Introduction to Integrability
Leibniz University Hannover, Summer 2019

Problem Set 3
Dr. Till Bargheer
Due: 04.06. 2019

3.1. Flat Connection and Parallel Transport (2 points)

Let $A(x)=A_{\mu}(x) \mathrm{d} x^{\mu}$ be a matrix-valued connection one-form with corresponding derivative operator $D_{\mu}=\partial_{\mu}-A_{\mu}(x)$, where $\partial_{\mu}=\partial / \partial x^{\mu}$ is the ordinary derivative operator. Define the parallel transport operator

$$
\begin{equation*}
U^{10}=\overleftarrow{\mathrm{P}} \exp \int_{x_{0}}^{x_{1}} A=\sum_{n=0}^{\infty} \frac{1}{n!} \int_{x_{0}}^{x_{1}} \ldots \int_{x_{0}}^{x_{1}} \stackrel{\mathrm{P}}{ }\left[A_{\nu_{1}}\left(y_{1}\right) \ldots A_{\nu_{n}}\left(y_{n}\right)\right] \mathrm{d} y_{1}^{\nu_{1}} \ldots \mathrm{~d} y_{n}^{\nu_{n}}, \tag{3.1}
\end{equation*}
$$

where $\stackrel{\breve{\mathrm{P}}}{[} \ldots]$ orders all products by position on the the path from x_{0} to x_{1}, with factors closer to x_{1} to the left.
a) Show that the flatness condition $\left[D_{\mu}, D_{\nu}\right]=0$ is equivalent to $\mathrm{d} A=A \wedge A$.
b) Assuming that the connection $A(x)$ is flat, show that

$$
\begin{equation*}
\frac{\partial}{\partial x_{1}^{\mu}} U^{10}=A_{\mu}\left(x_{1}\right) U^{10}, \quad \frac{\partial}{\partial x_{0}^{\mu}} U^{10}=U^{10} A_{\mu}\left(x_{0}\right) \tag{3.2}
\end{equation*}
$$

3.2. Inverse Scattering Method for the KdV Equation (4 points)

We will use the inverse scattering method to find solutions to the KdV equation. The GLM equation reads

$$
\begin{equation*}
K(x, y)+\hat{r}(x+y)+\int_{x}^{\infty} K(x, z) \hat{r}(z+y) \mathrm{d} z=0, \quad h(x)=-2 \frac{\partial}{\partial x} K(x, x) \tag{3.3}
\end{equation*}
$$

For purely solitonic solutions, the potential $h(x)$ is reflectionless, and $\hat{r}(x)$ reduces to

$$
\begin{equation*}
\hat{r}(x)=\sum_{j=1}^{N} \lambda_{j}(t) \mathrm{e}^{-\kappa_{j} x}, \quad \lambda_{j}(t)=\lambda_{j}(0) \mathrm{e}^{8 \kappa_{j}^{3} t}, \quad \kappa_{j}>0 \tag{3.4}
\end{equation*}
$$

First, consider the single-soliton case $N=1$, with $\kappa_{1} \equiv \kappa$ and $\lambda_{j} \equiv \lambda$.
a) Obtain the solution $h(x)$ by solving the GLM equation (3.3) using the separation ansatz $K(x, y)=K(x) \mathrm{e}^{-\kappa y}$
b) Find the minimum $x_{0}(t)$ of $h(x)$ as a function of κ and $\lambda(t)$. Express $h(x)$ in terms of x, t, the velocity v of $x_{0}(t)$, and $x_{0}(0)$.
Now consider the two-soliton case $N=2$. Assume that $K(x, y)$ separates to

$$
\begin{equation*}
K(x, y)=K_{1}(x) \mathrm{e}^{-\kappa_{1} y}+K_{2}(x) \mathrm{e}^{-\kappa_{2} y} \tag{3.5}
\end{equation*}
$$

c) Show that the GLM equation can be written as a matrix equation $A K+L=0$, with

$$
\begin{equation*}
A_{i, j}=\delta_{i, j}+\lambda_{i} \frac{\mathrm{e}^{-\left(\kappa_{i}+\kappa_{j}\right) x}}{\kappa_{i}+\kappa_{j}}, \quad K_{i}=K_{i}(x), \quad L_{i}=\lambda_{i} \mathrm{e}^{-\kappa_{i} x} \tag{3.6}
\end{equation*}
$$

d) Derive that

$$
\begin{equation*}
K(x, x)=K_{1}(x) \mathrm{e}^{-\kappa_{1} x}+K_{2}(x) \mathrm{e}^{-\kappa_{2} x}=\frac{\partial}{\partial x} \log \operatorname{det} A(x) \tag{3.7}
\end{equation*}
$$

Using this formula, show that $h(x, t) \rightarrow 0$ for $x \rightarrow \pm \infty$ and for any value of t.

