Model has one term for each local gauge symmetry
factor:

Dµ = ∂µ − ig1
Y

2 Bµ − ig2
τ i

2 Wiµ − ig3
λa

2 Gaµ . (7.43)

Here, Bµ, Wiµ, and Gaµ are the spin-one gauge fields required to maintain invariance under
local U(1), SU(2), and SU(3) gauge transformations, respectively. Y/2 is the generator
of U(1) gauge transformations, τ i/2, and λa/2 are the generators of SU(2) and SU(3)
gauge transformations. As usual, the repeated indices i and a are summed over. Gauge
invariance determines the form of each term in Dµ, but not its overall strength, which is
represented by the coupling constants g1, g2, and g3. These have to be measured to match
with experiment.

In order to write the Lagrangian in a compact form, we can make use of the following
fact: Whenever the gauge boson terms in Dµ act on fermion states that form singlets of
the respective gauge group factor, they give zero, by definition. Hence the gauge boson
terms only give non-zero contributions when they act on fundamental multiplets of the
respective gauge group factor. For example, τ iWi is a 2× 2 matrix in SU(2) space, so it
gives a non-zero result when acting on the fundamental doublets L and QL, but it gives
zero when acting on the singlets eR, uR, and dR. Similarly, λaGa is a 3× 3 matrix in color
space, so it acts non-trivially on the quark states QL, uR, and dR, but it gives zero when
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acting on the color-neutral leptons L and eR. With this convention, we can write the
Standard Model Lagrangian for quarks and leptons of the first family in the compact form

Lferm =
∑

f=L,eR,
QL,uR,dR

f̄ iγµDµf . (7.44)

To include the second and third families, we have to simply add two more terms of the
same form, where the lepton and quark contents (e, νe, d, u) are replaced by (µ, νµ, s, c) and
(τ, ντ , b, t), respectively. Starting from this Lagrangian, all quark and lepton interactions
can be calculated. All presently known experimental information on these interactions is
consistent with the predictions from Lferm.

8 The Electroweak Theory
The Lagrangian Lferm contains a lot of physical information. To extract this information
and its connection to experimental observations, we study it piece by piece. The U(1)
and SU(2) terms have the same form for leptons and quarks. Here, we first focus on the
leptons.

8.1 Leptons: U(1) and SU(2) Terms
U(1) Terms. The U(1) interaction terms for the first family of leptons are

LU(1)
leptons = L̄iγµ

(
−ig1

YL

2 Bµ

)
L+ ēRiγµ

(
−ig1

YR

2 Bµ

)
eR . (8.1)

Here, U(1) has only a single generator Y , which is just a number, called the (weak)
hypercharge. However, this number may have different values for different fermions, which
is why we introduced different labels YL and YR for the different terms. Since g1YLBµ

is just a number in SU(2) space, we can commute it past L̄γµ. The current L̄γµL then
expands to

L̄γµL = ν̄Lγ
µνL + ēLγ

µeL . (8.2)

The Lagrangian can hence be written as

LU(1)
leptons = g1

2
(
YL(ν̄Lγ

µνL + ēLγ
µeL) + YRēRγ

µeR
)
Bµ . (8.3)

Before we can interpret this, we have to take a look at the SU(2) part as well.

SU(2) Terms. The term τ iWi is a 2× 2 matrix that only has a non-trivial action on
the left-handed doublet L:

LSU(2)
leptons = L̄iγµ

(
−ig2

τ i

2 Wiµ

)
L . (8.4)

Expanding the 2× 2 matrix gives

LSU(2)
leptons = g2

2
(
ν̄L ēL

)
γµ
(

W3µ W1µ − iW2µ
W1µ + iW2µ −W3µ

)(
νL
eL

)
. (8.5)
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Going to the charge eigenstates W± = (−W1 ± iW2)/
√

2 and W 0 = W3, this becomes

LSU(2)
leptons = g2

2
(
ν̄L ēL

)
γµ
(

W 0
µ −

√
2W+

−
√

2W− −W 0
µ

)(
νL
eL

)

= g2

2
(
ν̄Lγ

µνLW
0
µ −
√

2 ν̄Lγ
µeLW

+
µ

−
√

2 ēLγ
µνLW

−
µ − ēLγ

µeLW
0
µ

)
. (8.6)

The full lepton Lagrangian is the sum of U(1) and SU(2) terms:

Lleptons = LU(1)
leptons + LSU(2)

leptons , (8.7)

and it fully describes all interactions involving leptons (except for Higgs interactions, which
will be explained later).

8.2 Neutral Currents
Let us see how the lepton interactions match with what we know from observations. We
first focus on the neutral current terms, which are all terms involving the electrically
neutral Bµ or W 0

µ . The reason is that the electromagnetic interaction is also mediated
by an electrically neutral field, the photon field Aµ. We know that the electromagnetic
interactions of the electron are captured by an interaction term

−eAµψ̄eγ
µψe = −eAµ(ēLγ

µeL + ēRγ
µeR) , (8.8)

where −e is the charge of the electron. Several terms in our Lagrangian Lleptons are of this
form. They somehow have to combine to recover the electromagnetic interaction. But first
we note that there are also terms in Lleptons that couple the neutrino current ν̄Lγ

µνL to
neutral gauge bosons, namely

Lν̄γνleptons =
(
g1

2 YLBµ + g2

2 W 0
µ

)
ν̄Lγ

µνL . (8.9)

But we know that neutrinos do not interact with the electromagnetic field Aµ. So unless we
set g1 = g2 = 0 (which makes the theory useless), we must assume that the electromagnetic
field Aµ is a combination of Bµ and W 0

µ that is orthogonal to the combination in front of
the neutrino current. In other words, we want to define a new basis in the (Bµ,W

0
µ) field

space, such that one of the new basis fields Aµ has no coupling to the neutrino current,
and can therefore be identified as the electromagnetic field. Orthonormality of the old
fields (B,W 0) and the new fields (A,Z) requires that the two sets are related by an SO(2)
rotation, (

Aµ
Zµ

)
=
(

cos θW sin θW
− sin θW cos θW

)(
Bµ

W 0
µ

)
. (8.10)

The rotation angle is called the electroweak mixing angle θW. Identifying the combination
that couples to the neutrino current ν̄Lγ

µνL as Zµ, comparing coefficients and normalizing
gives

sin θW = − g1YL√
g2

1Y
2

L + g2
2

, cos θW = g2√
g2

1Y
2

L + g2
2

. (8.11)
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Let us see what this implies for the electron interactions. Collecting all terms in Lleptons
that contain electron currents, we find

Lēγeleptons =
(
g1

2 YLBµ −
g2

2 W 0
µ

)
ēLγ

µeL +
(
g1

2 YRBµ

)
ēRγ

µeR . (8.12)

The old fields Bµ and W 0
µ are expressed in terms of the new fields Aµ and Zµ through the

inverse transformation (
Bµ

W 0
µ

)
=
(

cos θW − sin θW
sin θW cos θW

)(
Aµ
Zµ

)
. (8.13)

Inserting this into (8.12) and collecting terms gives

Lēγeleptons = Aµ

 g1g2YL√
g2

2 + g2
1Y

2
L

ēLγ
µeL + g1g2YR

2
√
g2

2 + g2
1Y

2
L

ēRγ
µeR

 (8.14)

+ Zµ

 g2
1Y

2
L − g2

2

2
√
g2

2 + g2
1Y

2
L

ēLγ
µeL + g2

1YRYL

2
√
g2

2 + g2
1Y

2
L

ēRγ
µeR

 .
To match this with the known electromagnetic interaction (8.8), we must identify both
coefficients in the first line with the electric charge −e of the electron, that is

−e = g1g2YL√
g2

2 + g2
1Y

2
L

= g1g2YR

2
√
g2

2 + g2
1Y

2
L

. (8.15)

In particular, this fixes
YR = 2YL . (8.16)

Since YL always appears with coefficient g1, we can without loss of generality set

YL = −1 , (8.17)

since any rescaling of YL can be absorbed by a re-definition of g1. Then

e = g1g2√
g2

2 + g2
1

, (8.18)

and we have indeed recovered the known electromagnetic interaction of the electron, with a
neutral (not electromagnetically interacting) neutrino! What we have also found is another
neutral gauge boson Zµ that interacts both with electrons and with neutrinos. Before we
study those interactions, let us take another look at the coupling constants. With the
fixed values of YR and YL, we have

sin θW = g1√
g2

1 + g2
2

, cos θW = g2√
g2

1 + g2
2

, (8.19)

such that
g1 = e

cos θW
, g2 = e

sin θW
. (8.20)

So the previously unknown couplings g1 and g2 have been replaced by the known electron
charge e and the unknown electroweak mixing angle θW. The mixing angle θW has to be
determined by comparison to measurements. Its experimental value is sin2 θW ≈ 0.23. The
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relations between the couplings and the mixing angle can be visualized in the following
triangle:

(8.21)

Let us re-examine the couplings of the neutrino and the electron to the new field Z. The
neutrino term (8.9) becomes

Lν̄γνleptons =

√
g2

1 + g2
2

2 Zµν̄Lγ
µνL = g2

2 cos θW
Zµν̄Lγ

µνL . (8.22)

Hence the interaction vertex between Zµ and the neutrino current ν̄Lγ
µνL comes with

a factor g2/(2 cos θW). We can think of this factor as the “electroweak charge” of the
neutrino. For the electron current, the coupling to Zµ with our values for YR and YL
becomes

Lēγeleptons = Zµ

 g2
1 − g2

2

2
√
g2

2 + g2
1

ēLγ
µeL + g2

1√
g2

2 + g2
1

ēRγ
µeR

 . (8.23)

We can re-write the prefactors in terms of e and θW, using the identity√
g2

1 + g2
2 = e

cos θW sin θW
. (8.24)

Then:

g2
1 − g2

2

2
√
g2

2 + g2
1

= e

cos θW sin θW

(
− 1

2 + sin2 θW

)
,

g2
1√

g2
2 + g2

1

= e

cos θW sin θW

(
+ sin2 θW

)
. (8.25)

We have written these couplings in a suggestive form: They can be unified to
e

sin θW cos θW

(
T3f −Qf sin2 θW

)
, (8.26)

where T3f is the eigenvalue of the diagonal generator T3 = τ3/2, and Qf is the electric
charge of the respective fermion f (in units of e). Recall that in our convention, T3 = 0
for the right-handed SU(2) singlets. In fact, one can check that the expression (8.26) also
reproduces the correct coupling for the neutrinos. Moreover, since the couplings of the
left-handed and right-handed quarks to the U(1) and SU(2) gauge bosons look exactly
the same as for the leptons, their couplings to the rotated gauge fields Aµ and Zµ work
out in exactly the same way. Here, one has to take into account that the values for YL
and YR can be different for the quarks than for the leptons. For generic eigenvalues T3f
and hypercharges Yf , the coupling to Aµ (identified as the electromagnetic charge) works
out to

eQf , with Qf = T3f + Yf
2 , (8.27)
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and the coupling to Zµ works out to (8.26). Hence, the expression (8.26) gives the unified
electroweak charge for all fermions.

Summarizing all terms, the full electroweak Lagrangian for the coupling of all quarks
and leptons of the first family to the neutral bosons Aµ and Zµ has the compact form

Lneutral
EW =

∑
f=L,eR,
QL,uR,dR

(
eAµf̄Qfγ

µf + e

sin θW cos θW
Zµf̄

(
T3f −Qf sin2 θW

)
f

)
, (8.28)

where Qf = T3f + Yf/2, and keep in mind that T3f = 0 for all right-handed fermions.
Let us summarize what we have accomplished. The electroweak theory contains the

known electromagnetic interaction, and predicts an additional photon-like particle Zµ called
the Z-boson that interacts with any fermion f having non-zero electric charge Qf or weak
isospin T3f . The strength of this interaction is not small. In fact, 1/(sin θW cos θW) > 1,
so the Zµ interaction is stronger than the photon interaction! If the theory is correct, then
why were the Z-boson and its interactions not discovered long ago? The only possible
explanation is that the Z-boson is massive. The larger its mass mZ, the more energy
is needed to produce it, and the smaller are its effects at low energies: Whenever a Zµ
particle is exchanged between two fermions, the process is suppressed by a factor ∼ 1/m2

Z
from the Z propagator:

(8.29)

We will see later that the Z-boson can acquire a mass through the Higgs mechanism.
Indeed, its mass can be predicted, and the Z-boson was detected in 1983 at exactly the
expected mass of mZ ≈ 91.2 GeV. In comparison, the proton mass is 938 MeV, so the
Z-boson is ∼100 times more heavy than the proton.

8.3 Charged Currents
We have analyzed all U(1) and SU(2) interaction terms with the neutral bosons Bµ and
W 0
µ . All these terms are diagonal in the fermions, that is the interaction does not change

the fermion involved in the interaction (νL → νL, eL → eL, eR → eR). What is left are the
non-diagonal SU(2) terms. These are interactions with the charged bosons W±. These act
as raising and lowering operators on the fermion doublets. For the leptons, these terms
are

Lcharged
leptons = − g2√

2
(
ν̄Lγ

µeLW
+
µ + ēLγ

µνLW
−
µ

)
. (8.30)

Note that only left-handed electrons eL are involved in the interaction with W±, that is
only eL can make a transition to a neutrino by emitting a W− or absorbing a W+. The
right-handed part eR does not interact with W± at all. This is the parity violation of the
weak interactions. Recall that

ν̄Lγ
µeL = ν̄γµPLe = ν̄γµe− ν̄γµγ5e

2

(
PL = 1− γ5

2

)
. (8.31)
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So the interaction is with a sum of vector (γµ) and axial vector (γµγ5) currents. It is
therefore called a V-A charged current interaction. The best known interaction of this
kind is the neutron beta decay mentioned earlier. There are terms of exactly the same
form for the quarks:

Lcharged
quarks = − g2√

2
(
ūLγ

µdLW
+
µ + d̄Lγ

µuLW
−
µ

)
. (8.32)

Hence a down quark d can turn into an up quark u by emitting a W− that in turn decays
into an electron and an anti-neutrino. This way a neutron (with quark content udd) can
turn into a proton (with quark content uud).

Just as for the neutral current, the interactions with charged W± are of comparable
strength as the electromagnetic interactions:(

g2√
2

)2
= e2

2 sin2 θW
≈ 2e2

(
sin2 θW ≈ 0.23

)
. (8.33)

In contrast, we observe that the weak interactions are several magnitudes smaller than
the electromagnetic interactions. As for the Z-boson, the resolution is that the charged
bosons W± must be massive. This reduces the strength of the transition rates (e. g. beta
decay) due to the mass in the denominator of the propagator. The W± bosons were
discovered experimentally in 1983 at CERN, confirming this prediction. Their mass is
mW ≈ 80.4 GeV, so they are a bit lighter than the Z-boson.

8.4 Quark Terms and Further Families
Quarks. As mentioned above, the U(1) and SU(2) interaction terms for quarks take
exactly the same form as for leptons. Hence all the conclusions for leptons similarly
hold for quarks. They couple to the same gauge bosons Aµ, Zµ, and W±

µ as the leptons.
The coupling to the neutral Zµ occurs with the same universal strength (electroweak
charge) (8.26)

e

sin θW cos θW

(
T3f −Qf sin2 θW

)
(8.34)

for all (left-handed and right-handed) quarks.
In addition, quarks are the only particles that couple non-trivially to the SU(3) gauge

bosons (gluons). That is, the λaGaµ term in the covariant derivative Dµ only gives a
non-zero contribution when acting on a quark state q. The matrices λa have size 3× 3,
hence quark states carry a “color” index α that runs from 1 to 3. The SU(3) terms then
read

LQCD =
∑
q=u,d

q̄αiγµ
(
−ig3

λaαβ
2 Gaµ

)
qβ

= g3

2
∑
q=u,d

q̄αγ
µλaαβGaµqβ . (8.35)

For the electroweak theory, we wrote out the matrices τ iWi to recover the known electro-
magnetic interactions, and to identify the charged weak bosons W± and the neutral boson
Z. Here, the Ga are eight gluons that are all electrically neutral. They interact with the
quarks in a way that is somewhat similar to a photon interaction. The major difference is
that, since the generators λa are not all diagonal, quarks can arbitrarily change their “color”
by emitting or absorbing gluons. Since the color structure is hard to observe directly,
because quarks and gluons are confined in hadrons, we do not study the structure of these
terms as explicitly as the electroweak terms.
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Fermion Wave Functions. One point that might be confusing is that the fermion
states q, e, etc. have non-trivial structure in several spaces. For example, consider a quark
state q. As is familiar from quantum mechanics, the total quark wave function is a product
of factors

q = ηspace χspin φU(1) ψSU(2) ξcolor . (8.36)

Each factor is parametrized by some labels, indices, and/or coordinates, and describes the
wave function in the respective space. When we act for example with an SU(2) generator
on q, then only the ψSU(2) factor is affected, all other factors are left invariant. Similarly,
when we perform a spacetime transformation (e. g. a rotation), then only η and χ are
affected, and the wave functions φ, ψ, and ξ in the internal spaces are left invariant.
Orthonormality of the wave function holds for each factor separately. Hence for example
in the product q̄τ iWiq, all wave function factors except ψ give a trivial factor 1.

The Second and Third Families. So far, we have restricted ourselves to the first
families of leptons (νe, e) and quarks (u, d). As mentioned earlier, the physics exactly
replicates for the other two families, so in all of the above, we can replace (νe, e), (u, d) by
(νµ, µ), (c, s) or by (ντ , τ), (t, b) to recover the interactions of the second and third families.
The only differences between the three families are the different masses of the respective
particles.

