Due: 25.06.2019

→

4.1. Heisenberg Magnet: Circle Solutions (3 points)

The Heisenberg magnet is described by two fields $\vartheta(t, x)$, $\varphi(t, x)$ (altitude and azimuth on the sphere), with equations of motion

$$\dot{\vartheta} = 2\cos(\vartheta)\vartheta'\varphi' + \sin(\vartheta)\varphi'', \qquad \dot{\varphi} = \cos(\vartheta)\varphi'^2 - \frac{\vartheta''}{\sin(\vartheta)}.$$
 (4.1)

The momentum P, energy E, and angular momentum Q are given by

$$P = \int (1 - \cos \vartheta) \varphi' \, \mathrm{d}x \,, \quad E = \frac{1}{2} \int \left(\vartheta'^2 + \sin^2(\vartheta) \varphi'^2 \right) \, \mathrm{d}x \,, \quad Q = \int \cos(\vartheta) \, \mathrm{d}x \,. \tag{4.2}$$

- a) Find the most general solution $\varphi(t, x)$ when $\vartheta(t, x) = \vartheta_0$ is a constant $(0 < \vartheta_0 < \pi)$.
- b) Impose periodic boundary conditions $\varphi(t, x + L) = \varphi(t, x)$. Note that the condition only needs to be satisfied modulo the equivalence $\varphi \equiv \varphi + 2\pi \mathbb{Z}$.
- c) Compute the momentum P, energy E, and angular momentum Q of these solutions.

4.2. Spectral Curve for the Heisenberg Magnet (4 points)

The simplest finite-gap solution of the Heisenberg magnet has a spectral curve with a single branch cut. A suitable ansatz for the quasi-momentum q(u) is

$$q'_{\pm}(u) = \pm \frac{au+b}{u^2\sqrt{u^2+cu+d}} .$$
(4.3)

The \pm labels the two branches of the function, which are connected by a branch cut stretching between two branch points at the zeros of the square root. Let A be a counterclockwise cycle around the branch cut, and B a path going from $u = \infty_{-}$ on the one branch trough the cut and back to $u = \infty_{+}$ on the other branch. Then q'(u) should satisfy

$$\oint_{A} q'_{+}(u) \,\mathrm{d}u = 0 \,, \qquad \frac{1}{2\pi} \int_{B} q'(u) \,\mathrm{d}u = n \in \mathbb{Z} \,, \qquad I = \frac{1}{2\pi i} \oint_{A} u \, q'_{+}(u) \,\mathrm{d}u \,, \qquad (4.4)$$

where I is called the "filling" of the cut. Moreover, the length L, momentum P, energy E, and angular momentum Q appear in series expansions of $q_+(u)$ as

$$u \to 0: \quad q_+(u) = \frac{L}{u} - \frac{P}{2} + \frac{uE}{4} + \mathcal{O}(u^2), \qquad u \to \infty_+: \quad q_+(u) = \frac{Q}{u} + \mathcal{O}(u^{-2}).$$
(4.5)

- a) Express the coefficients a, b, and c in terms of d, L, and I using the A-cycle conditions and series expansions. *Hint:* A-cycle integrals are sums of residues at $u = 0, \infty$.
- b) Integrate q'(u) to q(u), and find d in terms of n and L by the *B*-cycle condition. Fix the integration constant by the vanishing of $q_+(u)$ at $u = \infty$. *Hint:* Compute $(\sqrt{A - 2Bu + Du^2}/u)'$. The square root has different signs on the two branches.
- c) Expand $q_+(u)$ at $u = 0, \infty$, and find expressions for P, Q, and E by matching (4.5). Compare the results to your results of 4.1 c)

4.3. Zamolodchikov–Faddeev Algebra and Sine–Gordon (5 points)

Consider operators $A_i(u)$ that satisfy the commutation relations

$$A_i(u_2)A_j(u_1) = \sum_{k,\ell} S_{ij}^{kl}(u_{12})A_k(u_1)A_\ell(u_2), \qquad u_{12} = u_1 - u_2.$$
(4.6)

