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4.1. Heisenberg Magnet: Circle Solutions (3 points)

The Heisenberg magnet is described by two fields ϑ(t, x), ϕ(t, x) (altitude and azimuth
on the sphere), with equations of motion

ϑ̇ = 2 cos(ϑ)ϑ′ϕ′ + sin(ϑ)ϕ′′ , ϕ̇ = cos(ϑ)ϕ′2 − ϑ′′

sin(ϑ)
. (4.1)

The momentum P , energy E, and angular momentum Q are given by

P =

∫
(1− cosϑ)ϕ′ dx , E =

1

2

∫ (
ϑ′2 + sin2(ϑ)ϕ′2

)
dx , Q =

∫
cos(ϑ) dx . (4.2)

a) Find the most general solution ϕ(t, x) when ϑ(t, x) = ϑ0 is a constant (0 < ϑ0 < π).

b) Impose periodic boundary conditions ϕ(t, x + L) = ϕ(t, x). Note that the condition
only needs to be satisfied modulo the equivalence ϕ ≡ ϕ+ 2πZ.

c) Compute the momentum P , energy E, and angular momentum Q of these solutions.

4.2. Spectral Curve for the Heisenberg Magnet (4 points)

The simplest finite-gap solution of the Heisenberg magnet has a spectral curve with a
single branch cut. A suitable ansatz for the quasi-momentum q(u) is

q′±(u) = ± au+ b

u2
√
u2 + cu+ d

. (4.3)

The ± labels the two branches of the function, which are connected by a branch cut
stretching between two branch points at the zeros of the square root. Let A be a coun-
terclockwise cycle around the branch cut, and B a path going from u = ∞− on the one
branch trough the cut and back to u =∞+ on the other branch. Then q′(u) should satisfy∮

A

q′+(u) du = 0 ,
1

2π

∫
B

q′(u) du = n ∈ Z , I =
1

2πi

∮
A

u q′+(u) du , (4.4)

where I is called the “filling” of the cut. Moreover, the length L, momentum P , energy
E, and angular momentum Q appear in series expansions of q+(u) as

u→ 0 : q+(u) =
L

u
− P

2
+
uE

4
+O(u2) , u→∞+ : q+(u) =

Q

u
+O(u−2) . (4.5)

a) Express the coefficients a, b, and c in terms of d, L, and I using the A-cycle conditions
and series expansions. Hint: A-cycle integrals are sums of residues at u = 0,∞.

b) Integrate q′(u) to q(u), and find d in terms of n and L by the B-cycle condition.
Fix the integration constant by the vanishing of q+(u) at u = ∞. Hint: Compute(√

A− 2Bu+Du2 /u
)′

. The square root has different signs on the two branches.

c) Expand q+(u) at u = 0,∞, and find expressions for P , Q, and E by matching (4.5).
Compare the results to your results of 4.1 c)

−→
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4.3. Zamolodchikov–Faddeev Algebra and Sine–Gordon (5 points)

Consider operators Ai(u) that satisfy the commutation relations

Ai(u2)Aj(u1) =
∑
k,`

Sklij (u12)Ak(u1)A`(u2) , u12 = u1 − u2 . (4.6)

For i different from j, Ai(u) and Aj(u) are independent operators. Aj(u) can be thought
of as creating a particle of type (flavor) j with rapidity u: Aj(u)|0〉 = |Aj(u)〉. The
scattering factors Sk`ij (u) are scalar functions of u that form the scatterin matrix S(u).

Obtain consistency conditions for the matrix S(u) from the commutation relations by

a) taking the limit u12 → 0.

b) iterating (4.6) twice. Draw a diagram for the resulting condition.

c) relating the product Ai(u3)Aj(u2)Ak(u1) back to a sum over Ar(u1)Ap(u2)Aq(u3) by
iteratively applying (4.6) in two different ways. Draw a diagram for the resulting
condition. Interpret triple products of Ai(uk) as states of a three-site system, and
write the condition as an equation for S12(u) and S23(u), where the indices denote
the sites on which the respective matrix acts.

Specialize to a model with particles A and Ā, and three different scattering amplitudes:

SI(u) = SAAAA(u) = SĀĀĀĀ(u) , ST(u) = SĀAAĀ(u) = SAĀĀA(u) , SR(u) = SĀAĀA(u) = SAĀAĀ(u) .

d) Write the relation (4.6) for all combinations of A and Ā. Show that the conditions
from c) with Sx ≡ Sx(u12), S ′x ≡ Sx(u13), and S ′′x ≡ Sx(u23), x ∈ {I,T,R} amount to

SIS
′
TS
′′
R = STS

′
IS
′′
R + SRS

′
RS
′′
T , SIS

′
RS
′′
I = SRS

′
IS
′′
R + STS

′
RS
′′
T ,

SRS
′
TS
′′
I = SRS

′
IS
′′
T + STS

′
RS
′′
R . (4.7)

e) Show that the existence of a non-trivial solution to (4.7) requires that the quantity

∆ =
S2

I (u) + S2
T(u)− S2

R(u)

2SI(u)ST(u)
(4.8)

is independent of u.

Hint: Write (4.7) in matrix form M ·
(
S ′′I , S

′′
R, S

′′
T

)T
= 0.

Remark: This type of system is realized in the Sine–Gordon model with Lagrange density

L = 1
2

(
∂µφ
)2

+ m2

β2 cos(βφ). In that case, A(u) and Ā(u) are the soliton and anti-soliton
solutions, with scattering factors

SI(u) = sinh

[
8π

η
(iπ − u)

]
f(u) , ST(u) = sinh

[
8π

η
u

]
f(u) , SR(u) = i sin

[
8π2

η

]
f(u) ,

and with ∆ = − cos(8π2/η), where 1/η = 1/β2 − 1/(8π).
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