Introduction to Integrability
Leibniz University Hannover, Summer 2019

Problem Set 4
Dr. Till Bargheer
Due: 25.06.2019

4.1. Heisenberg Magnet: Circle Solutions (3 points)

The Heisenberg magnet is described by two fields $\vartheta(t, x), \varphi(t, x)$ (altitude and azimuth on the sphere), with equations of motion

$$
\begin{equation*}
\dot{\vartheta}=2 \cos (\vartheta) \vartheta^{\prime} \varphi^{\prime}+\sin (\vartheta) \varphi^{\prime \prime}, \quad \dot{\varphi}=\cos (\vartheta) \varphi^{\prime 2}-\frac{\vartheta^{\prime \prime}}{\sin (\vartheta)} . \tag{4.1}
\end{equation*}
$$

The momentum P, energy E, and angular momentum Q are given by

$$
\begin{equation*}
P=\int(1-\cos \vartheta) \varphi^{\prime} \mathrm{d} x, \quad E=\frac{1}{2} \int\left(\vartheta^{\prime 2}+\sin ^{2}(\vartheta) \varphi^{\prime 2}\right) \mathrm{d} x, \quad Q=\int \cos (\vartheta) \mathrm{d} x \tag{4.2}
\end{equation*}
$$

a) Find the most general solution $\varphi(t, x)$ when $\vartheta(t, x)=\vartheta_{0}$ is a constant $\left(0<\vartheta_{0}<\pi\right)$.
b) Impose periodic boundary conditions $\varphi(t, x+L)=\varphi(t, x)$. Note that the condition only needs to be satisfied modulo the equivalence $\varphi \equiv \varphi+2 \pi \mathbb{Z}$.
c) Compute the momentum P, energy E, and angular momentum Q of these solutions.

4.2. Spectral Curve for the Heisenberg Magnet (4 points)

The simplest finite-gap solution of the Heisenberg magnet has a spectral curve with a single branch cut. A suitable ansatz for the quasi-momentum $q(u)$ is

$$
\begin{equation*}
q_{ \pm}^{\prime}(u)= \pm \frac{a u+b}{u^{2} \sqrt{u^{2}+c u+d}} \tag{4.3}
\end{equation*}
$$

The \pm labels the two branches of the function, which are connected by a branch cut stretching between two branch points at the zeros of the square root. Let A be a counterclockwise cycle around the branch cut, and B a path going from $u=\infty_{\text {_ }}$ on the one branch trough the cut and back to $u=\infty_{+}$on the other branch. Then $q^{\prime}(u)$ should satisfy

$$
\begin{equation*}
\oint_{A} q_{+}^{\prime}(u) \mathrm{d} u=0, \quad \frac{1}{2 \pi} \int_{B} q^{\prime}(u) \mathrm{d} u=n \in \mathbb{Z}, \quad I=\frac{1}{2 \pi i} \oint_{A} u q_{+}^{\prime}(u) \mathrm{d} u \tag{4.4}
\end{equation*}
$$

where I is called the "filling" of the cut. Moreover, the length L, momentum P, energy E, and angular momentum Q appear in series expansions of $q_{+}(u)$ as

$$
\begin{equation*}
u \rightarrow 0: \quad q_{+}(u)=\frac{L}{u}-\frac{P}{2}+\frac{u E}{4}+\mathcal{O}\left(u^{2}\right), \quad u \rightarrow \infty_{+}: \quad q_{+}(u)=\frac{Q}{u}+\mathcal{O}\left(u^{-2}\right) \tag{4.5}
\end{equation*}
$$

a) Express the coefficients a, b, and c in terms of d, L, and I using the A-cycle conditions and series expansions. Hint: A-cycle integrals are sums of residues at $u=0, \infty$.
b) Integrate $q^{\prime}(u)$ to $q(u)$, and find d in terms of n and L by the B-cycle condition. Fix the integration constant by the vanishing of $q_{+}(u)$ at $u=\infty$. Hint: Compute $\left(\sqrt{A-2 B u+D u^{2}} / u\right)^{\prime}$. The square root has different signs on the two branches.
c) Expand $q_{+}(u)$ at $u=0, \infty$, and find expressions for P, Q, and E by matching (4.5). Compare the results to your results of 4.1 c)

4.3. Zamolodchikov-Faddeev Algebra and Sine-Gordon (5 points)

Consider operators $A_{i}(u)$ that satisfy the commutation relations

$$
\begin{equation*}
A_{i}\left(u_{2}\right) A_{j}\left(u_{1}\right)=\sum_{k, \ell} S_{i j}^{k l}\left(u_{12}\right) A_{k}\left(u_{1}\right) A_{\ell}\left(u_{2}\right), \quad u_{12}=u_{1}-u_{2} \tag{4.6}
\end{equation*}
$$

