Introduction to Integrability
Leibniz University Hannover, Summer 2019

Problem Set 5
Dr. Till Bargheer
Due: 09.07. 2019

5.1. Heisenberg Spin Chain: Direct Diagonalization (4 points)

Consider the Heisenberg spin chain with periodic boundary conditions and Hamiltonian

$$
\begin{equation*}
\mathcal{H}=\sum_{j=1}^{L}\left(\mathcal{I}_{j, j+1}-\mathcal{P}_{j, j+1}\right) \tag{5.1}
\end{equation*}
$$

Compute the spectrum of eigenvalues of \mathcal{H} (energies) by direct diagonalization for the cases specified below. M denotes the number of up spins.
a) Compute the spectrum for a spin chain of length $L=3$ and arbitrary number M of spin flips. How do the eigenstates organize into $\mathfrak{s u}(2)$ multiplets? The generators of $\mathfrak{s u}(2)$ are $Q^{\alpha}=\sum_{i} \sigma_{i}^{\alpha} / 2, \alpha=x, y, z$, and $Q^{ \pm}=Q^{x} \pm i Q^{y}$.
b) Restrict to cyclic states, i. e. identify all states that are equivalent under cyclic permutations of the spin chain sites. Compute the spectrum for the states with $L=4$, $M=2$, and for $L=6, M=2,3$.

5.2. Heisenberg Spin Chain: Bethe Equations (4 points)

The Bethe equations for the $\mathrm{XXX}_{1 / 2}$ Heisenberg spin chain read

$$
\begin{equation*}
\left(\frac{u_{k}+i / 2}{u_{k}-i / 2}\right)^{L}=\prod_{\substack{j=1 \\ j \neq k}}^{M} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i}, \quad k=1, \ldots, M \tag{5.2}
\end{equation*}
$$

Each solution to these equations (such that all finite u_{k} are distinct) defines an eigenstate of the Heisenberg Hamiltonian with M up spins (magnons). The energy E and momentum P are given by

$$
\begin{equation*}
E=\sum_{k=1}^{M}\left(\frac{i}{u_{k}+i / 2}-\frac{i}{u_{k}-i / 2}\right), \quad \mathrm{e}^{i P}=\prod_{k=1}^{M} \frac{u_{k}+i / 2}{u_{k}-i / 2} . \tag{5.3}
\end{equation*}
$$

a) Use the Bethe equations to compute the energy spectrum for $L=3$ and $M \leq 1$. States with $M>L / 2$ are obtained from states with $M \leq L / 2$ by flipping all spins. Compare to the results of problem 5.1a). How are the $\mathfrak{s u}(2)$ multiplets realized?
In the following, restrict to cyclic states, i.e. require $\mathrm{e}^{i P}=1$.
b) Compute the energy spectrum for $L=4, M=2$, and for $L=6, M=2$. Compare to the results of problem 5.1 b).
c) Compute the energy spectrum from the Bethe equations for any L and $M=2$.
d) The solution for $L=6, M=3$ is singular. Show that the regularized rapidities

$$
\begin{equation*}
u_{1}=\frac{i}{2}+\varepsilon+c \varepsilon^{6}, \quad u_{2}=-\frac{i}{2}+\varepsilon, \quad u_{3}=\frac{1-4 u_{1} u_{2}}{4\left(u_{1}+u_{2}\right)}+d(\varepsilon) \tag{5.4}
\end{equation*}
$$

solve the Bethe equations and the condition $\mathrm{e}^{i P}=1$ in the limit $\varepsilon \rightarrow 0$ for a suitable constant c and function $d(\varepsilon)$. Compare to your result of problem 5.1 b$)$.

