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1.1. Kepler Problem and Action-Angle Variables (6 points)

Consider a mass m in a centrally symmetric potential V (r), r =
√
x2

1 + x2
2 + x2

3 . In the
Kepler problem, V (r) = C/r, but we can keep V (r) general. The Hamiltonian reads

H =
3∑
i=1

p2
i

2m
+ V (r) , (1.1)

where pi is the momentum conjugate to xi.

a) The phase space has six dimensions. Hence the system is integrable if there are three
integrals of motion in involution. Show that the components Ji = εijkxjpk of the
angular momentum vector J = (J1, J2, J3) are conserved.

b) Compute the Poisson bracket {Ji, Jj} to show that the components Ji are not in
involution. Do you recognize their algebra?

c) The Hamiltonian H itself is another conserved quantity. Show that the combination
J2 = J2

1 + J2
2 + J2

3 commutes with both H and Ji. Hence P := (H, J2, J3) are three
integrals of motion in involution.

d) Due to the rotational symmetry, it is useful to employ spherical coordinates r, ϑ, ϕ,

x1 = r sinϑ cosϕ , x2 = r sinϑ sinϕ , x3 = r cosϑ . (1.2)

What are the momenta p := (pr, pϑ, pϕ) conjugate to the positions q := (r, ϑ, ϕ)?

e) Rewrite the conserved quantities P in terms of spherical coordinates (q, p). Invert
these relations to express the momenta p in terms of P and q. Observe that the
variables q are separated : pr only depends on r, pϑ only depends on ϑ, and pϕ only
depends on ϕ.

f) The generating function for a canonical transformation from (q, p) to (Q,P ) is

S(q, P ) =

∫ r

pr(q
′, P ) dr′ +

∫ ϑ

pϑ(q′, P ) dϑ′ +

∫ ϕ

pϕ(q′, P ) dϕ′ (1.3)

The positions conjugate to the momenta Pi are Qi = ∂S/∂Pi. Verify that Q̇J2 = 0,
Q̇J3 = 0, and Q̇H = 1. Use the last equation to derive the standard solution of the
Kepler problem

t− t0 =

∫ r

r0

m dr′√
2m(H − V (r′))− J2/r′2

. (1.4)

Hint: Write the time derivative as d/dt = ṙ d/dr+ϑ̇ d/dϑ+ϕ̇ d/dϕ, and use Hamiltons
equation of motion ṙ = ∂H/∂pr etc.

−→
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1.2. Euler Top and Lax Pair (6 points)

Consider a rotating body attached to a fixed point without external forces. In the co-
moving frame, where the coordinate axes are aligned with the principal moments of inertia
Ii of the body, the Hamiltonian reads

H =
3∑
i=1

J2
i

2Ii
, (1.5)

where Ji = Iiωi are the components of the angular momentum J = (J1, J2, J3), with
ω = (ω1, ω2, ω3) the rotation vector of the comoving frame.

a) Using the Poisson structure {Ji, Jj} = εijkJk, derive the equation of motion for J :

dJi
dt

= εijkωjJk . (1.6)

Hint: Use the Hamilton equation of motion dF/dt = −{H,F}.

b) Show that the square of the angular momentum J2 =
∑

i J
2
i is conserved. Since

the system has only two degrees of freedom, and the Hamiltonian H itself is also
conserved, the system is integrable. Express J2 and J3 in terms of H, J2, and J1.

c) As a candidate Lax pair, consider the matrices Lij = εijkJk and Mij = −εijkωk. Show
that the equation of motion (1.6) can be written as

dL

dt
= [M,L] . (1.7)

d) Calculate the first few conserved quantities tr(Ln), and observe that the Hamiltonian
is not among them. Why not?

e) Show that there exist rescaled variables Ji := αiJi such that the equations of motion
take the form

dJi
dt

= 2JjJk , (1.8)

where (i, j, k) is any cyclic permutation of (1, 2, 3).

f) Show that the Lax equation dL(z)/dt = [M(z), L(z)] for the following 2× 2 matrices
L(z) and M(z) is also equivalent to the equations of motion:

L(z) = (1− z2)J1σ1 + (1 + z2)J2 iσ2 − 2zJ3σ3 ,

M(z) = zJ1σ1 − zJ2 iσ2 + J3σ3 , (1.9)

where σi are the Pauli matrices.

g) Compute all the independent integrals of motion tr(L(z)n). Verify that they are
indeed conserved, and express them in terms of H and J2. This shows that L(z),
M(z) form a sufficient Lax pair for the system, with spectral parameter z.

