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Due: 09.07.2019
5.1. Heisenberg Spin Chain: Direct Diagonalization (4 points)

Consider the Heisenberg spin chain with periodic boundary conditions and Hamiltonian
L

H=> (Zjj1— Pjj1) - (5.1)
j=1

Compute the spectrum of eigenvalues of H (energies) by direct diagonalization for the
cases specified below. M denotes the number of up spins.

a) Compute the spectrum for a spin chain of length L = 3 and arbitrary number M of
spin flips. How do the eigenstates organize into su(2) multiplets? The generators of

su(2) are Q* =Y., 0%/2, a = z,y,2, and Q* = Q* £iQV.

b) Restrict to cyclic states, i.e. identify all states that are equivalent under cyclic per-
mutations of the spin chain sites. Compute the spectrum for the states with L = 4,
M =2 and for L =6, M = 2,3.

5.2. Heisenberg Spin Chain: Bethe Equations (4 points)
The Bethe equations for the XXX, Heisenberg spin chain read
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Each solution to these equations (such that all finite u; are distinct) defines an eigenstate

of the Heisenberg Hamiltonian with M up spins (magnons). The energy E and momentum
P are given by
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a) Use the Bethe equations to compute the energy spectrum for L = 3 and M < 1.
States with M > L/2 are obtained from states with M < L/2 by flipping all spins.
Compare to the results of problem 5.1a). How are the su(2) multiplets realized?

In the following, restrict to cyclic states, i.e. require e’ = 1.

b) Compute the energy spectrum for L = 4, M = 2, and for L = 6, M = 2. Compare to
the results of problem 5.1b).

c) Compute the energy spectrum from the Bethe equations for any L and M = 2.
d) The solution for L = 6, M = 3 is singular. Show that the regularized rapidities
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solve the Bethe equations and the condition e’ = 1 in the limit € — 0 for a suitable
constant ¢ and function d(e). Compare to your result of problem 5.1b).
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5.3. Coordinate Bethe Ansatz for the XXZ Spin Chain (4 points)
Consider the Hamiltonian ‘H of the XXZ spin chain with periodic boundary conditions:

L
H = Zijj.;.l s Hng = 5 [J;JO'; + O';-JO',ZCI + A(UJZO'Z — 1]1]@)} s Op+1 =01, (55)
j=1

which acts on a spin chain of length L with spins |}) = (0,1)" and [1) = (1,0)T. Here,
051, i € {x,y, z} are the Pauli matrices acting on the spin state at site j.

a) Consider a general state with a single up spin

) =SSR, R = [ W ) (5.6)

Convert the eigenvalue equation H|¢1) = eq]t);) to a finite difference equation for
f(k). Show that the one-magnon ansatz f(k) = e®* solves the equation, and that the
dispersion relation becomes e1(p) = 2(cos(p) — A).

b) Now consider states with two up spins:
k 0
o) = > RO, kO =L ). (5.7)
1<k<(<L

Starting with the eigenvalue equation (k,¢|H|vs) = es f(k, ), derive two difference
equations for f(k,{) by considering the two cases k+ 1 < ¢ and k+ 1 = £. Using the
two-magnon ansatz

f(l{?,g) _ eipk+iq€ + S(p, Q) eiqk+z’p[ ’ (58)

show that the dispersion relation is es(p, q) = e1(p) + e1(q), and that the scattering
phase S(p, q) must satisfy
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S(p.q) = (5.9)

Hint: First compute the action of H on neighboring spins [|]), [11), |[{1), and |1]).
c) Express S(p, q) in terms of rapidities u, v, which are related to the momenta p, ¢ via
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Taking the limit A — 1, show that the Bethe equations e®+f = Hj]\il’#k S(pj, px) for

an M-magnon state become
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