8.5 The Fermion Gauge Boson Lagrangian
We can now bring together all interaction terms of quarks and leptons with photons,
electroweak bosons W± and Z, and gluons. All interactions of quarks and leptons arise
from these terms.

Lgauge
ferm = e

∑
f=νe,e,u,d

Qf (f̄γµf)Aµ

+ g2

cos θW

∑
f=νe,e,u,d

f̄γµ
(
T3f −Qf sin2 θW

)
fZµ

+ g2√
2

[(
ν̄eLγ

µeL + ūLγ
µdL

)
W+
µ +

(
ēLγ

µνeL + d̄Lγ
µuL

)
W−
µ

]
+ g3

2
∑
q=u,d

q̄αγ
µλaαβqβ Gaµ . (8.37)

Here, the neutral current Zµ term expands to

f̄γµ
(
T3f −Qf sin2 θW

)
fZµ =[
f̄Lγ

µ
(
T3f −Qf sin2 θW

)
fL + f̄Rγ

µ
(
−Qf sin2 θW

)
fR

]
Zµ . (8.38)

The respective interaction terms for the second and third families are obtained by replacing
(νe, e, u, d) → (νµ, µ, c, s) or (ντ , τ, t, b). What remains is to specify the charges of the
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various fermions:

Particle T3 Y Q = T3 + Y
2 SU(3)

νe, νµ, ντ + 1
2 −1 0 0

eL, µL, τL − 1
2 −1 0

eR, µR, τR 0 −2 −1 0
uL, cL, tL + 1

2 1
3

+ 2
3 �

dL, sL, bL − 1
2 − 1

3 �

uR, cR, tR 0 + 4
3 + 2

3 �

dR, sR, bR 0 − 2
3 − 1

3 �

(8.39)

Here, the box � means that the particle transforms in the fundamental representation of
SU(3), while a zero means that it is a singlet of the respective group. The various coupling
constants have approximate values

g1 = e

cos θW
, g2 = e

sin θW
, sin2 θW ≈ 0.23 ,

α := e2

4π ≈
1

137 , α1 := g2
1

4π ≈
1

100 ,

α2 := g2
2

4π ≈
1
30 , α3(mZ) := g3(mZ)2

4π ≈ 0.12 . (8.40)

The values of the couplings α, α1, α2, and α3 depend on the energy scale of the interaction.
This phenomenon is due to the influence of spontaneously created particle-antiparticle
pairs on the respective interaction, which is an effect that depends on the energy scale.
This is called running of the coupling and is described by the renormalization group in
quantum field theory. The values of α, α1, and α2 given above are for interactions in the
range of a few GeV or below, and they vary very slowly. For the strong coupling α3, the
value is given at the Z-boson mass mZ ≈ 91.2 GeV. It varies slowly above this scale, but it
increases at lower energies, reaching ≈0.3 at about 1 GeV, and grows quickly to α3 > 1
below 1 GeV, causing quarks to bind into hadrons.

8.6 Historical Note
Now that we have learned how the electroweak theory unifies electromagnetic and weak
interactions, one may ask: How did this theory come to be? Beta decay was discovered
around 1900, and was the first hint for the weak interactions. At first, beta decay was
observed as the mutation of an atomic nucleus due to emission of an electron. In the
next ∼30 years, it became clear that the energy spectrum of the emitted electron was
not consistent with energy conservation. In 1933, in a famous letter to the ETH Zürich,
Wolfgang Pauli proposed the existence of an extremely light neutral particle (now called
neutrino) that is emitted along with the electron but could not be observed at the time.
The neutrino was indeed detected experimentally in 1956 (Nobel Prize Frederick Reines
1995).

The first theoretical description of beta decay was by Enrico Fermi through Fermi’s
interaction, also in 1933. He proposed a four-fermion contact interaction between the
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neutron (which was only discovered one year earlier), the proton, the electron, and the
neutrino:

(8.41)

Fermi’s interaction already put the neutron and proton into a doublet, and the interaction
Hamiltonian was given in terms of raising and lowering operators acting on this doublet.
The strength of the interaction is parametrized by the Fermi coupling constant GF. In
modern terms, it is given by

GF√
2

= g2
2

8m2
W
≈ 1.166 · 10−5 GeV−2 , (8.42)

where mW is the mass of the W± boson. Fermi’s theory described the weak interaction
remarkably well. But the interaction probability grows as the square of the energy,
σ ∼ G2

FE
2. Since it grows without bound, the theory is invalid at energies & 100 GeV.

The four-fermion interaction therefore had to be replaced by a more complete theory. The
runaway of the interaction probability is avoided if the interaction is due to the exchange
of a particle of mass ∼100 GeV – the W± boson.

In 1956, it was discovered experimentally (by Chien-Shiung Wu) that the weak interac-
tion violates parity symmetry (Nobel Prize 1957 to Tsung-Dao Lee and Chen-Ning Yang
for the theory of parity violation and proposal of the experiment). This result prompted a
search to relate the weak and electromagnetic interactions. The electroweak theory was
proposed by Sheldon Glashow, Abdus Salam, and Steven Weinberg in 1968 (Nobel Prize
1979). In their theory, the photon and the W± as well as the new Z boson, including
their masses, arise from the spontaneous symmetry breaking of U(1)× SU(2), which will
be discussed in the next section. The W± and Z bosons were detected experimentally in
1983 at the CERN Super Proton Synchrotron (Nobel Prize Carlo Rubbia and Simon van
der Meer 1984).

8.7 Masses?
So far, we have treated all fermions and gauge bosons as massless. Although everything
we said about the interactions of quarks and leptons with electroweak gauge bosons and
gluons is correct, all fermions are in fact massive, and also the W± and Z bosons are
massive.

Could we just add mass terms to the Lagrangian “by hand”? That will not work! Any
mass term would break gauge invariance. For fermions, mass terms would be of the form
mψ̄ψ, but we know that

mψ̄ψ = mψ̄(PL + PR)ψ
= mψ̄PLPLψ +mψ̄PRPRψ

= m
(
ψ̄RψL + ψ̄LψR

)
. (8.43)

However, the left-handed fermions transform in SU(2) doublets, while the right-handed
fermions are SU(2) singlets. Hence ψ̄RψL and ψ̄LψR are not SU(2) singlets and would not
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give an SU(2)-invariant Lagrangian. Similarly, mass terms for the gauge bosons, e. g.

1
2 m

2
BBµB

µ , (8.44)

are clearly not gauge invariant. The only way to preserve gauge invariance of the Lagrangian
is to set the masses of all fermions and gauge bosons to zero. If mass terms are put in by
hand, gauge invariance is lost, and the theory produces unphysical infinities.

There is a way to solve this problem, which is the Higgs mechanism. In the resulting
Lagrangian, the U(1) and SU(2) gauge invariance is broken, but in a subtle way that
preserves the good effects of the gauge symmetry.

9 Masses and the Higgs Mechanism
In the following, we will develop the mechanism that consistently gives masses to the weak
gauge bosons as well as all fermions. The fundamental assumption is that the universe is
filled with a spin-zero field called the Higgs field. Its essential properties are that it is a
doublet in the weak SU(2) space, and also carries a non-zero U(1) hypercharge, but is a
singlet under the color SU(3). The gauge bosons and fermions interact with the Higgs
field, and in its presence, they acquire a mass. Because the Higgs field carries non-trivial
U(1) and SU(2) quantum numbers, a universe-filling “background” Higgs field effectively
breaks these gauge symmetries. The symmetry is present in the Lagrangian, but is broken
by the vacuum state. This situation is called spontaneous symmetry breaking. Several
examples of spontaneous symmetry breaking were the subject of the exercise problems.
Here, we briefly recapitulate these examples, which will prepare us to understand the
Higgs mechanism in the Standard Model at the end of this section.

9.1 Spontaneous Symmetry Breaking
We start with the simplest example. Consider a Lagrangian for a scalar field φ,

L = T − V , T = 1
2 ∂µφ∂

µφ , V = 1
2 µ

2φ2 + 1
4 λφ

4 . (9.1)

Here, µ and λ are external parameters of the potential V. We require λ > 0, since
otherwise the potential would not be bounded from below. The theory has a symmetry: It
is invariant under φ 7→ −φ.

To find the spectrum of the theory, one starts by finding the minimum of the potential.
The field configuration that minimizes V is the classical ground state of the system. Then
one expands the fields around this ground state to determine the possible excitations.
This is familiar from quantum mechanical perturbation theory. In field theory, one calls
the ground state the vacuum, and the excitations are the particles. Their masses are
determined by the form of the potential near the classical minimum, by comparison with
the Lagrangian of a free massive scalar field.

For µ2 > 0, the vacuum is φ = 0. In that case, we identify −µ2φ2/2 as a mass term,
hence φ is a massive field with mass mφ = µ. The λφ4 terms represents an interaction of
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the field φ with itself. If on the other hand µ2 < 0, the potential takes the form

(9.2)

Its minima are at

φ = ±v , v :=
√
−µ2

λ
. (9.3)

Since the configuration φ = ±v is constant, it also minimizes the kinetic energy T of the
system, and is therefore a valid ground state, or vacuum. The value v is also called the
vacuum expectation value of the system. A variation of this is also what happens to the
Higgs field, as we will see.

To find the particle spectrum, we study the theory near the vacuum, that is we set

φ(x) = v + η(x) , (9.4)

with η(x) small. We could have equally set φ = −v + η, but the physics would be the
same, since the theory is invariant under φ 7→ −φ. Writing L in terms of η(x) gives

L = 1
2 ∂µη∂

µη −
(
λv2η2 + λvη3 + 1

4 λη
4
)

+ constant . (9.5)

The η2 term has the correct sign, so it can be interpreted as a mass term. The Lagrangian
describes a real scalar field η(x) with mass

m2
η = 2λv2 = −2µ2 . (9.6)

We identify the mass as the curvature of the potential at its minimum. There are two
interaction terms: A cubic one of strength λv, and a quartic one of strength λ/4.

If the theory is solved exactly, the two descriptions (one in terms of φ, the other in
terms of η) must be equivalent. But in a perturbative description, one has to perturb
around the ground state (vacuum), otherwise the perturbative expansion does not converge.
And choosing one of the two possible vacua (φ = +v here) breaks the symmetry of the
theory, in the sense that for small excitations η(x) around φ = v, the original symmetry is
no longer present. A memory of the original symmetry is preserved in the η3 term, but
not in an obvious way. This situation is called spontaneous symmetry breaking, and it
frequently occurs in physical systems.

9.2 Breaking of a Continuous Symmetry
Now consider a complex scalar field φ = (φ1 + iφ2)/

√
2 , with Lagrangian

L = (∂µφ)∗(∂µφ)− (µ2φ∗φ+ λ(φ∗φ)2) . (9.7)

79



This theory is invariant under a continuous family of global U(1) transformations

φ 7→ φ′ = eiχφ . (9.8)

For µ2 > 0, the potential (and total energy) are minimized by φ ≡ 0. In this case, the
theory describes a massive complex field with mass m2

φ = µ2, and with a quartic interaction
of strength λ. For µ2 < 0, the potential has the form

(9.9)

This potential is often called the “Mexican hat” potential. The minimum of the potential
(and total energy) is along a circle of radius

φ2
1 + φ2

2 = v2 , v :=
√
−µ2

λ
. (9.10)

Because of the U(1) symmetry, all points on the minimizing circle are equivalent. To do
perturbation theory, we arbitrarily, but without loss of generality, choose φ1 = v, φ2 = 0,
and write φ as

φ = v + η(x) + iρ(x)√
2

, (9.11)

with η and ρ real. With this substitution, we find again that the Lagrangian can be
interpreted in terms of particles and their interactions:

L = 1
2 (∂µη2) + 1

2 (∂µρ)2 + µ2η2 − λv(ηρ2 + η3)

− λ

2 η
2ρ2 − λ

4 η
4 − λ

4 ρ
4 + constant . (9.12)

There are two real scalar fields, η and ρ. The η2 term is a mass term for η. We can read
of the mass as

m2
η = −2µ2 . (9.13)

There is no ρ2 term, so we must conclude that ρ is massless! This massless field is called
a Goldstone boson. There is a general theorem that says whenever a continuous global
symmetry (as the U(1) in this case) is spontaneously broken (that is the Lagrangian is
still invariant, but the choice of vacuum breaks the symmetry), then the spectrum around
the vacuum will contain a massless field, called the Goldstone boson.

It is intuitively clear why the massless boson arises: The minimum of the energy lies
along a circle in field space (or along some other curve for a more generic symmetry).
Perturbations around the vacuum in the radial direction (or more generally in a perpen-
dicular direction to the minimum) must be pushed up the potential, and the curvature
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of the potential at the minimum is identified with the mass of the perturbation. But
when we perturb along the direction of the minimum, the potential is flat, so its curvature
vanishes and the associated perturbation is massless: It only costs kinetic energy to push
the system along the mimimum, but no potential energy.

9.3 Abelian Higgs Mechanism
Now we get closer to the kind of spontaneous symmetry breaking that occurs in the
Standard Model. Above, we considered a global continuous symmetry. Now we promote
this to a local gauge symmetry. The spontaneous breaking of this local gauge symmetry
will lead to a mass for the (previously massless) gauge boson. As is by now familiar,
invariance under a field transformation

φ(x) 7→ φ′(x) = eiχ(x)φ(x) , (9.14)

with a local parameter χ(x) requires the introduction of a covariant derivative with a
vector (spin one) field Aµ,

∂µ → Dµ = ∂µ − igAµ . (9.15)
The gauge field Aµ transforms as

Aµ 7→ A′µ = Aµ −
1
g
∂µχ(x) . (9.16)

The gauge-invariant Lagrangian is

L = (Dµφ)∗(Dµφ)− 1
4 FµνF

µν − V , V = µ2φ∗φ+ λ(φ∗φ)2 . (9.17)

Here, 1
4FµνF

µν is the kinetic term for the gauge field. It will not play a role in the analysis.
For µ2 > 0, this Lagrangian describes a scalar particle with mass µ that interacts with
the electromagnetic field Aµ with charge g. As always in standard gauge theory, Aµ is
massless.

The potential V is the same as in the previous case. Hence when µ2 < 0, the total
energy is again minimized for non-zero constant φ:

φ = v√
2
, v =

√
−µ2

λ
. (9.18)

The field φ is complex, but we can use the gauge transformations φ(x) 7→ eiχ(x)φ(x) to
rotate φ to real values everywhere. Hence we can expand φ around the vacuum as

φ(x) = v + h(x)√
2

, (9.19)

with a real field h(x). We could not make φ real everywhere in the previous case, because
there the theory was only invariant under global phase rotations, not local ones. Writing
the Lagrangian in terms of h(x) instead of φ(x), one finds

L = 1
2 (∂µh)(∂µh)− λv2h2 − 1

4 FµνF
µν + 1

2 g
2v2AµA

µ

+ g2vhAµA
µ − λvh3 − λ

4 h
4 + 1

2 g
2h2AµA

µ (9.20)
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As before, the real field h(x) (it was called η in the previous example) is massive, with a
mass

m2
h = 2λv2 = −2µ2 ⇒ mh =

√
2λ v =

√
−2µ2 . (9.21)

Surprisingly, also the gauge field acquires a mass! Its squared mass is the coefficient of
AµA

µ/2, hence
mA = gv . (9.22)

The mass term arises from the term in (Dµφ)∗(Dµφ) that is quadratic in Aµ. The terms
in the second line of the Lagrangian are various interaction terms between h and Aµ.

In the unbroken phase of the theory (µ2 > 0), the gauge boson is massless, and therefore
has two spin degrees of fredom. In the broken phase (µ2 < 0), it becomes massive, and
therefore has three spin degrees of freedom. What happened here is that the massless
Goldstone boson ρ of the previous case has become the third degree of freedom of the
gauge boson Aµ. This phenomenon is also referred to as the Goldstone boson being “eaten”
by the gauge boson. The effect can be seen more explicitly by doing the computation
without the simplifying gauge transformation step, i. e. by setting

φ = v + h(x) + iρ(x)√
2

(9.23)

with h(x) and ρ(x) real. Then one would find a term ∼Aµ∂µρ in L, which would mean that
the gauge field can turn into a ρ field as it propagates. This means that the fields Aµ and ρ
are not diagonalized. Properly diagonalizing them amounts to a gauge transformation
that then eliminates ρ altogether. Note that before and after the symmetry breaking, the
total number of field components is 4: Before the breaking, the complex scalar field and
the gauge field each have 2 components. After the breaking, the real scalar h has one
component, and the massive gauge field has 3 components.

The phenomenon we have just studied is called the Higgs mechanism: Spontaneously
breaking a gauge symmetry leads to a non-zero vacuum value for φ that in turn makes
the gauge boson massive. The extra degree of freedom of a massive vector boson is what
used to be the Goldstone boson. What is left of the scalar field φ(x) are real scalar
excitations h(x) around the vacuum value v. The particle h is called the Higgs boson.
Note that the mass of the gauge boson is fixed if g and v are known, but the mass of the
Higgs boson in addition depends on the possibly unknown parameter λ.