3.3. Asymptotics of Two KdV Solitons (3 points)

Consider the two-soliton solution (3.7) with the matrix A in (3.6), and with $0<\kappa_{1}<\kappa_{2}$.
a) Compare the magnitudes of the quantities $\lambda_{1}(t) \mathrm{e}^{-2 \kappa_{1} x}, \lambda_{2}(t) \mathrm{e}^{-2 \kappa_{2} x}$, and 1 as x varies from $-\infty$ to ∞, for the two cases $t \ll 1$ and $t \gg 1$.
b) For $t \ll 0$, compute the leading term $\operatorname{det} A_{i}^{-}$of $\operatorname{det} A$ near $x \approx 4 \kappa_{i}^{2} t$, for $i=1,2$. Drop all terms that are irrelevant for $h(x) \sim(\partial / \partial x)^{2} \log \operatorname{det} A$. In the same way, compute the leading terms $\operatorname{det} A_{i}^{+}$for $t \gg 0$.
c) Show that the resulting expressions $h_{i}^{ \pm}(x)=-2(\partial / \partial x)^{2} \log \operatorname{det} A_{i}^{ \pm}$all take the form of single solitons. Compute the parameters $\kappa_{i}^{ \pm}, \lambda_{i}^{ \pm}$of those single-soliton solutions in terms of the two-soliton parameters $\left(\kappa_{1}, \kappa_{2}, \lambda_{1}, \lambda_{2}\right)$.
d) Compare the minima $x_{0, i}^{ \pm}$of $h_{i}^{ \pm}(x)$ at $t \ll 0$ and at $t \gg 0$. Interpret the result: What is the effect of the scattering on the two solitons? Sketch the result.

3.4. KdV Solitons: Verification and Visualization (3 points)

Via $h(x)=-2(\partial / \partial x)^{2} \log \operatorname{det} A$, the $N \times N$ matrix A defined by (3.6) actually yields a valid N-soliton solution $h(x)$ for any N.
This is a Mathematica exercise. Please hand in a printout of your Mathematica notebook as well as the digital file.
a) Validate the $N=2$ solution by verifying with Mathematica that $\dot{h}-6 h h^{\prime}+h^{\prime \prime \prime}$ indeed vanishes.
Hint: Functions are defined as $f\left[\mathrm{x}_{\mathrm{z}}\right]:=($ expression involving x$)$. Matrices are best defined with Table[.., \{i,2\}, \{j,2\}] (for a 2×2 matrix). There is a built-in function KroneckerDelta[i,j]. Det[..] computes the determinant, Log[..] is the natural logarithm. Derivatives can be computed with $D[\ldots]$, e.g. $D[f[x],\{x, 2\}]$ would be $f^{\prime \prime}(x)$. Use Simplify[..] to simplify expressions. An extremely useful construct is expr /. X -> Y, which replaces all occurences of X in expr with Y. Get help with the F1 key.
b) Plot the $N=2$ solution for $\kappa_{1}=1 / 2, \kappa_{2}=1 / \sqrt{2}, \lambda_{i}(0)=2 \kappa_{i}$. Plots can be generated with Plot $[h[x, t],\{x,-50,50\}]$. Repeat for various values of t. To show the full plotting region, use PlotRange -> ...
Try Manipulate[Plot [h[x, t], \{x,-50,50\}], \{t,-20,20\}], play with the slider.
Advanced: Include also the single-soliton solutions of problem 3.3 c) in the plot, possibly with different colors or line styles (using PlotStyle -> ..).
c) Validate the $N=3$ solution by evaluating the expression $\dot{h}-6 h h^{\prime}+h^{\prime \prime \prime}$. The result is bulky and not easily simplified. Instead, replace κ_{i}, λ_{i}, and x by random numbers (generated with RandomReal []) to check that the expression vanishes.
d) Plot the $N=3$ solution for two different choices of parameters: One where all three solitons scatter at once, and one where the three solitons only scatter pairwise. Use Manipulate [..] as in b) to visualize the result.