5.3. Coordinate Bethe Ansatz for the XXZ Spin Chain (4 points)

Consider the Hamiltonian \mathcal{H} of the XXZ spin chain with periodic boundary conditions:

$$
\begin{equation*}
\mathcal{H}=\sum_{j=1}^{L} \mathcal{H}_{j, j+1}, \quad \mathcal{H}_{j, k}=\frac{1}{2}\left[\sigma_{j}^{x} \sigma_{k}^{x}+\sigma_{j}^{y} \sigma_{k}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{k}^{z}-\mathbf{1}_{j} \mathbf{1}_{k}\right)\right], \quad \sigma_{L+1} \equiv \sigma_{1} \tag{5.5}
\end{equation*}
$$

which acts on a spin chain of length L with spins $|\downarrow\rangle=(0,1)^{\top}$ and $|\uparrow\rangle=(1,0)^{\top}$. Here, $\sigma_{j}^{i}, i \in\{x, y, z\}$ are the Pauli matrices acting on the spin state at site j.
a) Consider a general state with a single up spin

$$
\begin{equation*}
\left|\psi_{1}\right\rangle=\sum_{k=1}^{L} f(k)|k\rangle, \quad|k\rangle=|\downarrow \downarrow \ldots \downarrow \downarrow \uparrow \downarrow \downarrow \ldots \downarrow \downarrow\rangle . \tag{5.6}
\end{equation*}
$$

Convert the eigenvalue equation $\mathcal{H}\left|\psi_{1}\right\rangle=e_{1}\left|\psi_{1}\right\rangle$ to a finite difference equation for $f(k)$. Show that the one-magnon ansatz $f(k)=\mathrm{e}^{i p k}$ solves the equation, and that the dispersion relation becomes $e_{1}(p)=2(\cos (p)-\Delta)$.
b) Now consider states with two up spins:

$$
\begin{equation*}
\left|\psi_{2}\right\rangle=\sum_{1 \leq k<\ell \leq L} f(k, \ell)|k, \ell\rangle, \quad|k, \ell\rangle=|\downarrow \ldots \downarrow \uparrow \downarrow \ldots \downarrow \uparrow \downarrow \ldots \downarrow\rangle . \tag{5.7}
\end{equation*}
$$

Starting with the eigenvalue equation $\langle k, \ell| \mathcal{H}\left|\psi_{2}\right\rangle=e_{2} f(k, \ell)$, derive two difference equations for $f(k, \ell)$ by considering the two cases $k+1<\ell$ and $k+1=\ell$. Using the two-magnon ansatz

$$
\begin{equation*}
f(k, \ell)=\mathrm{e}^{i p k+i q \ell}+S(p, q) \mathrm{e}^{i q k+i p \ell} \tag{5.8}
\end{equation*}
$$

show that the dispersion relation is $e_{2}(p, q)=e_{1}(p)+e_{1}(q)$, and that the scattering phase $S(p, q)$ must satisfy

$$
\begin{equation*}
S(p, q)=-\frac{1+\mathrm{e}^{i(p+q)}-2 \Delta \mathrm{e}^{i q}}{1+\mathrm{e}^{i(p+q)}-2 \Delta \mathrm{e}^{i p}} . \tag{5.9}
\end{equation*}
$$

Hint: First compute the action of \mathcal{H} on neighboring spins $|\downarrow \downarrow\rangle,|\uparrow \uparrow\rangle,|\downarrow \uparrow\rangle$, and $|\uparrow \downarrow\rangle$.
c) Express $S(p, q)$ in terms of rapidities u, v, which are related to the momenta p, q via

$$
\begin{equation*}
\mathrm{e}^{i p}=\frac{u+i / 2}{u-i / 2} . \tag{5.10}
\end{equation*}
$$

Taking the limit $\Delta \rightarrow 1$, show that the Bethe equations $\mathrm{e}^{i p_{k} L}=\prod_{j=1, j \neq k}^{M} S\left(p_{j}, p_{k}\right)$ for an M-magnon state become

$$
\begin{equation*}
\left(\frac{u_{k}+i / 2}{u_{k}-i / 2}\right)^{L}=\prod_{\substack{j=1 \\ j \neq k}}^{M} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i} \tag{5.11}
\end{equation*}
$$