9.4 The Higgs Mechanism in the Standard Model
To get to the Higgs mechanism in the Standard Model, we only need one more bit of
complexity. In the Standard Model, the Higgs field forms a doublet of the weak isospin
SU(2)W:

φ =
(
φ+

φ0

)
, (9.24)

where φ+ and φ0 are each complex fields,

φ+ = φ1 + iφ2√
2

, φ0 = φ3 + iφ4√
2

, (9.25)

whose complex phases are rotated by the U(1) gauge symmetry of the Standard Model.
The Lagrangian has to be a U(1)× SU(2)W singlet. Such a singlet is formed by

φ†φ =
(
(φ+)∗ (φ0)∗

)(φ+

φ0

)
= (φ+)∗φ+ + (φ0)∗φ0 . (9.26)
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In terms of the real components,

φ†φ = φ2
1 + φ2

2 + φ2
3 + φ2

4
2 . (9.27)

The form of the Lagrangian for φ is analogous to the previous cases,

Lφ = (∂µφ)†(∂µφ)− V , (9.28)

with the same potential
V = µ2φ†φ+ λ(φ†φ)2 . (9.29)

Again, for µ2 < 0 the potential is minimized when

φ†φ = v2

2 , v :=
√
−µ2

λ
. (9.30)

There are many ways to satisfy this condition: The field φ has four real components, and
this is only one (real) condition, hence it is satisfied in a three-dimensional subspace. But
since the theory is invariant under arbitrary SU(2)W transformations

φ 7→ φ′ = Uφ , U = eiαiτ i/2 ∈ SU(2) , (9.31)

all points in this space are equivalent. We pick

φ0 := 1√
2

(
0
v

)
, (9.32)

that is φ1 = φ2 = φ4 = 0, φ3 = v, and expand φ(x) around this vacuum as

φ(x) = 1√
2

(
0

v + h(x)

)
. (9.33)

As in the previous example of the Abelian Higgs mechanism, the µ2φ†φ term in the
potential leads to a mass term for the Higgs boson h, with mass

m2
h = 2λv2 = −2µ2 (9.34)

Similarly as in the Abelian Higgs mechanism, we can always bring φ to this form by
applying an SU(2)W transformation (to set the first component φ+ = 0), followed by
an U(1) phase rotation to make the second component φ0 real. In other words, we
“gauged away” three field components. And for doing so, we have to use three gauge
degrees of freedom, so we have broken three gauge symmetries. By the Goldstone theorem,
there should be three massless Goldstone bosons. But because the symmetries are gauge
symmetries, instead three gauge bosons should become massive, and thereby absorb the
three Goldstone degrees of freedom. This is exactly what we need to give masses to the
electroweak gauge bosons Zµ and W±

µ .
Before we study the properties of the Lagrangian with the vacuum φ0, we note that

the lower component φ0 of the Higgs field has to be electrically neutral. Otherwise, the
vacuum would be charged, which is not what we observe. For example, a charged vacuum
could absorb and emit photons. Because of the relation

Q = T3 + Y

2 (9.35)
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between electric charge, weak isospin, and hypercharge, and because φ0, as the lower
component of a weak isospin SU(2)W doublet, has T3 = −1/2, we must assign

YH = 1 (9.36)

for the Higgs doublet φ.
We said that the choice of vacuum breaks three gauge symmetries. The original gauge

group U(1) × SU(2) has four dimensions, so the vacuum must preserve one symmetry.
Which one is it? Clearly, the vacuum φ0 does not preserve any SU(2)W symmetry. Also,
because YH 6= 0, it also does not preserve the U(1) symmetry. However, if we act with the
electric charge operator,

Qφ0 = (T3 + Y/2)φ0 = (−1/2 + 1/2)φ0 = 0 , (9.37)

we find that it annihilates φ0 and therefore the vacuum is invariant under a transformation

φ0 7→ eiα(x)Qφ0 . (9.38)
The generator Q of this particular U(1)′ transformation is a particular linear combination
of the original U(1) and SU(2)W gauge transformations. Of course, this U(1)′ has to be
the U(1) of electromagnetism, as we identified its generator as the electric charge. Hence
we found that the vacuum is invariant under electromagnetic U(1) transformations, which
means that of the original four gauge bosons, the one combination that remains massless
must be the photon field Aµ.

Let us see what the choice of vacuum φ = φ0 implies for the Lagrangian. We know
that we must replace the ordinary derivative ∂µ by the covariant derivative

Dµ = ∂µ − ig1
Y

2 Bµ − ig2
τ

2 Wµ . (9.39)

Then the Lagrangian acquires extra terms

φ†
(
−ig1

Y

2 Bµ − ig2
τ i

2 Wiµ

)†(
−ig1

Y

2 Bµ − ig2
τ i

2 Wiµ

)
φ . (9.40)

Setting Y = YH = 1, inserting the explicit 2× 2 Pauli matrices for τ i, and setting φ = φ0,
this becomes

1
8

∣∣∣∣∣
(
g1Bµ + g2W3µ g2(W1µ − iW2µ)
g2(W1µ + iW2µ) g1Bµ − g2W3µ

)(
0
v

)∣∣∣∣∣
2

= 1
8 v

2g2
2

(
(W1µ)2 + (W2µ)2

)
+ 1

8 v
2
(
g1Bµ − g2W3µ

)2
. (9.41)

We can immediately recognize the first term as mass terms for the gauge bosons W1
and W2, with a common mass

mW = v

2 g2 . (9.42)

Passing to the charge eigenstates W±, the first term reads m2
WW

+
µ W

−µ, which is the
common way to write a mass term for a charged field. So we conclude that the charged
bosons W± indeed acquire a mass mW through the Higgs mechanism!

The second term is not diagonal in the fields, so we have to perform a rotation in
the space of (Bµ,W3µ) fields to find the fields with definite masses. In fact, we already
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know what the rotation must be, since what appears in the second term is exactly the
combination that we called Zµ,

Zµ = g1Bµ − g2W3µ√
g2

1 + g2
2

. (9.43)

Hence the second term reads
1
2 m

2
ZZµZ

µ , mZ = v

2

√
g2

1 + g2
2 , (9.44)

where we have recognized the mass of the Zµ boson. The electromagnetic gauge boson Aµ
remains massless, as expected. Using the relation

cos θW = g2√
g2

1 + g2
2

, (9.45)

we find the identity
mW

mZ
= cos θW . (9.46)

This is an important identity: Once the electroweak mixing angle θW is measured in some
way, the ratio of the Zµ and W±

µ masses is a clear prediction of the Standard Model. And
it perfectly matches with experimental data: The experimental ratio cos θWmZ/mW equals
unity with an uncertainty of ≈0.1%.

9.5 Fermion Masses
Now that we have introduced the Higgs field φ, it is possible to write gauge invariant
interaction terms between the Higgs doublet and the fermions.

Leptons. For example, for the leptons one can introduce a term

Lφeint = ge(L̄φeR + ēRφ
†L) . (9.47)

Here, the SU(2)W indices of L̄ and φ are contracted: L̄ = (νeL eL) is a row vector, and
φ is a column vector – their product is an SU(2)W singlet. The factor eR is an SU(2)W
singlet by itself, so the whole first term is an SU(2)W singlet. The factor eR has to be
present because of Lorentz invariance: The spin structures of L̄ and eR combine to form
a Lorentz scalar. The second term in the Lagrangian is the hermitian conjugate of the
first, so the same symmetry considerations apply. The overall coefficient ge is the coupling
constant of the interaction, it is arbitrary at this point. To find the consequences of this
term, we replace φ by its vacuum value and the Higgs particle h:

φ→ 1√
2

(
0

v + h

)
. (9.48)

This gives
Lφeint = gev√

2
(ēLeR + ēReL) + ge√

2
(ēLeR + ēReL)h . (9.49)

Recalling that (ēLeR + ēReL) = ēe, the first term has exactly the form of a mass term
meēe for the electron, and we can identify the electron mass as

me = gev√
2
. (9.50)
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Hence the coupling of the electron to the Higgs doublet φ introduces a mass term for the
electron, without breaking the gauge invariance of the theory!

The second term in Lφeint says that there is an electron-Higgs interaction vertex in the
theory, of coupling strength ge/

√
2 = me/v:

(9.51)

Hence we find that an electron can emit or absorb a Higgs particle h. Similarly, a Higgs
particle can decay into an electron-anti-electron pair (e−, e+). This interaction vertex
is used to compute the probability of producing a Higgs particle in particle collisions.
Writing ge in terms of me, the interaction Lagrangian becomes

Lφeint = meēe+ me

v
ēeh . (9.52)

Note that the coupling strength between the fermion (electron) and the Higgs particle is
proportional to the mass of the fermion.

Importantly, the interaction Lagrangian Lφeint produces no mass term for the neutrino
νeL, and moreover it is not possible to write an interaction term that does produce such a
mass term. The reason is that, by assumption, the theory does not contain a right-handed
neutrino νeR, so one cannot produce a mass term ν̄eRνeL. This in particular implies that
the neutrino does not interact with the Higgs particle h. If there was a right-handed
neutrino νeR, it would be hard to detect, since it would have T3 = 0 and Q = 0, so it
would couple to none of the electroweak gauge bosons W±

µ , Zµ, or Aµ. We will come back
to the neutrino mass question and the possible existence of νeR later on.

Quarks. The same mechanism that works for the leptons equally works for the quarks.
In the case of quarks, there is a right-handed partner to both components of the left-
handed doublet QL, so, unlike in the electron/neutrino case, we can produce mass terms
for both the up and the down quark. The mass of the down quark (and the corresponding
interaction with the Higgs particle h) is produced in exactly the same way as for the
electron. For the up quark, we use the fact that from any SU(2) doublet (a b)T, one can
construct another “conjugate” SU(2) doublet (−b∗ a∗)T (this other doublet is equivalent
to the anti-fundamental representation). We can therefore use the conjugate Higgs doublet

φc := −iτ2φ =
(
−φ0∗

φ−

)
, φ− := φ+∗ . (9.53)

In terms of the vacuum v and the Higgs particle h, this becomes

φc →
1√
2

(
−(v + h)

0

)
. (9.54)

Combining this with the quark doublet QL gives the SU(2)W singlet

Q̄Lφc ∼ ūL(v + h) . (9.55)
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Therefore, to give masses to both the up and the down quark, we add interaction terms

Lqφint = gdQ̄LφdR + guQ̄LφcuR + h.c. , (9.56)

where “h.c.” stands for the hermitian conjugate of the first two terms. Writing φ and φc
in terms of v and h, one finds, exactly as for the leptons,

Lqφint = mdd̄d+ md

v
d̄dh+muūu+ mu

v
ūuh , (9.57)

where again the couplings gd and gu have been eliminated in favor of the quark masses
md and mu, following the same steps as for the electron. We conclude that the Higgs
mechanism also succeeds in giving both the up and down quarks masses. As for the
electron, the values of the masses are not predicted by the theory, but are free parameters
(in the form of the couplings gd and gu). They have to be determined by measurements.

Further Families. All of the above analysis replicates for the other two families of
quarks and leptons, just as it did for the interactions between fermions and gauges bosons.
The masses of all fermions are free parameters of the Standard Model. They remain to
be explained by a more fundamental theory. Since the coupling of each fermion to the
Higgs particle h is proportional to its mass, the Higgs particle interacts most strongly
with the heaviest particles. By far the heaviest fermion is the top quark (173 GeV). The
second-heaviest fermion, the bottom quark at ∼4 GeV, is already much lighter. Therefore,
the physics of the Higgs particle is dominated by its interaction with the top quark. For
example, the dominant process for Higgs production at the LHC is gluon fusion via a “top
triangle”:

(9.58)

9.6 Summary of the Standard Model
Our description of the basic structure of the Standard Model is now complete. The basic
ingredients are
• Gauge invariance under the U(1)× SU(2)× SU(3) gauge group.

• Three families of quarks and gluons that interact with the three types of gauge
bosons (electroweak gauge bosons and gluons).

• The scalar Higgs field with a “Mexican hat” potential that lets the Higgs field acquire
a non-zero vacuum expectation value v. The Higgs vacuum v breaks the electroweak
U(1)×SU(2) gauge symmetry to a residual U(1), which is the electromagnetic gauge
symmetry. The three gauge bosons W± and Z acquire masses due to the three
broken gauge symmetries.

• Couplings between the Higgs field and all fermions (except neutrinos) lead to (i)
mass terms for these fermions, and (ii) couplings between these fermions and the
Higgs particle h. Through the covariant derivative Dµ in the Higgs kinetic energy,
the Higgs particle also couples to the massive gauge bosons W± and Z.
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Summing up all terms, the full Standard Model Lagrangian at this point reads (before
spontaneous symmetry breaking)

LSM = − 1
4 B

µνBµν −
1
2 W

µν
i W i

µν −
1
2 G

µν
a G

a
µν

+ (∂µφ)†(∂µφ) + λ
(
v2φ†φ− (φ†φ)2

)
+
∑

f=L,eR,
QL,uR,dR

f̄ iγµDµf

+
√

2
v

(
meL̄φeR +mdQ̄LφdR +muQ̄LφcuR + h.c.

)
, (9.59)

Dµ = ∂µ − ig1
Y

2 Bµ − ig2
τ i

2 Wiµ − ig3
λa

2 Gaµ . (9.60)

Here, we chose to express the couplings µ2, ge, gd, and gu in terms of the Higgs vacuum
value v and the masses me, md, and mu. As usual, the terms in the last two lines of the
Lagrangian replicate for the second and third families of fermions.

10 Scattering and Decay
Now that we have understood the basic structure of the Standard Model, we want to learn
how to compute its predictions, which can then be compared to measurements.

10.1 S-Matrix and Cross Sections
S-Matrix. Every Lagrangian quantum field theory provides the rules to compute matrix
elements (transition probability amplitudes) between different states. For particle physics
experiments (e. g. in particle colliders), one is interested in scattering between states that
consist of various incoming and outgoing particles. An important underlying assumption is
that all incoming and outgoing particles can be treated as free particles as long as they are
sufficiently far from the interaction region. The appropriate Hilbert space for such states
far from the interaction region therefore is the Fock space that is spanned by arbitrary
multi-particle states, which are defined as products of free one-particle states:

H =
∞⊕
n=0
Hn , Hn = H1 ⊗ · · · ⊗ H1 = H⊗n1 . (10.1)

In a scattering event, the incoming state is typically a pure state consisting of two particles.
As the particles approach each other, they cease being free, but start interacting. Their
quantum mechanical interaction is completely described by the Lagrangian of the theory,
which dictates the time evolution of the combined state in the scattering region. After the
scattering, what emerges is in general a linear combination (superposition) of many different
free multi-particle states. One of these states is what will be measured in the detector.
The quantum operator that maps incoming free multi-particle states to superpositions of
outgoing free multi-particle states is the S-matrix or scattering matrix S,

S : H → H . (10.2)

The S-matrix is a central object in every quantum field theory. What one typically
computes are S-matrix elements

〈f |S|i〉 (10.3)
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between fixed incoming states |i〉 and outgoing states |f〉. Such matrix elements can be
computed via Feynman rules and Feynman diagrams that follow from the Lagrangian.

Cross Sections. On the other hand, what one typically can measure in an experiment
are cross sections. Classically, the cross section of an object is the area of its profile in the
plane perpendicular to an incident beam. For example, think of Rutherford’s experiment,
where a beam of α-particles is directed at a gold foil, and picture the gold nuclei as balls
of radius r:

(10.4)

The classical cross section of a nucleus is its area: σ = πr2. In terms of the beam properties,

σ = number of scattered particles
time× particle flux = N

T Φ
,

Φ = flux = number density in beam× beam velocity . (10.5)

Here, T is the total time duration of the experiment, N is the number of particles that
got scattered, and Φ is the incoming flux of particles. T and Φ depend on the setup of the
experiment, but N depends on the microscopic interactions of the beam with the target.
It is also natural to measure the differential cross section dσ/dΩ, which gives the number
of scattered particles in a certain solid angle dΩ. Classically, this gives us information on
the shape of the object, or its potential.

In quantum theory, we can only know the probability for a particle to scatter or not.
Classically, the probability is P = N/Ninc, where N is the number of particles that scatter,
and Ninc is the total number of incident particles. It is then natural to define the quantum
mechanical cross section as

σ = 1
T Φ

P , dσ = 1
T Φ

dP , (10.6)

where P is now the quantum mechanical probability for a particle to scatter, and the flux
Φ is now normalized as if the beam has just one particle. The differential quantities dσ and
dP depend on the kinematics of the final particles, such as their angles and energies. The
differential number of scattering events per unit time measured in a collider experiment is

dN

dt
= Lσ , (10.7)

where L is the luminosity, which is defined by this equation. The luminosity is the rate of
scattering events that are measured per unit of cross section, and depends on the properties
of the beam and target. The integral of L over time is called the integrated luminosity,

Lint =
∫
Ldt =

∫ dN

σ
. (10.8)
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Figure 1: ATLAS 2019 four-lepton final state data. (Image: ATLAS Collabora-
tion, CERN)

The integrated luminosity is the total number of measured events per unit cross section,
and is an important measure for any scattering experiment: The higher the integrated
luminosity, the more data the experiment produces.

Cross sections are typically expressed in “barn” (b), where 1 b = 10−28 m2. The origin
of this term is that inducing nuclear fission by hitting 235U with neutrons is as easy as
hitting the broad side of a barn. The neutron-235U scattering cross section is around
1 barn. The luminosity L has dimension m−2 s−1, or b−2 s−1. The integrated luminosity
Lint has dimension m−2 or b−1. Typical accelerators achieve luminosities in the range of a
few fb−1.

In practice, experimental data is often presented as the total number of events seen for
a given integrated luminosity. For example, Figure 1 shows the differential cross section for
final states with four leptons from colliding proton initial states, as measured by the ATLAS
experiment at the LHC. The data shown in the figure is differential in the Lorentz invariant
mass of the four leptons m2

4l = (p1 + p2 + p3 + p4)2. Each data point shows the number
of events where the measured mass lies in the respective 2.5 GeV interval. As indicated
in the figure, the experiment has an integrated luminosity of Lint =

∫
Ldt = 139 fb−1 at

a center-of-mass energy of 13 TeV. To compare this data to theory, one would calculate
dσ/dm4l at the given energy (13 TeV) from quantum field theory, and multiply by the
luminosity. The four-lepton final state can come from various sources, whose theoretical
predictions are shown in the solid histogram. For example, the red histogram shows
the contribution to the cross section from a pair of intermediate Z bosons. The sum of
histograms agrees very well with the data if a 125 GeV Higgs boson is included in the
theory as a possible intermediate state (light blue).
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Computing Cross Sections. We want to relate the differential cross section measured
by experiments to the S-matrix elements computable from field theory. Let us focus on
the case where two particles collide, that is the initial state |i〉 is a two-particle state. We
thus consider differential cross sections for 2→ n processes:

p1 + p2 →
n+2∑
j=3

pj . (10.9)

In the rest frame of one of the colliding particles, the flux (for a single particle) is the
velocity of the incoming particle divided by the volume:

Φ = |v|
V

. (10.10)

In a different frame, e. g. the center-of-mass frame, particles come in from both sides, and
the flux is determined from the difference between the particle’s velocities:

Φ = |v1 − v2|
V

. (10.11)

The cross section is therefore

dσ = 1
T Φ

dP = V

T |v1 − v2|
dP (10.12)

In quantum theory, probabilities are given by squares of amplitudes. The normalized
differential probability dP therefore is

dP = |〈f |S|i〉|
2

〈f |f〉〈i|i〉
dΠ . (10.13)

Here, dΠ is the region of phase space (final state momenta) that we are looking at. The
differential region dΠ is proportional to the differential momentum d3pj of each final
state j, and must integrate to 1. It therefore must be

dΠ =
n∏
j=1

V

(2π)3 d
3pj (10.14)

This integrates to
∫
dΠ = 1, because (for a one-dimensional integral)∫ dp

2π = 1
L
, (10.15)

where V is the total volume. This relation follows from∫
L
dx = L ,

∫
L
δ(x) dx = 1 ⇒ δ(x = 0) = 1

L
,

δ(x) =
∫ dp

2π eipx ⇒ δ(x = 0) =
∫ dp

2π . (10.16)

The normalization factors 〈f |f〉 and 〈i|i〉 in the denominator of (10.13) are necessary
because the one-particle states may not be normalized to 〈f |f〉 = 〈i|i〉 = 1. In fact,
such a normalization would not be Lorentz-invariant and hence impractical. Instead, in
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quantum field theory, one-particle states |p〉 of four-momentum p = (E;p) in a volume V
are normalized such that

〈p|p〉 = 2EV . (10.17)
For the initial state |i〉 = |p1〉|p2〉 and final state |f〉 = ∏n+2

j=3 |pj〉, we therefore find

〈i|i〉 = (2E1V )(2E2V ) , 〈f |f〉 =
n+2∏
j=3

(2EjV ) . (10.18)

We will see that all volume factors V will drop out at the end, such that the V →∞ limit
becomes trivial.

The only thing left is the S-matrix element 〈f |S|i〉. These S-matrix elements are usually
computed perturbatively via Feynman diagrams. In a free theory without interactions,
the S-matrix is simply the identity operator 1. One typically splits off this part,

S = 1 + iT , (10.19)

where T is called the transfer matrix and describes deviations from the free theory. The
factor of i is a convention, motivated by writing S as S = eiT̂ (even though T is not
exactly T̂ ). Since the S-matrix vanishes unless the initial and final states have the same
total four-momentum, it is helpful to factor out an overall momentum-conserving delta
function,

T = (2π)4δ4(Σp)M , δ4(Σp) := δ4
(
P µ
i − P

µ
f

)
, (10.20)

where P µ
i is the sum of all the inital particles’ momenta, and P µ

f is the sum of all the final
particles’ momenta. We therefore have

〈f |S|i〉 = δfi + i(2π)4δ4(Σp)〈f |M|i〉 . (10.21)

The non-trivial part of the S-matrix isM. In quantum field theory, “matrix elements”
usually means 〈f |M|i〉. The case where initial and final state are identical is special and
needs to be treated differently. Here we focus on the case where the final and initial states
are different, |f〉 6= |i〉, which is the interesting part that goes into the differential cross
section. For this part, the identity operator contributes nothing, δfi = 0. For the cross
section, we need the absolute square of the second term. It looks worrisome to take the
square of a delta function,

δ4(Σp) δ4(Σp) = δ4(0) δ4(Σp) . (10.22)

However, this is actually simple to resolve, as long as we work with a finite volume V . We
only take the V →∞ limit at the end (it will be trivial by then). In one dimension, the
delta function satisfies

2π δ(p) =
∫

eipx dx ⇒ δ(p = 0) = 1
2π

∫
dx = L

2π . (10.23)

In three spatial dimensions, this generalizes to

δ3(p = 0) = 1
(2π)3

∫
d3x = L3

(2π)3 = V

(2π)3 . (10.24)

Adding time as the fourth dimension, we get

δ4(p = 0) = 1
(2π)4

∫
d4x = TV

(2π)4 . (10.25)
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The absolute square of the matrix element for |f〉 6= |i〉 therefore is

|〈f |S|i〉|2 = (2π)8 δ4(0) δ4(Σp)|M|2 = (2π)4 TV δ4(Σp)|M|2 , (10.26)

where |M|2 := |〈f |M|i〉|2. Putting everything together, we find for the differential
probability (10.13)

dP = |〈f |S|i〉|
2

〈f |f〉〈i|i〉
dΠ

= (2π)4 TV δ4(Σp)|M|2

(2E1V )(2E2V )

n+2∏
j=3

(
1

2EjV
V

(2π)3 d
3pj

)

= T

V

|M|2

(2E1)(2E2) dΠLIPS , (10.27)

where dΠLIPS is the Lorentz-invariant phase space differential

dΠLIPS := (2π)4δ4(Σp)
∏
final

states j

(
1

2Ej
d3pj
(2π)3

)
(10.28)

For the differential cross section, we therefore find

dσ = V

T |v1 − v2|
dP = |M|2

(2E1)(2E2)|v1 − v2|
dΠLIPS . (10.29)

All factors of V and T have dropped out, so it is now trivial to take the limit V →∞ and
T →∞. Recall that v = p/E = p/p0.

Decay Rates. Consider an unstable particle, that is a particle that can decay into two
(or more) other particles. Let dP be the differential probability that the one-particle state
decays into a given multi-particle state during a time period T . The differential decay rate
dΓ then is

dΓ = 1
T
dP . (10.30)

From a quantum field theory viewpoint, a decay is a 1→ n scattering process. Following
the same steps as for the differential cross section, the decay rate for a state |p1〉 can be
written as

dΓ = |M|
2

2E1
dΠLIPS . (10.31)

Note that a decay rate can never be Lorentz-invariant. The above is the decay rate in
the rest frame of the particle. If the particle is moving at relativistic speeds, it will decay
much slower due to time dilation. The decay rate in a boosted frame can be calculated
with special relativity.

10.2 Lifetime and Decay Width
Lifetime. We want to consider the lifetime of an unstable particle that is at rest. The
wave function of a single-particle state should be of the form

ψ(t) = ψ(0)e−iEt . (10.32)
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If the energy E is purely real, then |ψ(t)|2 = |ψ(0)|2, so there is no transition to another
state, and hence no decay, which is not satisfactory. Instead, we expect

|ψ(t)|2 = |ψ(0)|2e−t/τ , (10.33)

where τ is the mean lifetime of the particle described by the state ψ. After one lifetime,
the probability that the particle has not decayed is 1/e. The above formula suggests to
consider a complex energy

Ê = E0 − iΓ/2 , (10.34)

with E0 and Γ real. By comparing with the definition of the lifetime τ , we find

Γ = 1
τ
. (10.35)

This means that Γ is the decay rate of the particle (which justifies the symbol).

Decay Width. What does a complex energy mean? To see one important implication,
let us Fourier transform the time variable to energy modes,

ψ̃(E) = 1√
2π

∫ ∞
−∞

eiEtψ(t) dt

= ψ(0)√
2π

∫ ∞
−∞

ei(E−E0)t−Γt/2 dt . (10.36)

Now we consider the case that the particle came into existence at time t = 0, for example
due to the collision of two other particles, or by emission. We hence assume that ψ(t) = 0
for t < 0. The integral then becomes

ψ̃(E) = ψ(0)√
2π

∫ ∞
0

ei(E−E0)t−Γt/2 dt . (10.37)

The integral is easy to evaluate. The contribution from t =∞ vanishes. What remains is

ψ̃(E) = −iψ(0)√
2π

1
E − E0 + iΓ/2 . (10.38)

The probability to find the state at energy E therefore is

P (E) = |ψ̃(E)|2 = |ψ(0)|2

2π
1

(E − E0)2 + Γ 2/4
. (10.39)

This shows that an unstable state does not have a definite energy, but rather exists in a
range of energies E, spread about a central value E0:

(10.40)
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It is clear that P (E) falls to half its maximal value when E − E0 = ±Γ/2. The width
of the energy distribution around E0 is therefore Γ . For this reason, Γ is also called the
decay width. The terms “decay width” and “decay rate” are used interchangeably.

The energy distribution makes perfect sense from a quantum theory viewpoint: A
central element of quantum theory is Heisenberg’s uncertainty principle, which for the
dual variables energy E and time t reads

σE σt ≥
~
2 ⇒ ∆E∆t & ~ , (10.41)

where σE and σt are the standard deviations of energy and time. As is well-known, the
uncertainty principle is saturated (the uncertainty is minimized) for a Gaussian normal
distribution: A Gaussian distribution f(E) in energy of width ∆E corresponds (via
Fourier transformation) to a Gaussian distribution f̃(t) in time of width ∆t = ~/∆E. The
distribution (10.40) is similar to a Gauss distribution near its peak (though the tails are
flatter). We can identify its width as the uncertainty in energy, ∆E = Γ . Similarly, we
can identify the width of the corresponding probability distribution in time as the average
lifetime τ = ∆t. And indeed the two are related by (reinstating the factor ~ which we
usually set to 1):

∆E = Γ = ~
τ

= ~
∆t

, (10.42)

in agreement with the uncertainty principle.
The take-home message is that the width Γ of the energy distribution of a particle

is inversely proportional to its lifetime τ . Here, energy equals mass, since we consider a
particle at rest. Short-lived particles have broad energy distributions. Conversely, the
more stable a particle, the more narrow its energy distribution. The energy distribution of
a perfectly stable particle is a delta function, i. e. the particle has a definite energy (and
therefore a definite mass).

10.3 Scattering Through a Resonance
Resonances. New physics often appears through the production of a new particle, that
then decays into other particles. For example, consider the process

A+B → R → C +D . (10.43)
For example, A and B as well as C and D could be e+e−, or a quark pair, the intermediate
particle R could be aW± or Z boson. To understand this process, we look at the amplitude

A+B → C +D . (10.44)
In quantum field theory, this amplitude receives many contributions. If the theory contains
another particle R that couples to the initial and final particles through interaction terms

gABABR and gCDCDR (10.45)
in the Lagrangian, then the leading-order contribution to this amplitude is given by
Feynman diagrams of the form

M∼ = gAB gCD

p2 −m2 , (10.46)
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where m is the mass of the intermediate particle R, and pµ = pµA + pµB is the internal
four-momentum. Its Lorentz-invariant square is

s := p2 = (EA + EB)2 − (pA + pB)2 . (10.47)

Evaluating it in the center-of-mass frame where pA + pB = 0 gives

p2 = E2 = (EA + EB)2 ≥ (mA +mB)2 . (10.48)

Consider first the case that the mass m of the intermediate particle is smaller than the
total mass mA +mB of the initial state. (For example, this would be the case if all particles
A,B,C,D,R are identical.) In this case, the propagator 1/(p2 −m2) in (10.46) is always
finite, and the internal state is called “off-shell”, because it does not satisfy its mass-shell
condition p2 = m2. Such a state is referred to as a “virtual particle”, because it cannot
exist as a freely propagating state, as real particles do.

However, if the internal mass m is bigger than the initial-state mass mA +mB, then
there exists physical initial momenta for which p2 = (pA + pB)2 = m2. In this case, the
internal state becomes “on-shell”, which means that it exists as a real particle (that can
propagate). For such initial states, the propagator and therefore the amplitude becomes
infinite. An infinite amplitude is not physical and thus cannot be correct, so we must be
missing something!

What happens once m > mA +mB is that the intermediate state R becomes unstable:
Due to its large mass, it can decay into particles of lower masses, namely into a pair A,B.
The amplitude for this decay is given by the diagram

MR→AB = = gAB . (10.49)

Note that this amplitude is independent of the particles’ masses. But as long as m <
mA +mB, the momentum delta function δ4(pR − pA − pB) has no support and hence the
amplitude vanishes. Only when m > mA + mB does the phase space open up and the
decay rate becomes non-zero.

We saw previously that unstable particles have complex energies. Let us see how this
comes about. The eigenvalues of any quantum operator crucially depend on the boundary
conditions. In quantum mechanics, we usually require the wave function to asymptote to
zero at spatial infinity. The energy operator (Hamiltonian) then has real eigenvalues. For
a decay process on the other hand, there must be a non-trivial outgoing wave function
at infinity. That wave function will be complex, and then also the energy eigenvalues
become complex. In quantum field theory, not only transition amplitudes receive quantum
corrections, but also eigenvalues, and in particular particle masses. Corrections to the mass
of a particle arise due to Feynman diagrams that correct the propagator of the respective
field. The simplest such diagram is

. (10.50)
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Such corrections lead to a renormalized mass mR, which is the mass that one actually
measures experimentally. The mass parameter m in the Lagrangian is called the bare
mass. And what one finds is that when m > mA +mB, the diagram above has a non-zero
imaginary part. In fact, the optical theorem states that the imaginary part of the mass
resulting from such “bubble” diagrams is always equal to −ΓR/2, where ΓR is the total
decay rate of R. One therefore has in general

m→ mR − iΓR/2 , (10.51)

wheremR is the renormalized mass. This is exactly the complex energy that we encountered
before, and we have sketched how it arises from quantum field theory.

The formula gAB gCD/(p2 −m2) for the amplitude remains correct, but m is replaced
by mR − iΓR/2. The process gets particularly interesting when ΓR � mR: In this case,
the intermediate state has a lifetime τR = 1/ΓR that is much bigger than the Compton
wavelength 1/mR. Hence the state R can be considered as a real intermediate particle that
is produced in the collision, physically lives for some time, and then decays. In this case,
the intermediate state R is called a resonance. In the resonance approximation ΓR � mR,
we can approximate

(mR − iΓR/2)2 ≈ m2
R − imRΓR , (10.52)

and the amplitude becomes

M2→2 ≈
gAB gCD

E2 −m2
R + imRΓR

, (10.53)

where E is the total center-of-mass energy. We see that now at E = mR the amplitude
is no longer divergent: The imaginary part in the denominator regulates the divergence.
The amplitude still has a maximum at E = mR, but is no longer infinite. Near E = mR,
we can further approximate

E2 −m2
R = (E −mR)(E +mR) ≈ 2mR(E −mR) , (10.54)

and the amplitude becomes

M2→2 ≈
1

2mR

gAB gCD

E −mR + iΓR/2
. (10.55)

Resonance Cross Section. Let us use this amplitude to compute the cross section of
the process. We earlier derived the general formula for the cross section:

dσ = |M|2

2E1 2E2|v1 − v2|
dΠLIPS . (10.56)

For the special case of 2 → 2 scattering, we can go to the center-of-mass frame. Using
momentum convervation, the four-momenta can be written as

p1 = (E1,p) , p3 = (E3,p
′) ,

p2 = (E2,−p) , p4 = (E4,−p′) , (10.57)

where p′ and p are related by energy conservation. The phase space differential then can
be simplified to (see also Problem 6.1)

dΠLIPS = 1
16π2

|p′|√
s
dΩ . (10.58)
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Here, s = (p1 + p2)2 = (E1 + E2)2 is the square of the center-of-mass energy, dΩ =
sin θ dθ dφ is the solid angle differential, and |p′| is determined by the conservation laws
δ4(p1 + p2 − p3 − p4):

|p′| = 1
2
√
s

√
s2 − 2s(m2

3 +m2
4) + (m2

3 −m2
4)2 . (10.59)

We can also simplify the denominator in the expression for dσ,

E1E2|v1 − v2| = E1E2

∣∣∣∣p1

E1
− p2

E2

∣∣∣∣ = |p1E2 − p2E1| =
√
s |p| . (10.60)

The 2→ 2 cross section therefore simplifies to (in the center-of-mass frame)

dσ = |M|
2

64π2s

|p′|
|p|

dΩ . (10.61)

Here |p| is given by the same formula as |p′| with (m3,m4)→ (m1,m2). We can now plug
in our formula for the amplitudeM2→2 near a resonance. Noting that

√
s = E ≈ mR

near the resonance, this gives

dσ ≈ 1
64π2m2

R

∣∣∣∣∣ 1
2mR

gAB gCD

E −mR + iΓR/2

∣∣∣∣∣
2 |p′|
|p|

dΩ

= g2
AB g

2
CD

(16π)2m4
R

|p′|
|p|

1
(E −mR)2 + Γ 2

R/4
dΩ . (10.62)

We can also compute the width ΓR in the denominator, which is the decay rate of the
resonance R. The general decay rate formula derived earlier,

dΓ = |M|
2

2E1
dΠLIPS , (10.63)

for a 1→ 2 process also simplifies: In the center-of-mass frame (where the initial particle
is at rest), the decay rate for the process R→ C +D becomes (see Problem 6.1):

ΓR→CD = SCD|p′|
8πmR2 |MR→CD|2 ≈

SCD|p′|g2
CD

8πmR2 . (10.64)

Here, we used that the amplitude MR→CD ≈ gCD, and SCD is a symmetry factor that
equals 1/2 if the particles C and D are identical, and is 1 otherwise. Similarly, we find for
the decay process R→ A+B:

ΓR→AB ≈
SAB|p|g2

AB
8πmR2 . (10.65)

The total decay rate ΓR of the particle R is the sum of decay rates of all decay channels of
the particle:

ΓR =
∑

all possible
final states f

ΓR→f , (10.66)

and it is this total decay rate that stands in the denominator of the cross section near the
resonance. The resonance R may have further decay channels besides AB and CD, hence
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we leave ΓR in the denominator as it is. But we can eliminate gAB and gCD in favor of
ΓR→AB and ΓR→CD, since the decay rates are the quantities that can be observed, whereas
the couplings could be effective couplings with no fundamental significance, for example if
the resonance R is a bound state of more fundamental components. Hence we re-write the
cross section as

dσ ≈ 1
4SABSCD

1
|p|2

ΓR→AB ΓR→CD

(E −mR)2 + Γ 2
R/4

dΩ . (10.67)

Performing the angular integrations, we obtain for the total cross section

σ(E) ≈ π

SABSCD|p|2
ΓR→AB ΓR→CD

(E −mR)2 + Γ 2
R/4

. (10.68)

This is called the Breit–Wigner distribution (after Gregory Breit and Eugene Wigner).
We have seen its functional form before, when we looked at the decay probability for an
unstable particle. Its graph is bell-shaped, similar to a Gaussian distribution,

(10.69)

The full width of the graph at half its maximal value, or “full-width-half-maximum”
(FWHM) is ΓR. For this reason, ΓR is also called the resonance width. At the same
time, ΓR is the decay rate (decay width) of the unstable particle R responsible for the
resonance.

Spin and Color Sums. In all of the above, we have neglected spin degrees of freedom.
If the resonance has spin j, we must sum over the 2j + 1 possible spin states of the
resonance, which adds an overall factor of 2j+ 1. Moreover, if the initial particles A and B
have spins sA and sB, and we know their spin states, we have to use the partial width
ΓR→i for these specific spin states. More commonly, one does not know the initial spin
states, that is the incoming particles are described by a completely unpolarized density
matrix

ρspin = 1
2s+ 1

s∑
m=−s

|m〉〈m| . (10.70)

In this case, one has to average over the initial spin states by inserting

1
(2sA + 1)(2sB + 1)

sA∑
mA=−sA

sB∑
mB=−sB

. (10.71)

By convention, the partial decay rate ΓR→f into some final state f is defined as the
sum over the decay rates into all possible spin configurations of f (because one does not
care about partial rates into specific spin polarizations). The sums over mA and mB are
therefore absorbed into the definition of ΓR→AB. Similarly, the cross section σ is summed
over final spin states, and this sum is absorbed into ΓR→CD. Similar arguments apply to
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color degrees of freedom: One has to sum over all possible internal color states, and the
cross section is averaged over initial and summed over final color states, with the state
sums over initial and final states being absorbed into the decay widths. The general form
of the resonance cross section therefore is

σ(E) ≈ (2j + 1)cR

(2sA + 1)cA(2sB + 1)cB

π

SABSCD|p|2
ΓR→AB ΓR→CD

(E −mR)2 + Γ 2
R/4

. (10.72)

Here, cR, cA, and cB are the color multiplicities of the internal state and the two initial
states. The color multiplicity of a quark is 3, for a gluon it is 8, and for color singlets it
is 1. The width ΓR in the denominator is the total width (decay rate) of R, that is the
sum over decay rates into all possible final states. In the computation of the partial widths
ΓR→AB and ΓR→CD, all final spin and color states should be summed over, as described
above.

Example. As an example, consider the scattering of an electron e− with a positron e+,
where the outgoing state is another fermion anti-fermion pair ff̄ :

e−e+ → ff̄ . (10.73)

When the center-of-mass energy E =
√
s is close to the mass of the Z-boson, the cross

section σ(E) will show a peak that has the form of the Breit–Wigner distribution, where
the intermediate state (resonance) is the Z boson. In this case, sA = sB = 1/2, while
J = 1. All states involved are color singlets, that is cA = cB = cR = 1. The two particles
in the initial and final states are distinguishable, so SAB = SCD = 1. Finally, mZ � me,
and therefore |p|2 ≈ m2

Z/4. The cross section near the resonance will therefore have the
form

σ(E) ≈ 3
2 · 2

4π
m2

Z

ΓZ→e+e− ΓZ→ff̄

(E −mZ)2 + Γ 2
Z/4

. (10.74)

We see that the cross section as a measurable function of the center-of-mass energy E =
√
s

contains a lot of information: The location of the resonance peak yields the mass mZ of the
Z-boson, the width of the distribution yields its total decay width/rate ΓZ, and the height
of the peak gives us information on the partial decay rates/widths in the numerator.

10.4 The W and Z Widths
In a hadron collider (such as the LHC), W± and Z bosons are produced from collisions of
quarks, which are the constituents of all hadrons. The W± and Z bosons then decay into
all kinds of particles allowed by the Standard Model.

W Width. Let us compute the decay width for the W± bosons. By looking at the
Standard Model Lagrangian, we find that the possible decays of the W+ boson into
two-particle states are

W+ → e+νe , W+ → µ+νµ , W+ → τ+ντ ,

W+ → ud̄ , W+ → cs̄ . (10.75)

The decay into tb̄ is excluded by energy conservation, because the top quark (mt ≈ 173 GeV)
is heavier than the W± (mW ≈ 80.4 GeV). First consider the e+νe decay channel. The
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coupling between W+, e+, and νe is given by the following interaction term (vertex) in
the Lagrangian:

g2√
2
W+
µ ν̄eγ

µPLe = = (10.76)

At leading order, the matrix elementM for the transition W+ → e+νe is given by this
interaction vertex, where the field operators are replaced by the wave functions of the
respective particles. Therefore,

M = g2√
2
W+
µ ν̄eγ

µPLe , (10.77)

where W+
µ is the wave function of the W+ boson, ē is the wave function of the positron e+,

and νe is the wave function of the electron neutrino.
For the decay rate, we have to sum |M|2 over final spin states, and average over initial

spin states. Instead of doing the detailed computation, we will make a simple estimate.
Because of the projector PL onto left-handed spinors, only one spin state of each e+ and νe
interacts with W+. The W+

µ has three polarization states, but we average over them.
So the sum and average over spin states just gives a trivial factor of one. The decay
rate must have dimension (1/time). Looking at the general formula (10.64) for Γ , this
implies that |M|2 must have dimension (mass)2. The neutrino and electron masses are
extremely small compared to the W mass. Neglecting them, the only quantity that can
supply the mass dimension is mW. We do not know the numerical prefactor, but the naive
choice is to just replace the product of wave functions for given spin states by mW, that is
W+
µ ν̄eγ

µPLe → mW. Since summing and averaging over spin states gives a trivial factor
one, this would result in |M|2 = g2

2m
2
W/2. The correct answer is

|MW+→e+νe |
2 = g2

2m
2
W

3 , (10.78)

so our estimate is off by a factor 2/3. We got pretty close with our naive approximation!
Using the general formula (10.64), we find for the decay rate

ΓW+→e+νe ≈
Se+νe|p′|
8πm2

W
|MW+→e+νe |

2 = |p
′|

8π
g2

2
3 . (10.79)

Neglecting the electron and neutrino masses, we can identify |p′| ≈ mW/2. Therefore

ΓW+→e+νe ≈
mW

16π
g2

2
3 = 1

12 α2mW , α2 = g2
2

4π . (10.80)

The computation did not depend on the final particles’ masses. For all decay channels,
the final state is a pair of spin 1/2 fermions. Hence the partial decay width for all decay
channels is the same. For the quark anti-quark final states, we also have to sum over all
color states. Since the W+ is a color singlet, also the final state must be a color singlet.
With three possible colors, a quark anti-quark pair can form three possible singlets: rr̄,
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gḡ, and bb̄. Hence we have to count the quark final states with a factor of 3. Counting all
possible final states, we find for the total decay width

ΓW+ = (1 + 1 + 1 + 3 + 3)ΓW+→e+νe = 3
4 α2mW ≈ 2 GeV . (10.81)

An identical computation gives the same result for the charge conjugateW−: ΓW− ≈ 2 GeV.
This is indeed very close to the experimental value ΓW = 2.085(42) GeV. The W± is a
rather narrow resonance, with ΓW/mW ≈ 1/40.

Note that the result depends on the number Nc of possible colors for each quark, and
that the result matches experiment with Nc = 3. Final quark and lepton states can clearly
be distinguished from each other, and one finds that a W± decays twice as often into
quarks as it does into leptons. So even though the measured process does not involve the
strong force directly, it confirms that leptons are colorless, and that the number of quark
colors must be three.

The Z Width. The width of the Z boson can be computed in a very similar way. In
this case, the possible decay channels within the first family are

Z → e+e− , Z → νeν̄e , Z → uū , Z → dd̄ , (10.82)

and there are similar decay channels for the other two families. Essentially the only
difference compared to the W± decay is that one has to sum over left-handed and right-
handed fermions, and the squared coupling (g2/

√
2 )2 has to be replaced by the square of

the electroweak charge (
g2

cos θW

(
T3f −Qf sin2 θW

))2
. (10.83)

The total decay width works out to (see Problem 6.2)

ΓZ ≈ 2.4 GeV . (10.84)

This is again very close to the experimental value ΓZ = 2.4952(23) GeV. The Z boson
is the most precisely measured resonance, see Figure 2. The Large Electron-Positron
Collider (LEP) at CERN (the predecessor of the LHC, in the same 27 km tunnel), was
able to measure both the Z width and the Z mass mZ = 91.1875(21) GeV to an accuracy
of ∼10 MeV. For the Z mass, this is a relative precision of ∼0.002 %.

To get to this level of precision, the LEP group had to take into account all kinds of
environmental effects. For example, tidal forces from the moon distort the rock around
the accelerator, changing the 4.3 km radius of the accelerator by ±0.15 mm; this changes
the beam energy by ∼10 MeV, so the data has to be corrected accordingly! Another effect
is the TGV railway line, which leaks currents that return to earth via the nearby Versoix
river and the LEP ring: Each time a train passes by, a small current circulates the ring,
slightly changing the magnetic field, which again changes the beam energy by ∼10 MeV.
These examples give an idea of the accuracy to which such experiments are performed.

Lifetimes. From the equation for the decay lifetime, we note that the Z andW± lifetimes
are about τW = 1/ΓW ≈ 1/2 GeV−1. In our natural units where ~ = c = 1, we have
1 GeV−1 = 6.6 · 10−25 sec, hence the lifetime is τW ≈ 3 · 10−25 sec. In its lifetime, a W±

can travel a distance of γcτW, where γ = E/mW is the Lorentz factor. Since E/mW ≤ 100
for any foreseeable machine, and c = 3 · 1010 cm/sec, the distance a W± can travel is
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Figure 2: The measured total cross section of processes e+e− → hadrons shows
a clear resonance peak. The peak is centered at the Z boson mass mZ = 91.2 GeV,
the width of the peak is the Z boson width ΓZ . The figure shows data com-
bined from various experiments. (Image from https://cerncourier.com/a/
revisiting-the-b-revolution/)

≤10−12 cm. Detectors can resolve distances of ∼10−2 cm, so a W± (and similarly a Z) will
always decay before it can be detected, and its presence can only be deduced from its
decay products.

Invisible Width and Neutrinos. One of the most important aspects of the Z width
is that any new particle that has a non-zero weak isospin or non-zero electric charge will
couple to the Z boson, and will therefore appear in Z decays. For example, if additional
families of particles would exist (besides the three known families), Z could decay into
their neutrinos. The partial decay rate into a νν̄ pair is ≈160 MeV. Therefore every new
neutrino would increase the total decay rate ΓZ by ≈160 MeV, which is clearly in conflict
with the measured width ΓZ .

Charged particles leave clear signatures in detectors, but neutrinos are basically
impossible to detect. Nonetheless they contribute to the total width ΓZ of the Z resonance
cross section. The partial decay rates ΓZ→qq̄ and ΓZ→`+`− into quarks (hadrons) and
leptons can be measured separately (from the height of the cross section at the resonance
peak). From this data, one can compute the invisible decay width

Γ inv
Z := ΓZ − ΓZ→`+`− − ΓZ→qq̄ (10.85)

Calling Γ νν̄
Z the expected invisible width for one family of neutrinos, the current experi-
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mental result from LEP is Γ inv
Z /Γ νν̄

Z = 3.04(4), which clearly accounts for the three decays
Z → ν̄eνe, Z → ν̄µνµ, and Z → ν̄τντ , and rules out further families with light neutrinos
with a large confidence level. This result also tells us that heavy neutrinos cannot exist,
unless they are heavier than mZ/2 ≈ 45.6 GeV.

This results seems unsurprising, given our current knowledge. But before LEP started
in 1987, the number of quark and lepton families was unknown. In fact, the upper bound
on the number of light neutrinos was very weak: There could have been as many as ∼6000
different neutrinos. These would have completely washed out the Z resonance, which was
a realistic fear at the time. But it took only a few weeks of measurements and analysis in
1989 to determine that there are no more than three neutrinos. For an interesting tale of
the LEP Z boson measurements and the number of families, see [2].

11 More Aspects of the Standard Model

11.1 Measurements of Parameters
To test more predictions of the Standard Model, one must determine the numerical values
of its parameters: Masses of the gauge bosons and fermions, α, sin2 θW, the QCD coupling.
• The electromagnetic coupling α = e2/4π can be measured in many ways that do not

require particle physics.

• The electroweak mixing angle θW appears in the electroweak neutral current coupling
(T3 −Q3 sin2 θW), and so many different 2→ 2 fermion cross sections depend on it.
The fact that all these cross sections are consistent with a unique value of θW is a
strong consistency check of the Standard Model.

• The coupling g2 = e/ sin θW can also be measured from muon decay µ− → νµe
−ν̄e

via a W− boson:

(11.1)

The decay rate of this process can be computed,

Γµ =
G2

Fm
5
µ

192π3 ,
GF√

2
= g2

2
8m2

W
, (11.2)

where GF is the Fermi coupling. The lifetime of the muon can be measured very
accurately,

τµ = 1
Γµ

= 2.196 981 1(22) · 10−6 sec . (11.3)

This gives (including quantum corrections to Γµ):
GF = 1.166 378 7(6) · 10−5 GeV−2 . (11.4)

Using g2 = e/ sin θW, α = e2/4π = 1/137, and the definition of GF, this can be
written as

mW ≈
37

sin θW
≈ 77 GeV , (11.5)

where we put in sin2 θW = 0.23 to get the numerical value. This was the historical
prediction of the W mass. To detect the W and Z bosons, the collider experiments
were designed to be most sensitive in this energy region.
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11.2 Higgs Production and Decay
A central ingredient of the Standard Model is the scalar “Higgs field”, whose non-zero
vacuum expectation value spontaneously breaks the electroweak gauge symmetry, thereby
explaining the masses of the W± and Z bosons. At the same time, the Higgs field explains
how all fermions can acquire masses. In turn, the Higgs mechanism firmly predicts the
existence of a scalar “Higgs boson” h. Since the Standard Model is consistent with all
measured particle phenomena to extraordinary precision, it was firmly believed that the
Higgs particle must indeed exist, long before it was confirmed experimentally.

The Higgs boson is difficult to observe because its couplings to the other particles is small
(proportional to their masses), and also because its mass mh was largely unconstrained by
the theory: We saw that mh depends on the parameter λ in the Higgs potential, whose
value was unknown. Hence the search for the Higgs boson had to be carried out across a
large range of energies. The search was one of the main motivations to build the world’s
biggest and most complex experimental facility, the Large Hadron Collider (LHC) at
CERN.

The discovery of the Higgs boson was finally announced in 2012/13. All measurements
since then show that its interactions and decays are exactly as predicted by the Standard
Model. Current studies investigate whether it has all the predicted properties to even
higher precision, or whether the theory has to be modified. For example, some theories
predict the existence of multiple Higgs bosons.

Higgs Production. The dominant process for Higgs production at the LHC is gluon
fusion via a top loop:

(11.6)

The LHC collides protons. Each proton consists of three quarks, that are held together by
gluon exchange (the strong force). Two such gluons can produce a Higgs boson through
the above process. The particle in the loop could be any quark (any particle coupling
to both gluons and the Higgs), but because the coupling to the Higgs is proportional to
the particle’s mass, the top quark channel strongly dominates. Other Higgs production
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processes are

W/Z fusion:

t/t̄ fusion:

W/Z Bremsstrahlung:

(11.7)

But these processes are all much more rare than the top-loop process.
By the time the Higgs particle was found, the total number of Higgs particles produced

was about one million. That sounds a lot, but the number of events that were actually
detected is much lower: The Higgs boson is observed through its decay products, and
isolating those events from all the other processes happening in the collision is difficult
(the raw event rate at the LHC is ∼600 million per second).

Higgs Decay. The most obvious decays are into fermion anti-fermion pairs, and since
the Higgs coupling is proportional to the fermion mass, the most frequent decays are into
the heaviest fermions:

(11.8)

The Higgs boson can also decay into two W or Z bosons, which will then further decay
into quarks or leptons (since the W and Z are too massive, at least one of them will be
off-shell):

(11.9)

A Higgs boson could also decay into two gluons, by reversing the gluon-fusion process that
dominates its production. By the same process, it can also decay to two photons:

(11.10)
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There are two more processes by which a Higgs boson can decay into two photons:

(11.11)

The total decay rate of the 125 GeV Higgs boson splits into the following branching ratios
Γh→f/Γ

tot
h (a branching ratio is the ratio between a partial decay rate Γh→f into a specific

final state f and the total decay rate Γh of the particle):

Final state f Γh→f/Γ
tot
h Observed

bb̄ 0.57 yes
W+W− 0.21 yes
2 gluons 0.09 no?
τ+τ− 0.06 yes
cc̄ 0.03 no?
ZZ 0.03 yes
2 photons 0.002 yes

(11.12)

The bb̄ decay is so dominant because for fermionic decays Γ ∼ |M|2 ∼ m2, where m is
the mass of the final fermion, and for quarks there is an extra factor of three for the color
degree of freedom.

The most common decays are difficult to detect due to a lot of background “noise”
from other processes. Even though the branching ratio for the two-photon final state is
very small, this channel has a clear signature in the detector, and here the Higgs boson
was first seen. At the time of the discovery, the number of relevant events was about
0.002 · 1 000 000 = 2000.

Any scalar particle can decay into two photons, so even though the peak in the two-
photon cross section was in the expected Higgs mass range at 125 GeV, it does not clearly
identify itself as a Higgs boson resonance. But the decays to W+W− and ZZ, as well as
to bb̄ and τ+τ− strongly confirm that the newly found particle is indeed the Higgs boson.
All of these decays are separately measurable. The W+W− and ZZ decays confirm that
the Higgs field has a non-zero vacuum expectation value v 6= 0 that breaks the electroweak
symmetry (recall that the hW+W− vertex comes from the φ†W †Wφ term in the Higgs
field Lagrangian after symmetry breaking φ→ v + h). The fermion channels bb̄ and τ+τ−

confirm that the Higgs coupling is proportional to the particles’ masses, and that the same
mechanism works both for quarks and for leptons.

After the discovery of the Higgs boson, the 2013 Nobel Prize was awarded to François
Englert and Peter Higgs, for the theoretical discovery of the Higgs mechanism.

11.3 Color Confinement, Jets, and Hadrons
Color Confinement. The strong force behaves very differently from the more familiar
electromagnetic force. The reason is that the force-carrying gluons themselves are color-
charged, unlike photons (the carriers of the electromagnetic force) which are electrically
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neutral. The EM field between two opposite charges spreads in all spatial directions as
the two charges separate:

(11.13)

As a result, the EM force decreases as ∼1/r2 with the distance r between the two charges.
On the contrary, because gluons are charged, the color force field lines between two
color-charged objects (such as quarks) stick together and form a narrow “color flux tube”
that extends between the two charges:

(11.14)

For this reason, the force between two color-charged objects is constant, that is independent
of their separation! For this reason, color-charged objects can never be separated, since
this would require an infinite amount of energy. This feature of the strong force is called
color confinement. It is not fully understood theoretically (in fact there is a $1 000 000
prize for its theoretical proof), but the above considerations are strongly supported by all
observations, as well as by numerical simulations (lattice gauge theory).

Jets. When two color-charged objects (quarks or gluons) are produced in a scattering
experiment, and move in different directions at a high energy (with large momentum), the
energy in the color flux tube increases until it reaches a level where quark anti-quark pair
production becomes energetically favorable. Such a pair can split the color flux tube in
two:

−→ (11.15)

This process repeats until most of the energy is absorbed in pair creations. Each high-
energy quark (or gluon) hence fragments into a bunch of color-neutral hadrons (particles
made of quarks and gluons) that all move in roughly the same direction. This process
is called hadronization. The resulting bunch of particles is called a jet and is what one
observes in particle detectors. Experimentally, a 10 GeV quark fragments into ∼7 hadrons,
while a 100 GeV quark fragments into ∼15 or so hadrons. Since the lightest hadrons are
pions, they form the majority in jets.

Hadrons. Since quarks and gluons can only occur in color-neutral combinations, they
always form bound states, called hadrons. There are several ways to form color-neutral
states. The most obvious is to combine one color with its anti-color, for example rr̄ (red
anti-red). Such states are formed from two quarks, and are called mesons. The lightest of
these are pions, with quark content uū, dd̄, ud̄ or ūd.

Another possibility is to combine three quarks in the totally antisymmetric combination
εijkq

i
1q
j
2q
k
3 , where i, j, k ∈ {r, g, b}. Such states consisting of an odd number of quarks are
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called baryons. The lightest and most stable (and most familiar) of these are the proton
and the neutron. Of course, more complex states could be formed, such as qqq̄q̄, or qqqqq̄.
Such tetraquarks and pentaquarks have higher energies and are unstable, but some of them
have in fact been observed recently at the LHCb experiment at CERN.

Color singlets can also be formed from gluons. Such states are called glueballs. For
example, two gluons can be combined by symmetrically summing over all colors (this is
the singlet in the product 8× 8 of two gluon color octet/adjoint representations). Such
states are also mesons. Glueballs have not been directly confirmed experimentally. They
mix with the qq̄ mesons, and sometimes have the same quantum numbers. They hence
contribute to the total number of mesons states, which could be measurable.

Status of QCD. Experimentally, all predicted low-lying mesons qq̄ and baryons qqq are
observed (some dozens of states in total). Some extra meson states have been observed,
which have the quantum numbers expected for glueballs. No states have been observed
that were not predicted by the theory. All properties of mesons and baryons are consistent
with the quark picture of QCD.

On the theoretical side, the bound-state spectrum and all low-energy dynamics of
QCD (like hadronization of quarks) is basically impossible to compute analytically. The
reason is that the QCD coupling constant α3 := g3

2/4π is large (>1) at low energies, and
hence no perturbative expansion in terms of Feynman diagrams is possible. Only at high
energies >1 GeV (as in high-energy collisions) does QCD become weakly-coupled (α3 � 1),
and perturbation theory gives reasonable answers. For the bound-state spectrum and
low-energy dynamics, one has to resort to numerical lattice simulations (lattice QCD).
Figure 3 shows the agreement between the experimentally measured hadron spectrum and
various lattice QCD computations.

Figure 3: Hadron Spectrum from various lattice QCD computations (colored
symbols) versus experimental values (black lines). Figure from [3].
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11.4 Renormalization
General Idea. It was mentioned at several points that the coupling “constants” αi,
i ∈ {1, 2, 3} of the electromagnetic, weak, and strong interactions are not really constant,
but rather depend on the energy scale of the interaction process. We want to understand
this point a bit better. The basic mechanism is particle pair creation. Picture two electrons
interacting via photon exchange:

(11.16)

The higher the energy concentration, the higher is the probability that e+e− pairs will
form. Any number of such pairs could form, and they will have an influence on the photon
exchange interaction between the two “probe” electrons. In terms of Feynman diagrams,
we have to include the following diagram:

(11.17)

This diagram is subleading in the coupling constant, but due to the propagators of the
virtual electrons in the loop, its contribution depends on the energy scale: When the
energy of the virtual photon is large, it will give a larger contribution than when the
energy is small.

The Amplitude. Let us first consider the simpler process of photon emission. The
leading and first subleading diagrams for this process are

+ (11.18)

We will not go into the details of the computation, but summing over all possible interme-
diate states (momenta and spins), the two terms work out to

eū(k′)γµu(k)εµ
(
1 + I(q2)

)
. (11.19)

Here, u(k) and ū(k′) are the spinors of the incoming and outgoing electrons, and εµ is
the polarization vector of the photon. I(q2) is the loop correction, and is an integral that
depends on the four-momentum q of the emitted photon,

I(q2) = α

3π

∫ ∞
m2

dρ2

ρ2 −
2α
π

∫ 1

0
dx x(1− x) log

(
1− q2x(1− x)

m2

)
, (11.20)
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where m is the electron mass. The integrals stem from the integration over all (uncon-
strained) possible momenta running inside the virtual electron loop.

Notably, the first integral gives a logarithmic divergence ∼ log(∞) from the upper
integration limit! This is one of the typical infinities that arise in quantum field theory.
For the moment, we regulate this infinity by replacing the ∞ in the upper integration
limit by some large but finite value Λ. The first term then gives

α

3π log
(
Λ2

m2

)
. (11.21)

The second integral is finite and can be computed analytically. We are most interested in
the short-distance / large momentum-transfer behavior, where qµ is large and space-like.
Hence we make the approximation −q2/m2 � 1. In this case, we can approximate

log
(

1− q2x(1− x)
m2

)
≈ log

(
−q2

m2

)
. (11.22)

Using
∫ 1

0 dx x(1− x) = 1/6, the contribution I(q2) becomes

I(q2) = α

3π log
(
Λ2

m2

)
− α

3π log
(
−q2

m2

)
= α

3π log
(
Λ2

−q2

)
. (11.23)

The dependence on m2 has dropped out, as expected for a high-energy limit. Attaching
the other electron current eū(p′)γµu(p) that absorbs the photon, we find for the 2 → 2
amplitude

M = +

≈ e2
(

1− α

3π log
(
Λ2

−q2

))
ū(k′)γµu(k) ū(p′)γµu(p) . (11.24)

So far we have summed the terms with zero and one fermion loop. We can in fact add all
terms where the virtual photon is dressed with any number of loops in a chain. Since all
intermediate photons will have the same momentum q, the loops factor, giving a geometric
series 1− ε+ ε2− ε3 + . . . that sums to 1/(1 + ε). Therefore, the full coefficient should be

e2

1 + α
3π log

(
Λ2

−q2

) . (11.25)

Running Coupling. After this computation, now comes the main physics point. So far,
we have been assuming that α = e2/4π ≈ 1/137. But the value of α (or e) that we actually
measure in experiments necessarily includes all terms with any number of fermion loops,
so we should get the measured value 1/137 only after adding all these loop contributions.
And the answer of this computation depends on the transferred momentum q2! The
measurement of α has to be performed at a certain value of q2 (that depends on the
experiment). Let us call the value of q2 in the measurement −µ2, so that α = 1/137 at
q2 = −µ2. Now call the value of e that appears in the Lagrangian the bare coupling e0, and
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α0 = e2
0/4π. Then the physical amplitude is given by the sum of terms with any number

of loops,

= + + . . . (11.26)

and the value of α measured at q2 = −µ2 is

α(µ2) = α0

1 + α0
3π log

(
Λ2

µ2

) . (11.27)

At any other value of q2, we find

α(q2) = α0

1 + α0
3π log

(
Λ2

−q2

) = α0

1 + α0
3π

(
log
(
Λ2

µ2

)
+ log

(
µ2

−q2

)) . (11.28)

Now we can use (11.27) to simplify the denominator:

α(q2) = α0
α0

α(µ2) + α0
3π log

(
µ2

−q2

) = α(µ2)
1 + α(µ2)

3π log
(
µ2

−q2

) . (11.29)

Remarkably, the dependence on α0 and on the momentum cutoff Λ has disappeared! Only
finite, physical quantities enter this equation: α(µ2) is the measured value of the coupling
at some particular momentum −µ2, and q2 is another physical momentum. The coupling
α(q2) is called a running coupling constant.

Further Fermions. In our computation, we have corrected the photon propagator with
electron loops. Similar loops are contributed by muons, tau leptons, or quarks. The
correction terms have to be summed over all particles that can run in the loops. If all
fermions satisfy |q2| � m2, the log term in the denominator should be multiplied by a
factor

n` + 3
(4

9

)
nu + 3

(1
9

)
nd , (11.30)

where n` is the number of charged leptons, nu is the number of up-type quarks with charge
2/3 e, nd is the number of down-type quarks with charge 1/3 e, and all quarks come with
a factor of three for color. Each term comes with a factor (charge)2 since it couples to a
photon at each side of the loop.

If −q2 is not large enough, some heavy fermions might give a reduced contribution
because the fermion mass in the propagators will suppress the momentum integral. Hence
a full computation will give threshold effects as −q2 increases. If quarks and leptons only
occur in complete families, then N families contribute

N
(

1 + 4
3 + 1

3

)
= 8N

3 . (11.31)

Loops with W± have to be included as well if |q2| ≥ m2
W. If a particle is much heavier

than the exchanged momentum, m2 � |q2|, then its effect on the running coupling drops
off as ∼1/m2; this is called “decoupling” of the particle.
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Qualitative Picture. The sign between the two terms in the denominator of

α(q2) = α(µ2)
1 + α(µ2)

3π log
(
µ2

−q2

) (11.32)

is very important: As |q2| increases, the logarithm decreases, and hence α(q2) increases.
Conversely, α(q2) decreases as |q2| decreases. Physically, this is a screening effect: Imagine
a negative charge at the origin. Close to this charge, fermion anti-fermion pairs will
spontaneously form. These pairs can be thought of as the loops that correct the photon
propagator. For each pair, the positively charged particle will be attracted by the negative
charge at the origin, whereas the negatively charged particle will be repelled:

(11.33)

This situation is similar to the classical situation of an electron inside a dielectric medium:
Through the polarized “molecules” (particle anti-particle pairs), the electric charge of
the electron gets partially screened (dielectric screening). For a probe particle at some
distance, the negative charge at the origin will be shielded by some net positive charge.
As the probe gets closer to the origin (smaller distance ↔ larger momentum), it sees less
screening charge, and therefore a larger net negative charge, which lets α increase.

The asymptotic value of α at low energies is the familiar α = 1/137. At the scale of
the weak bosons W± and Z, about 90 GeV, the effective value is α(m2

Z) ≈ 1/127. So the
effect is not negligible.

11.5 Asymptotic Freedom.
Quark and Gluon Loops. A very similar effect occurs for QCD, but there is a new
feature with remarkable consequences. The gluon emission process is corrected by two
types of diagrams:

= + (11.34)

The quark loop in the second diagram gives the same contribution for each quark flavor,
since the quark-gluon coupling is flavor-independent. This diagram gives the same contri-
bution as the loop correction in the QED case, only, due to color factors, the coefficient
α(µ2)/3π changes to α3(µ2)/6π for each flavor.

The third diagram provides the new feature. It has the same space-time structure as
the second diagram, but gives an important numerical factor. Since eight gluons contribute
(and only six quarks), and the color charge of a gluon is larger than that of a quark, the
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third diagram contributes more than the second. More importantly, its contribution has
the opposite sign. The reason is that gluons carry color charge. Qualitatively, this is easy
to understand: Consider for example a “red” quark qb at the origin. The quark can emit
a gluon, for example qr → qb + Gb̄r. Then a probe would not see the blue color charge
concentrated at the origin, but somewhat moved out into the surrounding gluon cloud.
Hence there is an anti-screening effect, because radiating gluons dilute the charge. This did
not happen with photons in QED, since photons have zero (electric) charge. The higher
the energy |q2|, the more gluon radiation, and the more charge dilution occurs. In the
high-energy limit, the charge is completely diluted, and the point-like quark is effectively
colorless and therefore effectively free!

Asymptotic Freedom. This property is called asymptotic freedom, and it was first
observed experimentally in the scattering of electrons from quarks in hadrons, before the
strong force was explained by the QCD theory. But when it was later discovered that
asymptotic freedom comes out of the QCD theory, this was a major factor that led to the
acceptance of QCD as the correct theory of the strong force, and in particular of the idea
that quarks are real particles and not mere theoretical constructs.

The result of combining the quark and gluon loop diagrams is the replacement (com-
pared to the QED case)

α(µ2)
3π → − α3(µ2)

4π

(
11− 2

3 nf

)
, (11.35)

where nf is the total number of quark flavors. The renormalization of the QCD coupling
constant is therefore given by

α3(q2) = α3(µ2)
1− α3(µ2)

12π (33− 2nf) log
(
µ2

−q2

) . (11.36)

There is a running of the coupling constant, as for QED. The formula is consistent with
decay and collider experiments at various energies. Unlike in QED, as long as 33− 2nf is
positive (recall that presumably nf = 6), when |q2| increases, the denominator increases,
and α3(q2) decreases. This is the behavior of asymptotic freedom: At large energies, the
coupling becomes small.

Confinement. At the other end of the spectrum, for small |q2|, the two terms in the
denominator have opposite signs, so α3 becomes large. At some value −q2 = Λ2

QCD, the
denominator can vanish, so the QCD force apparently becomes infinitely strong. This is of
course unphysical, and shows that our approximations are not valid in this regime. Still,
the QCD coupling will become very large at this energy scale. Solving for ΛQCD,

log µ2

Λ2
QCD

= 12π
α3(µ2)(33− 2nf)

⇒ ΛQCD = µ exp
(
− 6π
α3(µ2)(33− 2nf)

)
. (11.37)

Suppose at some large µ2, for example µ = 10 GeV, that α3 ≈ 0.2 (this is roughly correct)
and nf = 5 (the top quark is too heavy to contribute at this energy). Then we can infer
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from the above formula:

ΛQCD ≈ exp
(
− 19

23/5

)
· 10 GeV ≈ 180 MeV . (11.38)

One can therefore expect that QCD becomes very strong at a scale of a few times ΛQCD.
In this strongly-coupled regime, all colored particles will form color-neutral bound states.
Hence all quarks and gluons have to become bound into colorless hadrons at this scale.
This is called color confinement, and is exactly what we observe (protons and neutrons
have energies of ≈1 GeV).

Comparison of Couplings. We can sketch the values of the three couplings as functions
of the momentum transfer |q2|:

(11.39)

We saw that α increases with |q2|, and α3 decreases. The result for α2 is similar to α3:
The gauge boson loops dominate because the electroweak charge of the W bosons is larger
than that of the fermions. The result is the same as for α3 (11.36), with the number 33
replaced by a slightly smaller number.

As becomes clear from the preceding discussion, all forces associated with non-Abelian
gauge symmetries will be asymptotically free at high energies, but are strongly coupled at
low energies. Forces with larger gauge symmetry groups will be more strongly coupled than
forces with smaller gauge groups. Forces arising from an Abelian U(1) gauge symmetry
are weak at low energies, and therefore not confining. This is the reason that only the
electromagnetic force is weak and long-ranged at low energies, whereas the weak and
strong forces are very short-ranged due to their confining nature. The behavior sketched
above suggests that the three forces have similar strengths at large |q2| than at the more
familiar, lower values of |q2|.