For *i* different from *j*, $A_i(u)$ and $A_j(u)$ are independent operators. $A_j(u)$ can be thought of as creating a particle of type (flavor) *j* with rapidity *u*: $A_j(u)|0\rangle = |A_j(u)\rangle$. The scattering factors $S_{ij}^{k\ell}(u)$ are scalar functions of *u* that form the scatterin matrix S(u). Obtain consistency conditions for the matrix S(u) from the commutation relations by

- a) taking the limit $u_{12} \rightarrow 0$.
- b) iterating (4.6) twice. Draw a diagram for the resulting condition.
- c) relating the product $A_i(u_3)A_j(u_2)A_k(u_1)$ back to a sum over $A_r(u_1)A_p(u_2)A_q(u_3)$ by iteratively applying (4.6) in two different ways. Draw a diagram for the resulting condition. Interpret triple products of $A_i(u_k)$ as states of a three-site system, and write the condition as an equation for $S_{12}(u)$ and $S_{23}(u)$, where the indices denote the sites on which the respective matrix acts.

Specialize to a model with particles A and \overline{A} , and three different scattering amplitudes:

$$S_{\rm I}(u) = S_{AA}^{AA}(u) = S_{\bar{A}\bar{A}}^{\bar{A}\bar{A}}(u), \quad S_{\rm T}(u) = S_{A\bar{A}}^{\bar{A}A}(u) = S_{\bar{A}\bar{A}}^{A\bar{A}}(u), \quad S_{\rm R}(u) = S_{\bar{A}\bar{A}}^{\bar{A}\bar{A}}(u) = S_{A\bar{A}}^{A\bar{A}}(u).$$

d) Write the relation (4.6) for all combinations of A and \overline{A} . Show that the conditions from c) with $S_x \equiv S_x(u_{12}), S'_x \equiv S_x(u_{13})$, and $S''_x \equiv S_x(u_{23}), x \in \{I, T, R\}$ amount to

$$S_{\rm I}S'_{\rm T}S''_{\rm R} = S_{\rm T}S'_{\rm I}S''_{\rm R} + S_{\rm R}S'_{\rm R}S''_{\rm T}, \qquad S_{\rm I}S'_{\rm R}S''_{\rm I} = S_{\rm R}S'_{\rm I}S''_{\rm R} + S_{\rm T}S'_{\rm R}S''_{\rm T}, S_{\rm R}S'_{\rm T}S''_{\rm I} = S_{\rm R}S'_{\rm I}S''_{\rm T} + S_{\rm T}S'_{\rm R}S''_{\rm R}.$$
(4.7)

e) Show that the existence of a non-trivial solution to (4.7) requires that the quantity

$$\Delta = \frac{S_{\rm I}^2(u) + S_{\rm T}^2(u) - S_{\rm R}^2(u)}{2S_{\rm I}(u)S_{\rm T}(u)}$$
(4.8)

is independent of u.

Hint: Write (4.7) in matrix form $M \cdot \left(S_{\mathrm{I}}^{\prime\prime}, S_{\mathrm{R}}^{\prime\prime}, S_{\mathrm{T}}^{\prime\prime}\right)^{\mathsf{T}} = 0.$

Remark: This type of system is realized in the Sine–Gordon model with Lagrange density $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 + \frac{m^2}{\beta^2} \cos(\beta \phi)$. In that case, A(u) and $\bar{A}(u)$ are the soliton and anti-soliton solutions, with scattering factors

$$S_{\mathrm{I}}(u) = \sinh\left[\frac{8\pi}{\eta}\left(i\pi - u\right)\right]f(u), \quad S_{\mathrm{T}}(u) = \sinh\left[\frac{8\pi}{\eta}u\right]f(u), \quad S_{\mathrm{R}}(u) = i\sin\left[\frac{8\pi^{2}}{\eta}\right]f(u),$$

and with $\Delta = -\cos(8\pi^2/\eta)$, where $1/\eta = 1/\beta^2 - 1/(8\pi)$.