Introduction to Integrability
Leibniz University Hannover, Summer 2019

Problem Set 2
Dr. Till Bargheer
Due: 21.05. 2019

2.1. The Neumann Model (5 points)

The Neumann model describes a particle on a sphere S^{N-1} subject to harmonic potentials of different magnitudes a_{k} in the various dimensions $k=1, \ldots, N$. The Newton equations of motion are

$$
\begin{equation*}
\ddot{x}_{k}=-a_{k} x_{k}+\sum_{\ell}\left(a_{\ell} x_{\ell}^{2}-\dot{x}_{\ell}^{2}\right) x_{k} \tag{2.1}
\end{equation*}
$$

where $\left(x_{1}, \ldots, x_{N}\right) \in \mathrm{S}^{N-1}$. In the Hamiltonian formulation, the phase space has coordinates $x_{k}, y_{k}, k=1, \ldots, N$, with canonical Poisson structure and Hamiltonian

$$
\begin{gather*}
\left\{x_{i}, y_{j}\right\}=\delta_{i j}, \quad\left\{x_{i}, x_{j}\right\}=\left\{y_{i}, y_{j}\right\}=0 \tag{2.2}\\
H=\frac{1}{2} \sum_{k} a_{k} F_{k}, \quad F_{k}=x_{k}^{2}+\sum_{\ell \neq k} \frac{J_{k \ell}^{2}}{a_{k}-a_{\ell}}, \quad J_{k \ell}=x_{k} y_{\ell}-x_{\ell} y_{k} . \tag{2.3}
\end{gather*}
$$

The quantities F_{k} are individually conserved, and satisfy $\sum_{k} F_{k}=1$.
a) Show that the Hamiltonian equations of motion $\dot{x}_{i}=\partial H / \partial y_{i}, \dot{y}_{i}=-\partial H / \partial x_{i}$ take the form

$$
\begin{equation*}
\dot{X}=-J \cdot X, \quad \dot{Y}=-J \cdot Y-L_{0} \cdot X \tag{2.4}
\end{equation*}
$$

where $X=\left(x_{1}, \ldots, x_{N}\right)^{\top}, Y=\left(y_{1}, \ldots, y_{N}\right)^{\top}, J=X Y^{\top}-Y X^{\top}$, and $\left(L_{0}\right)_{i j}=\delta_{i j} a_{i}$.
b) Show that with $K=X X^{\top}$, the equations of motion can also be written as

$$
\begin{equation*}
\dot{K}=-[J, K], \quad \dot{J}=\left[L_{0}, K\right] \tag{2.5}
\end{equation*}
$$

and that these are equivalent to the Lax equation $\dot{L}=[M, L]$ for the matrices

$$
\begin{equation*}
L(z)=L_{0}+z J-z^{2} K, \quad M(z)=-z K \tag{2.6}
\end{equation*}
$$

c) Show that the spectral curve equation $0=\operatorname{det}(L(z)-\lambda)$ with a suitable rank-two matrix P can be written as $0=\operatorname{det}\left(L_{0}-\lambda\right) \operatorname{det}(1+P)$. Also show that

$$
\begin{equation*}
\operatorname{det}(1+P)=1-z^{2}\left(V^{2}+U(1-W)\right) \tag{2.7}
\end{equation*}
$$

with $U=\sum_{k} x_{k}^{2} /\left(a_{k}-\lambda\right), V=\sum_{k} x_{k} y_{k} /\left(a_{k}-\lambda\right)$, and $W=\sum_{k} y_{k}^{2} /\left(a_{k}-\lambda\right)$.
Hint: Express P in the basis $\left\{v_{1}=\left(L_{0}-\lambda\right)^{-1} \cdot X, v_{2}=\left(L_{0}-\lambda\right)^{-1} \cdot Y\right\}$.
d) Use the relation $\operatorname{det}(1+P)=1+z^{2} \sum_{k} F_{k} /\left(\lambda-a_{k}\right)$ as well as the birational transformation $z^{\prime}=z^{-1} \prod_{i=1}^{N}\left(\lambda-a_{i}\right)$ to show that there are parameters b_{i} (that are functions of a_{k} and F_{k}) such that the spectral curve equation can be written as

$$
\begin{equation*}
z^{\prime 2}=-\prod_{i=1}^{N}\left(\lambda-a_{i}\right) \prod_{j=1}^{N-1}\left(\lambda-b_{i}\right) \tag{2.8}
\end{equation*}
$$

e) The relation (2.8) describes a hyperelliptic curve $z^{\prime}= \pm(\ldots)^{1 / 2}$. How many branch points / branch cuts connect the two z^{\prime} branches? What is the genus of the curve? Hint: One branch point is at $\lambda=\infty$. Figure each of the two z^{\prime} branches as a ball, and each branch cut as a cylindrical tube connecting the two balls.

2.2. Conservation Laws for the KdV Equation (4 points)

We want to find conserved local charges for the KdV equation

$$
\begin{equation*}
\dot{h}=6 h h^{\prime}-h^{\prime \prime \prime}, \quad h=h(t, x) . \tag{2.9}
\end{equation*}
$$

a) Consider the change of field variable $h \rightarrow w$, with

$$
\begin{equation*}
h=w+i \varepsilon w^{\prime}-\varepsilon^{2} w^{2} . \tag{2.10}
\end{equation*}
$$

Show that h satisfies (2.9) if w satisfies

$$
\begin{equation*}
\dot{w}=\frac{\partial}{\partial x}\left(3 w^{2}-w^{\prime \prime}-2 \varepsilon^{2} w^{3}\right) . \tag{2.11}
\end{equation*}
$$

b) Now let w be a power series in ε,

$$
\begin{equation*}
w=\sum_{n=0}^{\infty} \varepsilon^{n} w_{n}, \quad w_{n}=w_{n}(t, x) . \tag{2.12}
\end{equation*}
$$

By expanding (2.10) in ε, obtain a recursion relation for $w_{n}(t, x)$.
c) Show that the relation (2.11) implies

$$
\begin{equation*}
F_{n}:=\int_{-\infty}^{+\infty} w_{n} \mathrm{~d} x, \quad \dot{F}_{n}=0 \tag{2.13}
\end{equation*}
$$

where we assume that h and all its derivatives decay at $|x| \rightarrow \infty$. Observe that F_{n} is only non-zero for even n, and write F_{0}, F_{2}, and F_{4} as integrals over polynomials in h and its derivatives.

2.3. KdV Solitons (3 points)

Look for solutions to the KdV equation $\dot{h}=6 h h^{\prime}-h^{\prime \prime \prime}$ with constant velocity v by assuming $h(t, x)=f(x-v t)$. Show that f satisfies the equation

$$
\begin{equation*}
\frac{1}{2} f^{\prime 2}=f^{3}+\frac{1}{2} v f^{2}+\alpha f+\beta, \tag{2.14}
\end{equation*}
$$

with α and β constant. Assuming that h vanishes at $|x| \rightarrow \infty$, what must be the values of α and β ? Solve the differential equation (2.14) to recover the one-soliton solution to the KdV equation.

