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5.1. Heisenberg Spin Chain: Direct Diagonalization (4 points)

Consider the Heisenberg spin chain with periodic boundary conditions and Hamiltonian

H =
L∑
j=1

(Ij,j+1 − Pj,j+1) . (5.1)

Compute the spectrum of eigenvalues of H (energies) by direct diagonalization for the
cases specified below. M denotes the number of up spins.

a) Compute the spectrum for a spin chain of length L = 3 and arbitrary number M of
spin flips. How do the eigenstates organize into su(2) multiplets? The generators of
su(2) are Qα =

∑
i σ

α
i /2, α = x, y, z, and Q± = Qx ± iQy.

b) Restrict to cyclic states, i. e. identify all states that are equivalent under cyclic per-
mutations of the spin chain sites. Compute the spectrum for the states with L = 4,
M = 2, and for L = 6, M = 2, 3.

5.2. Heisenberg Spin Chain: Bethe Equations (4 points)

The Bethe equations for the XXX1/2 Heisenberg spin chain read(
uk + i/2

uk − i/2

)L
=

M∏
j=1
j 6=k

uk − uj + i

uk − uj − i
, k = 1, . . . ,M . (5.2)

Each solution to these equations (such that all finite uk are distinct) defines an eigenstate
of the Heisenberg Hamiltonian with M up spins (magnons). The energy E and momentum
P are given by

E =
M∑
k=1

(
i

uk + i/2
− i

uk − i/2

)
, eiP =

M∏
k=1

uk + i/2

uk − i/2
. (5.3)

a) Use the Bethe equations to compute the energy spectrum for L = 3 and M ≤ 1.
States with M > L/2 are obtained from states with M ≤ L/2 by flipping all spins.
Compare to the results of problem 5.1 a). How are the su(2) multiplets realized?

In the following, restrict to cyclic states, i. e. require eiP = 1.

b) Compute the energy spectrum for L = 4, M = 2, and for L = 6, M = 2. Compare to
the results of problem 5.1 b).

c) Compute the energy spectrum from the Bethe equations for any L and M = 2.

d) The solution for L = 6, M = 3 is singular. Show that the regularized rapidities

u1 =
i

2
+ ε+ c ε6 , u2 = − i

2
+ ε , u3 =

1− 4u1u2
4(u1 + u2)

+ d(ε) (5.4)

solve the Bethe equations and the condition eiP = 1 in the limit ε→ 0 for a suitable
constant c and function d(ε). Compare to your result of problem 5.1 b).
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5.3. Coordinate Bethe Ansatz for the XXZ Spin Chain (4 points)

Consider the Hamiltonian H of the XXZ spin chain with periodic boundary conditions:

H =
L∑
j=1

Hj,j+1 , Hj,k =
1

2

[
σxj σ

x
k + σyjσ

y
k +∆(σzjσ

z
k − 1j1k)

]
, σL+1 ≡ σ1 , (5.5)

which acts on a spin chain of length L with spins |↓〉 = (0, 1)T and |↑〉 = (1, 0)T. Here,
σij, i ∈ {x, y, z} are the Pauli matrices acting on the spin state at site j.

a) Consider a general state with a single up spin

|ψ1〉 =
L∑
k=1

f(k) |k〉 , |k〉 = |↓↓ . . . ↓↓
k

↑↓↓ . . . ↓↓〉 . (5.6)

Convert the eigenvalue equation H|ψ1〉 = e1|ψ1〉 to a finite difference equation for
f(k). Show that the one-magnon ansatz f(k) = eipk solves the equation, and that the
dispersion relation becomes e1(p) = 2(cos(p)−∆).

b) Now consider states with two up spins:

|ψ2〉 =
∑

1≤k<`≤L

f(k, `) |k, `〉 , |k, `〉 = |↓ . . . ↓
k

↑↓ . . . ↓
`

↑↓ . . . ↓〉 . (5.7)

Starting with the eigenvalue equation 〈k, `|H|ψ2〉 = e2 f(k, `), derive two difference
equations for f(k, `) by considering the two cases k + 1 < ` and k + 1 = `. Using the
two-magnon ansatz

f(k, `) = eipk+iq` + S(p, q) eiqk+ip` , (5.8)

show that the dispersion relation is e2(p, q) = e1(p) + e1(q), and that the scattering
phase S(p, q) must satisfy

S(p, q) = − 1 + ei(p+q) − 2∆ eiq

1 + ei(p+q) − 2∆ eip
. (5.9)

Hint: First compute the action of H on neighboring spins |↓↓〉, |↑↑〉, |↓↑〉, and |↑↓〉.

c) Express S(p, q) in terms of rapidities u, v, which are related to the momenta p, q via

eip =
u+ i/2

u− i/2
. (5.10)

Taking the limit ∆→ 1, show that the Bethe equations eipkL =
∏M

j=1,j 6=k S(pj, pk) for
an M -magnon state become(

uk + i/2

uk − i/2

)L
=

M∏
j=1
j 6=k

uk − uj + i

uk − uj − i
. (5.11)
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