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3.1. Flat Connection and Parallel Transport (2 points)

Let A(x) = Aµ(x) dxµ be a matrix-valued connection one-form with corresponding deriva-
tive operator Dµ = ∂µ − Aµ(x), where ∂µ = ∂/∂xµ is the ordinary derivative operator.
Define the parallel transport operator

U10 = ~P exp

∫ x1

x0

A =
∞∑
n=0

1

n!

∫ x1

x0

· · ·
∫ x1

x0

~P
[
Aν1(y1) . . . Aνn(yn)

]
dyν11 . . . dyνnn , (3.1)

where ~P[. . .] orders all products by position on the the path from x0 to x1, with factors
closer to x1 to the left.

a) Show that the flatness condition [Dµ, Dν ] = 0 is equivalent to dA = A ∧ A.

b) Assuming that the connection A(x) is flat, show that

∂

∂xµ1
U10 = Aµ(x1)U

10 ,
∂

∂xµ0
U10 = U10Aµ(x0) . (3.2)

3.2. Inverse Scattering Method for the KdV Equation (4 points)

We will use the inverse scattering method to find solutions to the KdV equation. The
GLM equation reads

K(x, y) + r̂(x+ y) +

∫ ∞
x

K(x, z) r̂(z + y) dz = 0 , h(x) = −2
∂

∂x
K(x, x) . (3.3)

For purely solitonic solutions, the potential h(x) is reflectionless, and r̂(x) reduces to

r̂(x) =
N∑
j=1

λj(t) e−κjx , λj(t) = λj(0) e8κ
3
j t , κj > 0 . (3.4)

First, consider the single-soliton case N = 1, with κ1 ≡ κ and λj ≡ λ.

a) Obtain the solution h(x) by solving the GLM equation (3.3) using the separation
ansatz K(x, y) = K(x) e−κy

b) Find the minimum x0(t) of h(x) as a function of κ and λ(t). Express h(x) in terms
of x, t, the velocity v of x0(t), and x0(0).

Now consider the two-soliton case N = 2. Assume that K(x, y) separates to

K(x, y) = K1(x) e−κ1y +K2(x) e−κ2y . (3.5)

c) Show that the GLM equation can be written as a matrix equation AK +L = 0, with

Ai,j = δi,j + λi
e−(κi+κj)x

κi + κj
, Ki = Ki(x) , Li = λi e

−κix . (3.6)

d) Derive that

K(x, x) = K1(x) e−κ1x +K2(x) e−κ2x =
∂

∂x
log detA(x) . (3.7)

Using this formula, show that h(x, t)→ 0 for x→ ±∞ and for any value of t.

−→

3.1



3.3. Asymptotics of Two KdV Solitons (3 points)

Consider the two-soliton solution (3.7) with the matrix A in (3.6), and with 0 < κ1 < κ2.

a) Compare the magnitudes of the quantities λ1(t) e−2κ1x, λ2(t) e−2κ2x, and 1 as x varies
from −∞ to ∞, for the two cases t� 1 and t� 1.

b) For t� 0, compute the leading term detA−i of detA near x ≈ 4κ2i t, for i = 1, 2. Drop
all terms that are irrelevant for h(x) ∼ (∂/∂x)2 log detA. In the same way, compute
the leading terms detA+

i for t� 0.

c) Show that the resulting expressions h±i (x) = −2(∂/∂x)2 log detA±i all take the form
of single solitons. Compute the parameters κ±i , λ±i of those single-soliton solutions in
terms of the two-soliton parameters (κ1, κ2, λ1, λ2).

d) Compare the minima x±0,i of h±i (x) at t� 0 and at t� 0. Interpret the result: What
is the effect of the scattering on the two solitons? Sketch the result.

3.4. KdV Solitons: Verification and Visualization (3 points)

Via h(x) = −2(∂/∂x)2 log detA, the N × N matrix A defined by (3.6) actually yields a
valid N -soliton solution h(x) for any N .

This is a Mathematica exercise. Please hand in a printout of your Mathematica
notebook as well as the digital file.

a) Validate the N = 2 solution by verifying with Mathematica that ḣ − 6hh′ + h′′′

indeed vanishes.

Hint: Functions are defined as f[x_]:=(expression involving x). Matrices are best
defined with Table[.., {i,2}, {j,2}] (for a 2 × 2 matrix). There is a built-in
function KroneckerDelta[i,j]. Det[..] computes the determinant, Log[..] is the
natural logarithm. Derivatives can be computed with D[..], e. g. D[f[x], {x,2}]

would be f ′′(x). Use Simplify[..] to simplify expressions. An extremely useful
construct is expr /. X -> Y, which replaces all occurences of X in expr with Y. Get
help with the F1 key.

b) Plot the N = 2 solution for κ1 = 1/2, κ2 = 1/
√

2 , λi(0) = 2κi. Plots can be generated
with Plot[h[x,t], {x,-50,50}]. Repeat for various values of t. To show the full
plotting region, use PlotRange -> ...

Try Manipulate[Plot[h[x,t], {x,-50,50}], {t,-20,20}], play with the slider.

Advanced: Include also the single-soliton solutions of problem 3.3 c) in the plot, pos-
sibly with different colors or line styles (using PlotStyle -> ..).

c) Validate the N = 3 solution by evaluating the expression ḣ − 6hh′ + h′′′. The result
is bulky and not easily simplified. Instead, replace κi, λi, and x by random numbers
(generated with RandomReal[]) to check that the expression vanishes.

d) Plot the N = 3 solution for two different choices of parameters: One where all three
solitons scatter at once, and one where the three solitons only scatter pairwise. Use
Manipulate[..] as in b) to visualize the result.
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