Hint: Make use of the Pauli matrix algebra σkσ` = iεk`mσm + δk`.

1.2
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2.1. The Neumann Model (5 points)

The Neumann model describes a particle on a sphere SN−1 subject to harmonic potentials
of different magnitudes ak in the various dimensions k = 1, . . . , N . The Newton equations
of motion are

ẍk = −akxk +
∑
`

(
a`x

2
` − ẋ2

`

)
xk , (2.1)

where (x1, . . . , xN) ∈ SN−1. In the Hamiltonian formulation, the phase space has coordi-
nates xk, yk, k = 1, . . . , N , with canonical Poisson structure and Hamiltonian

{xi, yj} = δij , {xi, xj} = {yi, yj} = 0 , (2.2)

H =
1

2

∑
k

akFk , Fk = x2
k +

∑
`6=k

J2
k`

ak − a`
, Jk` = xky` − x`yk . (2.3)

The quantities Fk are individually conserved, and satisfy
∑

k Fk = 1.

a) Show that the Hamiltonian equations of motion ẋi = ∂H/∂yi, ẏi = −∂H/∂xi take
the form

Ẋ = −J ·X , Ẏ = −J · Y − L0 ·X , (2.4)

where X = (x1, . . . , xN)T, Y = (y1, . . . , yN)T, J = XY T − Y XT, and (L0)ij = δijai.

b) Show that with K = XXT, the equations of motion can also be written as

K̇ = −[J,K] , J̇ = [L0, K] , (2.5)

and that these are equivalent to the Lax equation L̇ = [M,L] for the matrices

L(z) = L0 + zJ − z2K , M(z) = −zK . (2.6)

c) Show that the spectral curve equation 0 = det(L(z)− λ) with a suitable rank-two
matrix P can be written as 0 = det(L0 − λ) det(1 + P ). Also show that

det(1 + P ) = 1− z2
(
V 2 + U(1−W )

)
, (2.7)

with U =
∑

k x
2
k/(ak − λ), V =

∑
k xkyk/(ak − λ), and W =

∑
k y

2
k/(ak − λ).

Hint: Express P in the basis {v1 = (L0 − λ)−1 ·X, v2 = (L0 − λ)−1 · Y }.

d) Use the relation det(1+P ) = 1+z2
∑

k Fk/(λ− ak) as well as the birational transfor-

mation z′ = z−1
∏N

i=1(λ−ai) to show that there are parameters bi (that are functions
of ak and Fk) such that the spectral curve equation can be written as

z′2 = −
N∏
i=1

(λ− ai)
N−1∏
j=1

(λ− bi) . (2.8)

e) The relation (2.8) describes a hyperelliptic curve z′ = ±(. . .)1/2. How many branch
points / branch cuts connect the two z′ branches? What is the genus of the curve?

Hint: One branch point is at λ = ∞. Figure each of the two z′ branches as a ball,
and each branch cut as a cylindrical tube connecting the two balls.

−→
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2.2. Conservation Laws for the KdV Equation (4 points)

We want to find conserved local charges for the KdV equation

ḣ = 6hh′ − h′′′ , h = h(t, x) . (2.9)

a) Consider the change of field variable h→ w, with

h = w + iεw′ − ε2w2 . (2.10)

Show that h satisfies (2.9) if w satisfies

ẇ =
∂

∂x

(
3w2 − w′′ − 2ε2w3

)
. (2.11)

b) Now let w be a power series in ε,

w =
∞∑
n=0

εnwn , wn = wn(t, x) . (2.12)

By expanding (2.10) in ε, obtain a recursion relation for wn(t, x).

c) Show that the relation (2.11) implies

Fn :=

∫ +∞

−∞
wndx , Ḟn = 0 , (2.13)

where we assume that h and all its derivatives decay at |x| → ∞. Observe that Fn is
only non-zero for even n, and write F0, F2, and F4 as integrals over polynomials in h
and its derivatives.

2.3. KdV Solitons (3 points)

Look for solutions to the KdV equation ḣ = 6hh′ − h′′′ with constant velocity v by
assuming h(t, x) = f(x− vt). Show that f satisfies the equation

1
2
f ′2 = f 3 + 1

2
vf 2 + αf + β , (2.14)

with α and β constant. Assuming that h vanishes at |x| → ∞, what must be the values
of α and β? Solve the differential equation (2.14) to recover the one-soliton solution to
the KdV equation.

2.2
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3.1. Flat Connection and Parallel Transport (2 points)

Let A(x) = