Introduction to Integrability: Syllabus

1 Schedule of Lectures and Exercise Classes

L: Lectures, E: Exercises

April	May	June	July
L1 17.4.2019	E1 07.5.2019	E3 04.6.2019	L12 02.7.2019
L2 23.4.2019	L4 08.5.2019	L8 05.6.2019	L13 03.7.2019
L3 24.4.2019	L5 15.5.2019	L9 18.6.2019	E5 09.7.2019
	E2 21.5.2019	L10 19.6.2019	L14 10.7.2019
	L6 22.5.2019	E4 25.6.2019	
	L7 29.5.2019	L11 26.6.2019	

2 Syllabus

- 0. **Prelude:** What is integrability? Some history. Integrability versus solvability. Where does integrability appear? Some integrable models.
- 1. **Integrable Classical Mechanics:** Hamiltonian mechanics. Integrals of motion. Liouville integrability (phase space structure, quadrature, compact level sets). Comparison of classes (chaos, integrability, super-integrability).
- 2. Structures of Classical Integrability: Lax pair. Classical R-matrix. Spectral parameter. Spectral curve, dynamical divisor, reconstruction.
- 3. Integrable Field Theory: Classical field theory. Korteveg–de Vries equation: Solitons, factorized scattering. Integrability structures. Lax monodromy and Lax scattering. Inverse scattering method (auxiliary linear problem, scattering data, inverse scattering transformation, GLM equation). Spectral curves (Heisenberg magnet, Riemann surface of monodromy matrix, quasi-momentum, periods and moduli, finite-gap construction).
- 4. Integrable Spin Chains: Heisenberg spin chain (boundary conditions, symmetry). Spectrum of the closed chain (direct diagonalization, Bethe equations). Coordinate Bethe ansatz (magnon states, scattering factor, factorized scattering, solution of the infinite chain). Bethe equations (periodicity for closed chains, rapidities). Heisenberg XXX model with higher spin. Bethe ansatz for higher-rank algebras (scattering matrix, nested Bethe ansatz).
- 5. Long Spin Chains: Magnon spectrum (finite M at large L). Ferromagnetic continuum (quasi-momentum, spectral curve).
- 6. Quantum Integrability: Quantum integrability in (1 + 1)-dimensional relativistic field theory (conserved charges of different Lorentz spins implies conservation of individual momenta, factorized scattering and the quantum

Yang–Baxter equation (qYBE)). R-matrix formalism (action on tensor products, qYBE, monodromy matrix, transfer matrix, conserved local charges). Quantum inverse scattering method (algebraic Bethe ansatz, RTT algebra, analytic Bethe ansatz, Baxter equation). Classification of R-matrices.

7. AdS/CFT Integrability: Gauge theory. $\mathcal{N} = 4$ super Yang–Mills theory. AdS/CFT duality. Planar limit. $\lambda - N_c$ diagram. Weak/strong coupling. Spectrum of scaling dimensions. Appearance of integrability in dilatation operator and string sigma model.