For i different from $j, A_{i}(u)$ and $A_{j}(u)$ are independent operators. $A_{j}(u)$ can be thought of as creating a particle of type (flavor) j with rapidity u : $A_{j}(u)|0\rangle=\left|A_{j}(u)\right\rangle$. The scattering factors $S_{i j}^{k \ell}(u)$ are scalar functions of u that form the scatterin matrix $S(u)$. Obtain consistency conditions for the matrix $S(u)$ from the commutation relations by
a) taking the limit $u_{12} \rightarrow 0$.
b) iterating (4.6) twice. Draw a diagram for the resulting condition.
c) relating the product $A_{i}\left(u_{3}\right) A_{j}\left(u_{2}\right) A_{k}\left(u_{1}\right)$ back to a sum over $A_{r}\left(u_{1}\right) A_{p}\left(u_{2}\right) A_{q}\left(u_{3}\right)$ by iteratively applying (4.6) in two different ways. Draw a diagram for the resulting condition. Interpret triple products of $A_{i}\left(u_{k}\right)$ as states of a three-site system, and write the condition as an equation for $S_{12}(u)$ and $S_{23}(u)$, where the indices denote the sites on which the respective matrix acts.

Specialize to a model with particles A and \bar{A}, and three different scattering amplitudes:

$$
S_{\mathrm{I}}(u)=S_{A A}^{A A}(u)=S_{\bar{A} \bar{A}}^{\bar{A}}(u), \quad S_{\mathrm{T}}(u)=S_{A \bar{A}}^{\bar{A} A}(u)=S_{\bar{A} A}^{A \bar{A}}(u), \quad S_{\mathrm{R}}(u)=S_{\bar{A} A}^{\bar{A} A}(u)=S_{A \bar{A}}^{A \bar{A}}(u)
$$

d) Write the relation (4.6) for all combinations of A and \bar{A}. Show that the conditions from c) with $S_{x} \equiv S_{x}\left(u_{12}\right), S_{x}^{\prime} \equiv S_{x}\left(u_{13}\right)$, and $S_{x}^{\prime \prime} \equiv S_{x}\left(u_{23}\right), x \in\{\mathrm{I}, \mathrm{T}, \mathrm{R}\}$ amount to

$$
\begin{gather*}
S_{\mathrm{I}} S_{\mathrm{T}}^{\prime} S_{\mathrm{R}}^{\prime \prime}=S_{\mathrm{T}} S_{\mathrm{I}}^{\prime} S_{\mathrm{R}}^{\prime \prime}+S_{\mathrm{R}} S_{\mathrm{R}}^{\prime} S_{\mathrm{T}}^{\prime \prime}, \quad S_{\mathrm{I}} S_{\mathrm{R}}^{\prime} S_{\mathrm{I}}^{\prime \prime}=S_{\mathrm{R}} S_{\mathrm{I}}^{\prime} S_{\mathrm{R}}^{\prime \prime}+S_{\mathrm{T}} S_{\mathrm{R}}^{\prime} S_{\mathrm{T}}^{\prime \prime} \\
S_{\mathrm{R}} S_{\mathrm{T}}^{\prime} S_{\mathrm{I}}^{\prime \prime}=S_{\mathrm{R}} S_{\mathrm{I}}^{\prime} S_{\mathrm{T}}^{\prime \prime}+S_{\mathrm{T}} S_{\mathrm{R}}^{\prime} S_{\mathrm{R}}^{\prime \prime} \tag{4.7}
\end{gather*}
$$

e) Show that the existence of a non-trivial solution to (4.7) requires that the quantity

$$
\begin{equation*}
\Delta=\frac{S_{\mathrm{I}}^{2}(u)+S_{\mathrm{T}}^{2}(u)-S_{\mathrm{R}}^{2}(u)}{2 S_{\mathrm{I}}(u) S_{\mathrm{T}}(u)} \tag{4.8}
\end{equation*}
$$

is independent of u.
Hint: Write (4.7) in matrix form $M \cdot\left(S_{\mathrm{I}}^{\prime \prime}, S_{\mathrm{R}}^{\prime \prime}, S_{\mathrm{T}}^{\prime \prime}\right)^{\top}=0$.
Remark: This type of system is realized in the Sine-Gordon model with Lagrange density $\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\frac{m^{2}}{\beta^{2}} \cos (\beta \phi)$. In that case, $A(u)$ and $\bar{A}(u)$ are the soliton and anti-soliton solutions, with scattering factors

$$
S_{\mathrm{I}}(u)=\sinh \left[\frac{8 \pi}{\eta}(i \pi-u)\right] f(u), \quad S_{\mathrm{T}}(u)=\sinh \left[\frac{8 \pi}{\eta} u\right] f(u), \quad S_{\mathrm{R}}(u)=i \sin \left[\frac{8 \pi^{2}}{\eta}\right] f(u)
$$

and with $\Delta=-\cos \left(8 \pi^{2} / \eta\right)$, where $1 / \eta=1 / \beta^{2}-1 /(8 \pi)$.