11.6 Quark Mixing Angles
Eigenstates. There is one ingredient to the Standard Model Lagrangian that we did not
incorporate yet. Notice that, with the Lagrangian that we have written so far, the heavy
down-type quarks (strange and bottom) are stable! They do not couple to any lighter
quarks, and hence have no decay channels. This is not in accordance with observations.
The reason for this situation is an implicit assumption that we made: We assumed that the
quark flavors that form the components of the left-handed SU(2)W doublets are identical
to the quark states of definite mass. In other words, we assumed that the eigenstates of
the electroweak Hamiltonian are at the same time eigenstates of the (massive) kinetic
Hamiltonian. We have no reason to make that assumption, and in fact it is wrong.
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Cabibbo Angle. First suppose that there are only two families of quarks. Denote by u,
d, c, and s the mass eigenstates, that is the free states with definite energies. The charged
current we wrote earlier that couples to the W± bosons can then be written as

Jµch =
(
ū c̄

)
γµPL

(
d
s

)
= ūγµPLd+ c̄γµPLs , (11.40)

where we have used row and column vectors in flavor space, and we have used the mass
eigenstates. But in fact the weak eigenstates (eigenstates of hypercharge Y and isospin
T3) could be different from the mass eigenstates (in fact they are). So in the current, we
should replace d and s by d′ and s′, where q′ are the weak eigenstates. The new eigenstates
can be written as linear combinations of the old,(

d′

s′

)
L

= V

(
d
s

)
L
, (11.41)

where V is a 2× 2 unitary matrix. Every such matrix can be written in terms of three
real angles θ, α, and γ as

V =
(

cos θ eiα sin θ eiγ

− sin θ e−iγ cos θ e−iα

)
. (11.42)

The angles γ and α can be absorbed into the definitions of the quark states:

d′ → e−iαd′ , s′ → eiγs′ , s→ e−i(γ−α)s . (11.43)

Then the transformation is
V =

(
cos θ sin θ
− sin θ cos θ

)
, (11.44)

and the charged current that we should have used from the beginning becomes

Jµch =
(
ū c̄

)
γµPL

(
d′

s′

)
=
(
ū c̄

)
γµPLV

(
d
s

)
= ūγµPLd cos θ + ūγµPLs sin θ − c̄γµPLd sin θ + c̄γµPLs cos θ . (11.45)

There are two new terms, both multiplied by sin θ, and the old terms are reduced by a
factor cos θ. The angle θ is called the Cabibbo angle, its experimental value is θ ≈ 13◦. If
θ was zero, the s quark would be stable. Now, with non-zero θ, it can decay to a u quark
by emitting a W−, via the second term in the current. The electroweak vertices are now

(11.46)
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In this computation, we only rotated the down-type quarks. This is in fact the most
general rotation: Had we also rotated the up-type quarks, the current would have been

Jµch =
(
ū c̄

)
V †upγ

µPLVdown

(
d
s

)
. (11.47)

But the product of the two rotations V †upVdown is again a rotation, so we can replace it by
a single rotation V that only acts on the down-type quarks.

Next, let us check what happens to the neutral current that couples to the Z boson. It
has the form

Jµneu =
∑

f=u,d,c,s

(
f̄Lγ

µ[T3 −Q sin2 θW]fL + f̄Rγ
µ[0−Q sin2 θW]fR

)
. (11.48)

The down-type quarks that we rotate have identical charges T3 and Q. In other words,
the square brackets are proportional to the identity matrix in (d s) space. Therefore the
rotation V does not change the neutral current at all: The neutral current is diagonal
both in mass eigenstates and in weak eigenstates.

This observation has an important consequence: There is no interaction vertex of the
form s̄dX (where X could be any particle). Therefore, decays involving s → d, called
flavor-changing neutral currents are much less common than s → u (charged) decays:
An s can only turn to a d through some non-trivial intermediate state. Flavor-changing
neutral currents are interesting since they are possible probes of new interactions.

CKM Matrix. We can generalize these results to all three quark families. Including all
quarks, the charged current becomes

Jµch =
(
ū c̄ t̄

)
γµPLV

ds
b

 , (11.49)

where V is now a 3× 3 unitary matrix. Such a matrix in general has 9 real parameters.
We can re-define the phases of five quarks (an overall phase of all quarks does not change
anything), so 4 parameters remain. An orthogonal matrix describing real 3× 3 rotations
has only 3 real parameters, so one parameter of V could still be a complex phase.

The matrix V is called the Cabibbo–Kobayashi–Maskawa (CKM) matrix. Its entries, or
rather their magnitudes, all have been measured, they are

Vmag =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

0.974 0.225 0.0035
0.225 0.973 0.04
0.009 0.04 0.999

 . (11.50)

One can see that transition from one family to the next (along the mass scale) are small,
and transitions between the lightest and the heaviest family are very small.

The real matrix Vmag accounts for three of the four parameters of the full CKM matrix
V . The fourth parameter is a complex phase. It can enter in various ways, as it can be
shifted around by re-defining the quark phases. The common way to include it is to split
the matrix V into three subsequent Euler rotations,

V = V23(θ23) · V13(θ13) · V12(θ12) (11.51)
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and to modify the rotation V13 by a complex phase eiδ:

V13 →

 cos θ13 0 sin θ13 e−iδ

0 1 0
− sin θ13 eiδ 0 cos θ13

 , (11.52)

where θ13 is a real angle, and δ is the phase. δ is measured to be δ = 1.20(8) radians,
which is large. This non-zero phase means that terms ∼WµJ

µ
ch can be complex, which

means that the theory will not be invariant under time reversal! By CPT symmetry, time
reversal is equivalent to a CP transformation (charge conjugation and parity), hence the
non-zero phase δ is important for understanding CP violation, as we shall see below.

Due to the non-trivial CKM matrix, also b quarks can decay: One of the terms in the
current is

c̄γµPLVcbb , (11.53)

hence the bottom quark can decay into a charm quark and a W boson (which in turn
decays into quark or lepton pairs):

(11.54)

Since Vcb ≈ 0.04 is small, the bottom quark is relatively long-lived, considering its mass.
For its width, one finds

Γb

Γτ
≈ 0.4 , (11.55)

so the b quark lives about 2.5 times longer than the tau lepton. This lifetime is long
enough to observe the bottom quark directly, by the separation of production and decay
vertices in the detector.

Lepton Mixing. We could similarly rotate the weak lepton eigenstates relatively to the
lepton mass eigenstates. However, assuming that all neutrinos are massless, such a rotation
would make no difference. In the case of quarks, we chose to rotate the three down-type
quarks, but we could as well have rotated the up-type quarks instead. For leptons, this
would mean to rotate the neutrinos among each other. But we can anyhow not tell the
neutrinos apart by their mass. In other words, in the three-dimensional neutrino state
space, we can pick the neutrino mass eigenstates arbitrarily. By definition, we just use the
weak eigenstates as the mass eigenstates.

11.7 CP Violation
CP Symmetry. Many physical phenomena are invariant under parity transformations P
that invert all spatial coordinates, x→ −x. By now, we understand well that the Standard
Model is not parity invariant: The parity transformation exchanges left-handed and right-
handed spinors. The weak interactions couple left-handed and right-handed fermions
differently, so it manifestly breaks parity symmetry.
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However, we can combine parity with charge conjugation C, which turns all particles
into their anti-particles. C by itself is not a symmetry of the Standard Model, as the
weak interactions couple left-handed fermions differently than left-handed anti-fermions.
However, the combined CP transformation turns left-handed fermions into right-handed
anti-fermions, and these do appear symmetrically in the weak interaction Lagrangian, so
the weak interactions are symmetric under CP transformations. In the 1950’s, it was
proposed that CP-symmetry could be a true symmetry of fundamental physics.

CP Violation. In 1964, Cronin and Fitch observed that CP symmetry is broken
(violated) in the process of neutral kaon decay (neutral kaons K0 are mesons consisting of
a down and a strange quark). This was a completely unexpected surprise, and opened
the door to questions that are still central to particle physics and cosmology today. The
discovery was awarded with the 1980 Nobel Prize.

To understand how CP violation arises from the Standard Model, we recall that the
combination of charge conjugation, parity, and time reversal (CPT) is a true symmetry
for all quantum field theories. Hence a violation of CP is equivalent to a violation of time
reversal T. Quantum mechanically, time reversal transforms the Hamiltonian as

H → THT−1 . (11.56)

Hence time reversal symmetry requires

H
!= THT−1 . (11.57)

In quantum theory, the time reversal operator is an anti-unitary operator: T = UK,
where U is unitary, and K is the complex conjugation operator. This can be understood
by considering the canonical commutator [x, p] = i~. Time reversal does not change
coordinates x, that is TxT−1 = x, but it reverses momenta p, that is TpT−1 = −p.
Therefore, T must be anti-unitary, that is T iT−1 = −i.

As a result, the Hamiltonian H can only be time-reversal invariant when it is real.
Conversely, a complex Hamiltonian cannot be time-reversal invariant, THT−1 6= H, and
therefore breaks CP symmetry. We saw above that the CKM matrix V that enters the
charged current via (

ū c̄ t̄
)
γµPLV

ds
b

 (11.58)

is indeed complex, due to the non-zero phase δ. Hence the Standard Model indeed
incorporates CP violation. Specifically, CP symmetry is violated by interactions between
charged quark currents and W± bosons.

Neutral Kaon Decay. CP violation has been observed in decays of kaons and of b
quarks. There are two neutral kaon states, K0 = (ds̄) and its anti-particle K̄0 = (d̄s). It
is more useful to consider the CP eigenstates

KS = K0 + K̄0 , KL = K0 − K̄0 . (11.59)
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The state KS is even under CP transformations, while KL is odd. The most common
decay mode for neutral kaons is K → ππ to two pions. For example:

(11.60)

The ππ final state is an even CP eigenstate. It could be π0π0, or π+π−, both are even under
CP transformations. Assuming that CP-symmetry is respected, the KS state can decay
into ππ, but KL cannot. Since all other decay modes have much smaller widths, the KL
state has a much longer lifetime than the KS state (the subscript L stands for “long-lived”).
This is indeed observed, showing that CP is at least approximately a symmetry.

To study a possible CP violation, one can compare two decay channels that are CP
conjugates of each other. The most common are the semi-leptonic decays

(11.61)

If CP-symmetry is preserved, the two decays should occur with identical probabilities.
Measuring the decay rates for these two channels gives

Γ (KL → π−e+νe)− Γ (KL → π+e−ν̄e)
Γ (KL → π−e+νe) + Γ (KL → π+e−ν̄e)

= 0.003 33(14) . (11.62)

Thus one observes indeed a small CP violation. The violation is small, but clearly non-zero.

11.8 Parameters of the Standard Model
With the quark mixing matrix, our formulation of the Standard Model is truly complete.
To conclude its description, we list its free parameters, whose values have to be measured
and used as an input to the model, in Table 1. There are 19 such parameters in total.
Instead of the electroweak couplings g1 and g2, one could also use the electron charge e
and the electroweak mixing angle θW, via the relations

g1 = e

cos θW
, g2 = e

sin θW
. (11.63)
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Symbol Description Value
me, mµ, mτ Electron, muon, tau masses 511 keV, 105.7 MeV, 1.777 GeV
mu, mc, mt Up, charm, top quark masses 2.16 MeV, 1.27 GeV, 173 GeV
md, ms, mb Down, strange, bottom quark masses 4.67 MeV, 93 MeV, 4.18 GeV
θ12 CKM 12-mixing (Cabibbo) angle 13.1◦
θ23 CKM 23-mixing angle 2.4◦
θ13 CKM 13-mixing angle 0.2◦
δ CKM phase 0.995
g1 or g′ U(1) gauge coupling 0.357 at µ = mZ
g2 or g SU(2) gauge coupling 0.652 at µ = mZ
g3 or gs SU(3) gauge coupling 1.221 at µ = mZ
v Higgs vacuum expectation value 246 GeV
mh Higgs mass 125.09(24) GeV
θQCD QCD vacuum angle 0

Table 1: The 19 unfixed parameters of the Standard Model, whose values have
to be determined experimentally, and used as an input to the theory.

Instead of the Higgs field vacuum expectation value v and Higgs boson mass mh, one could
also use the two parameters λ and µ in the Higgs potential:

m2
h = −2µ2 , v2 = −µ

2

λ
. (11.64)

The masses of the W and Z bosons are given by

mW = v g2

2 , mZ = mW

cos θW
. (11.65)

The only parameter we have not discussed yet is the QCD vacuum angle. It is the
parameter of a hypothetical term in the QCD Lagrangian that would be allowed by gauge
invariance, but is apparently absent.

12 Beyond the Standard Model
To round off this course, let us briefly touch on some subjects that go beyond the Standard
Model. The Standard Model is a very successful theory, whose predictions agree with
essentially all experimental particle physics data to high precision. Nevertheless, there
are some open questions and puzzles which indicate that the current formulation of the
Standard Model, as a theory of particle physics (excluding gravity), might not be complete.

12.1 Some Directions
In the following, we will consider some questions or puzzles the Standard Model leaves
open, and also some possible modifications or extensions of the Standard Model that could
address these questions.
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A More Fundamental Theory? Looking at the Standard Model, perhaps the most
obvious question is: What fixes the various parameters of the model? Is there some
underlying principle that explains the specific values we observe? Also, what fixes the
particle content? Why are there three families of quarks and leptons, not more (or fewer)?
Why is the gauge group U(1)× SU(2)× SU(3)? Stepping back even further, one could
ask: Why does the universe have 3 + 1 dimensions?

Some of these questions could be addressed by a more fundamental theory of particle
physics, from which the Standard Model would arise as an effective low-energy description.
The prevalent candidate for such a theory is string theory, which has almost no input
parameters, and which, at least at a qualitative level, provides mechanisms to determine
some properties and parameters of the Standard Model.

Existence of Matter. Some of the input to the Standard Model is constrained by
consistency conditions, for example from cosmology. For instance, one fundamental
question of cosmology is: Why is there more matter than anti-matter in the observed
universe? At first sight, the Standard Model treats matter and anti-matter symmetrically.
But in fact the theory does admit non-perturbative processes that break the matter
anti-matter symmetry, and favor the creation of matter over anti-matter under certain
conditions. Such processes can create an asymmetry in the matter anti-matter balance
in the early universe, such that the matter density is slightly larger than the anti-matter
density, by a relative factor of 1 + 10−10. As the universe expanded and cooled, most of
the matter and anti-matter annihilated, leaving only the small imbalance as the remaining
matter in today’s universe.

The process of matter generation is called baryogenesis/leptogenesis. The point to make
for the Standard Model is that the processes that create the matter anti-matter asymmetry
crucially require that CP symmetry is broken. We have seen that the electroweak theory
indeed breaks CP symmetry, through the complex phase in the CKM matrix. But to
incorporate this complex phase, the matrix has to be at least three-dimensional. So within
the current models of particle physics and cosmology, the existence of matter requires that
there are at least three families of quarks and leptons.

Two very concrete puzzles raised by the Standard Model are the strong CP problem and
the hierarchy problem.

Strong CP Problem. We have seen that the electroweak theory does not preserve
CP symmetry (due to the complex CKM matrix), and that the broken CP symmetry is
necessary to explain the matter content of the universe. But the theory of the strong force
(QCD), as it stands, preserves CP symmetry. This is puzzling for the following reason:
One could include a term

θQCDGµνG̃
µν , G̃µν := εµνρσG

ρσ (12.1)

in the QCD Lagrangian, where G̃ is the dual of the QCD field strength tensor. Such a
term would not preserve CP symmetry. Since it is gauge-invariant and Lorentz-invariant,
nothing prevents its presence in the Lagrangian. In fact it is the only term compatible with
gauge and Lorentz symmetry that is not present in the Lagrangian. But for some unknown
reason, nature chose to set θQCD = 0. The current experimental bound is θ < 10−10

(from the vanishing of the neutron electric dipole moment). The parameter θQCD could
have taken any generic value. Among all possibilities, only the single value θQCD = 0
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preserves CP symmetry, and this is the actual value θQCD takes. Such a situation is
called a fine-tuning problem: θQCD is precisely tuned (to many digits) to a very specific
(non-generic) value.

One long-standing proposal for the resolution of the strong CP problem is Peccei-Quinn
theory (formulated in 1977), which explains the value θQCD = 0 by introducing a new
complex scalar field a, with a coupling

∼ aGµνG̃
µν . (12.2)

The resulting theory is invariant under a global U(1) symmetry, with the effective potential
for a given by the above interaction term. However, Peccei and Quinn showed that the
vacuum expectation value (VEV) of a is

a ∼ θ , (12.3)

such that the CP-violating terms GµνG̃
µν cancel each other, naturally leading to the

observed effective value θQCD = 0. The non-trivial VEV of a spontaneously breaks the
U(1) symmetry. The excitations of the field a around this vacuum lead to a new particle
called the axion. This new particle is not exactly massless, but astrophysical constraints
imply that its mass is very small,

ma ≤ 10−5 eV . (12.4)

In fact, the axion is one candidate for the dark matter in the universe, since it is very light
and very weakly coupled.

Hierarchy Problem. The hierarchy problem is a problem of energy or mass scales:
When one includes quantum corrections to the mass of the Higgs boson, their contributions
will be large, and will raise the Higgs mass by many orders of magnitude, presumably all
the way to the next physically meaningful energy scale. Something similar would happen
to the W and Z masses, and also to the fermion masses. The only way to prevent this is an
incredible fine-tuning that leads to cancellations between almost all quantum corrections
and the bare mass (that stands in the Lagrangian).

The question can be rephrased to: Why is there such a huge gap between the energy
scale of the electroweak theory (∼100 GeV) and the next-higher physically relevant energy
scale. Staying within the Standard Model, this next-higher scale would be gravity, whose
energy scale is the Planck mass

MPl =
√
~c/G ≈ 1.2 · 1019 GeV , (12.5)

which is gigantic. Including possible beyond-the-standard-model physics, the next-higher
energy scale could also be the grand unification scale (see below), or the mass scale of
(hypothetical) heavy neutrinos, which are still much higher than the electroweak scale. The
huge gap between the energy scales is equivalent to the huge gap between the strengths
of the electroweak forces and the gravitational force: Defining the gravitational coupling
constant αG in a similar way as the other coupling constants, one finds

αG = Gm2
e

~c
= m2

e
M2

Pl
≈ 1.75 · 10−45 , (12.6)

which is 43 orders of magnitude smaller than α2 ≈ 1/30.
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Supersymmetry. There are several candidate solutions of the hierarchy problem. One
is supersymmetry, which is a symmetry that relates bosons and fermions, and thereby
associates a fermionic superpartner to each boson, and conversely a bosonic superpartner
to each fermion. Due to the symmetry, the quantum corrections from fermion loops and
boson loops have the same magnitude, but opposite sign, and therefore cancel each other.
This would provide a mechanism to stabilize the tiny Higgs mass (compared to the gravity
scale) without any fine-tuning.

Extra Dimensions. Another possible resolution would be extra spacetime dimensions
that are compact (have small extent), which would allow gravity to be much stronger at
microscopic scales, but still be weak at everyday scales (as observed). The mechanism is
the following: The total gravitational flux through a closed surface C surrounding a mass
m in d dimensions is ∫

C
g · dA = −Sd−2Gdm, (12.7)

where Sd−2 is the surface area of a (d− 2)-dimensional unit sphere, and Gd is Newton’s
constant in d dimensions, which is defined by this equation. Now imagine a d = 4 + n
dimensional spacetime, where n dimensions are compactified in an n-dimensional volume
Vn = Ln. L is the size of the extra dimensions. At small distances r < L, the magnitude
of the gravitational field is the total flux divided by the surface area Ar = Sd−2r

d−2 of a
sphere of radius r,

|g| = Sd−2Gdm

Ar
= Gdm

rd−2 , (12.8)

which is just the usual gravitational field of a point mass. But at distances r � L,
the flux has fewer dimensions to spread: The flux evenly distributes across a surface at
uniform distance r in four dimensions that covers the entire volume Vn of the compactified
dimensions. Such a surface has area 4πr2Vn = 4πr2Ln, and therefore

|g| = Sn+2G4+nm

4πr2Ln
= G4m

r2 . (12.9)

We have equated the result with the familiar gravity law in four dimensions. The four-
dimensional Newton constant G4 is now effective, and related to the more fundamental
Newton constant in d dimensions via

G4

Gd

= Sn+2

4πLn . (12.10)

To convert this to energies, note that G4 has dimension 1/mass2, whereas G4+n has
dimension 1/mass2+n. In natural units, we therefore have

G4 = 1
M2

Pl,4
, G4+n = 1

M2+n
Pl,4+n

, (12.11)

where MPl,4+n is the fundamental Planck mass in d = 4 + n dimensions, and MPl,4 is the
resulting effective Planck mass in four dimensions. We can therefore relate back the known
four-dimensional MPl,4 to a more fundamental value by extra dimensions of appropriate
size L. If we want the fundamental Planck mass MPl,4+n to be close to the weak scale, e. g.
MPl,4+n = 1000 GeV, we need (neglecting the numerical constants)

Ln =
M2

Pl,4

M2+n
Pl,4+n

≈ (1019 GeV)2

(103 GeV)2+n ≈ 2n · 1032−19n mn , (12.12)
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where we have used that 2 GeV ≈ 1016 m−1 in natural units. For some interesting values
of n, this gives

L ≈


2 · 1013 m n = 1 ,
2 mm n = 2 ,
10 nm n = 3 ,
40 fm n = 6 .

(12.13)

An extra dimension of 1013 m would be noticeable astronomically, but extra dimensions of
sub-millimeter size are within experimental bounds. For comparison, the proton size is
≈1 fm.

Both supersymmetry and extra dimensions are natural in string theory. The upper
bound on the number of extra dimensions in superstring theory is n = 6.

Dark Matter. Based on astronomical observations of gravitational effects, for example
in galaxies, about 25 % of the mass-energy density of the universe consists of dark matter,
which does not emit any form of visible radiation. There seems to be no dark matter
candidate in the Standard Model. Even though this is not completely certain, it is
motivation enough to look for Standard Model extensions that include dark matter
candidates. Dark matter might consist at least partly of small black holes. Also some
form of quark matter is not entirely excluded. Other candidates are the axions of the
Peccei–Quinn theory, or heavy neutrinos.

Grand Unification. One way to address some of the questions raised above are grand
unified theories (GUTs). These assume that the weak and strong gauge groups U(1),
SU(2)W, and SU(3) are unified into a bigger gauge group. The smallest simple Lie group
that contains the Standard Model gauge groups is SU(5). Other candidates are SO(10), or
E6. Such a larger gauge group would mean that there exist further gauge bosons, which can
convert quarks into leptons and vice versa. To make this consistent with our observations,
this larger symmetry group must be spontaneously broken to the U(1)× SU(2)W × SU(3)
that we observe.

We have seen that the three coupling constants “run” with the energy scale: The
non-Abelian gauge couplings decrease at higher energies, while the U(1) electromagnetic
coupling constant increases. If the gauge groups are unified in a single SU(5) group, then
there is only a single coupling constant, and not several different coupling constants, so
the couplings should approach the same value at some energy scale, called the GUT scale,
or grand unification energy ΛGUT. Indeed, perturbative computations show that the three
coupling constants of the Standard Model nearly, but not quite, meet at the same point at

125



an energy scale of ΛGUT ≈ 1016 GeV:

(12.14)

If nature is indeed described by a GUT, then this would be the energy scale at which the
unified gauge symmetry is broken to the residual U(1)× SU(2)W × SU(3) that we observe.
All GUTs modify the running of the couplings by additional particles that can run in
the quantum loop corrections. In some GUTs, in particular the supersymmetric SU(5)
GUT, the couplings in fact meet at a single point much more accurately. This non-trivial
result could be a coincidence, but can also be taken as an indication that our world is
indeed supersymmetric at some high energy scale. This is especially encouraging since
supersymmetry can also solve the hierarchy problem by stabilizing the Higgs mass against
large quantum corrections.

12.2 Neutrino Masses
So far, we have treated neutrinos as massless particles. In the Standard Model, neutrinos
are the only massless fermions. The reason is that there are no right-handed neutrinos.

Dirac Mass. Recall that for all other fermions, we introduced interaction terms

gf̄LφfR (12.15)

with the Higgs field φ. Such terms become mass terms mf̄LfR when the Higgs field acquires
a vacuum expectation value. A mass term of this form is called a Dirac mass, since the
fermion spinor f is a Dirac spinor. Such mass terms evidently require the existence of a
right-handed component fR.

Right-Handed Neutrinos. Right-handed neutrinos have never been observed, so we
might assume that they do not exist. One should be careful though: If right-handed
SU(2)W singlet neutrinos do exist, they are difficult to produce and to detect, since they
would not interact with W± bosons (only SU(2)W doublets do), not with Z bosons or
photons (both T3 and Q would be zero), and not with gluons. If right-handed Dirac
neutrinos do exist (and we just have not observed them yet), a Dirac mass term would be
possible.
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Majorana Mass. But even if no right-handed neutrinos exist, there is another possibility
for a mass term, one that we did not discuss so far. Namely, neutrinos could be by Majorana
fermions, which are fermions that are their own anti-particles. This is only possible for
neutrinos, since all other fermions have non-zero charges and therefore cannot be their
own anti-particles. Majorana fermions are described by Majorana spinors, which are
four-component Dirac spinors ψ that satisfy an extra condition

ψc = ψ , (12.16)

where ψc is the charge-conjugate spinor, defined by

ψc = Cψ∗ , (12.17)

where C is a 4× 4 matrix that satisfies

C†C = 1 and C†γµC = −(γµ)∗ . (12.18)

This definition ensures that ψc satisfies the Dirac equation provided ψ does, and transforms
in the same way under Lorentz transformations as ψ does. Due to the Majorana condition
ψc = ψ, Majorana spinors have only two degrees of freedom. They describe fermions
that are their own anti-particles. Recall that all Dirac spinors can be split into two
two-component (left-handed and right-handed) Weyl spinors,

ψ =
(
ψL
ψR

)
. (12.19)

For Majorana spinors, the Majorana condition implies that the right-handed component
equals the charge-conjugate of the left-handed component, and vice versa,

ψ = ψc =
(
ψL
ψR

)
=
(
ψL
ψc

L

)
=
(
ψc

R
ψR

)
(12.20)

A Majorana spinor can therefore describe a left-handed neutrino νL and its right-handed
anti-neutrino partner νR = νc

L. In particular, one can write a Lorentz-invariant mass term

mν̄Lν
c
L (12.21)

that does not involve right-handed neutrinos or left-handed anti-neutrinos. At present, it
is experimentally not ruled out that neutrinos are indeed Majorana fermions.

We see that one can always write neutrino mass terms, whether right-handed neutrinos
exist or not. And in quantum field theory, any interaction term that can be written (i. e.
that is not forbidden by symmetries), will have to be added to the Lagrangian from quantum
corrections at higher orders in the perturbative expansion. Hence from a quantum field
theoretical viewpoint, there is no reason or principle that sets neutrino masses to zero.

Neutrino Oscillations. Suppose that some or all neutrinos get non-zero masses by
some mechanism. Then, as for quarks, there is no reason to assume that the weak lepton
eigenstates are the same as the mass eigenstates. For simplicity, consider only two families
of leptons. We label the weak eigenstates as νe and νµ, and the mass eigenstates as ν1 and
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ν2. The weak eigenstates are some linear combinations of the mass eigenstates at time
t = 0, (

νµ(0)
νe(0)

)
=
(

cos(α) sin(α)
− sin(α) cos(α)

)(
ν1(0)
ν2(0)

)
. (12.22)

In a neutrino beam, the mass eigenstates νi are free particles with definite energies Ei,
hence their time evolution is

νi(t) = e−iEitνi(0) . (12.23)

Therefore,
νµ(t) = cos(α)ν1(0)e−iE1t + sin(α)ν2(0)e−iE2t . (12.24)

Expanding νi(0) in terms of νe(0) and νµ(0), this becomes

νµ(t) = e−iE1t cos(α)
(
cos(α)νµ(0)− sin(α)νe(0)

)
+ e−iE2t sin(α)

(
sin(α)νµ(0) + cos(α)νe(0)

)
=
(
e−iE1t cos2(α) + e−iE2t sin2(α)

)
νµ(0)

+ sin(α) cos(α)
(
e−iE2t − e−iE1t

)
νe(0) . (12.25)

Since
E1 =

√
m2

1 + p2 , E2 =
√
m2

2 + p2 , (12.26)

where p is the momentum of the states, we see that E1 6= E2. In this case, a state that
begins as a pure weak eigenstate νµ at time t = 0 has some νe mixed in. The probability
to find the state νe at time t (for example via weak interactions) is

P (νµ → νe) = |〈νe(0)|νµ(t)〉|2

= sin2(α) cos2(α)
∣∣∣e−iE2t − e−iE1t

∣∣∣2
= sin2(2α)

2
[
1− cos

(
(E2 − E1)t

)]
. (12.27)

We see that the probability to find νe in a beam that initially was pure νµ oscillates with
time. This effect is called neutrino oscillation.

Data and PMNS Matrix. The effect of neutrino oscillations has been measured by
several experiments, using neutrinos created in particle colliders, neutrinos from decaying
pions produced by cosmic rays in the atmosphere, and neutrinos emitted by the sun. The
data shows that

m2
2 −m2

1 = 7.6(2) · 10−5 eV2 ,

|m2
3 −m2

2| = 2.3(1) · 10−3 eV2 . (12.28)

So the three neutrinos have different masses, which means that at least two of them must
have non-zero masses!

The mixing of the neutrino flavors can be described by a matrix, similar to the CKM
matrix of the quark flavor mixing. For the leptons, the matrix is called the PMNS matrix,
after Pontecorvo–Maki–Nakagawa–Sakata. Parametrizing it in terms of three Euler angles
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θij and a complex phase δ (like the CKM matrix), the experimental values for the angles
and the phase are

θ12 = 33.6(8)◦ , θ23 = 47(4)◦ , θ13 = 8.54(15)◦ , δ = 234(43)◦ . (12.29)

The non-zero value of δ in particular shows that there is CP violation also in the lepton
sector.

The measurements of neutrino oscillations only give constraints on the differences
of squared masses, hence they do not rule out large but very similar masses. However,
cosmological data sets strong limits on the sum of all three masses. The lighter the
neutrinos, the less likely they get bound in galaxies in the early universe. Cosmic
microwave background and structure formation data implies that∑

i

mνi < 0.2 eV . (12.30)

The data on mass differences show that at least one mass is ≥0.05 eV.

Seesaw Mechanism. Since the neutrino masses are non-zero experimentally, their
masses have to be included in the Standard Model in some way. If right-handed neutrinos
exist, it is natural to include a Dirac mass term

LD = −mDν̄ν = −mD
(
ν̄LνR + ν̄RνL

)
(12.31)

to the Lagrangian, where the Dirac mass mD is the product of a Higgs coupling and the
Higgs vacuum expectation value. The observed neutrino masses imply that mD is many
orders of magnitude smaller than all other lepton masses. That is possible, but seems
unnatural.

Because neutrinos are electrically neutral and form their own anti-particles, we saw
above that they could be Majorana fermions. In this case, the right-handed neutrino and
its anti-partner would form a Majorana spinor (νc

R, νR), and the left-handed neutrino and
its anti-partner would form another, independent Majorana spinor (νL, ν

c
L). Hence one

can add a Majorana mass term LM for only the right-handed neutrino to the Lagrangian,

LM = − 1
2 M

(
ν̄c

RνR + ν̄Rν
c
R

)
. (12.32)

Such a term is independent of the Dirac mass term. A similar Majorana mass term for the
left-handed neutrino is excluded because it would have non-zero hypercharge and hence
would not be gauge invariant. The right-handed neutrino is assumed to be an SU(2)W
isospin singlet, as all other right-handed fermions, and hence its Majorana mass term is
gauge invariant.

Using that ν̄L = ν̄c
R and νR = νc

L, one can write the Dirac mass term as

LD = − 1
2 mD

(
ν̄LνR + ν̄c

Rν
c
L + h. c.

)
(12.33)

The Dirac and Majorana mass terms then combine to

Lν,mass = − 1
2
(
ν̄L ν̄c

R

)( 0 mD
mD M

)(
νc

L
νR

)
+ h. c. (12.34)

129



To find the mass eigenstates, we have to diagonalize the mass matrix, its eigenvalues will
be the measured neutrino masses mν . The eigenvalues satisfy

0 = det
(
−mν mD
mD M −mν

)
= m2

ν −Mmν −m2
D . (12.35)

We know that the measured neutrino masses are small. Assuming that the Dirac mass mD
stems from a Higgs coupling, it is natural to expect that its value is comparable to the
Higgs expectation value v ≈ 250 GeV. In this case, the small neutrino mass is obtained if
M � mD. Then the two eigenvalues are

mlight
ν ≈ m2

D
M

, mheavy
ν ≈M . (12.36)

For example, if mD ≈ 100 GeV, then a neutrino mass of mlight
ν = 0.01 eV requires

M ≈ (100 GeV)2

0.01 eV = 1015 GeV . (12.37)

This is called the seesaw mechanism: AsM goes up,mν goes down. It naturally leads to the
small neutrino masses that we observe, assuming that there is a physically natural energy
scale at ≈1015 GeV. This is near the grand unification scale ΛGUT, which is encouraging.
The neutrino states with mν ≈M are so heavy that we naturally do not observe them.

If the heavy neutrinos have zero hypercharge, zero weak isospin, and zero color charge,
they do not interact with any of the gauge bosons, and are called sterile neutrinos. Such
sterile neutrinos are another candidate for dark matter.

A Numerical Data
Unit conversion factors in natural units where ~ = c = 1:

1 GeV−1 = 6.6 · 10−25 sec = 2 · 10−16 m . (A.1)

Coupling constants:

α = e2

4π ≈
1

137 , α2 := g2
2

4π ≈
1
30 ,

GF = g2
2

4
√

2m2
W

= 1.166 378 7(6) · 10−5 GeV−2 , (A.2)

α3 := g2
3

4π ≈


>1 at �1 GeV
0.3 at ≈1 GeV
0.12 at mZ ≈ 91.2 GeV
�1 at >91.2 GeV

. (A.3)

Higgs vacuum expectation value:

v = 2mW

g2
≈ 250 GeV . (A.4)
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Particles and their masses:

Particles Masses
νe, νµ, ντ mν ≤ 1.2 eV
e−, µ−, τ− me = 511 keV, mµ = 105.7 MeV, mτ = 1.777 GeV
u, c, t mu = 2.16 MeV, mc = 1.27 GeV, mt = 173 GeV
d, s, b md = 4.67 MeV, ms = 93 MeV, mb = 4.18 GeV
W±, Z, γ mW = 80.4 GeV, mZ = 91.2 GeV, mγ < 10−18 eV
h mh = 125.09(24) GeV

(A.5)

Lifetimes / decay widths:

τµ = 1
Γµ

= 2.196 981 1(22) · 10−6 sec ,

Γh ≈ 4 MeV . (A.6)
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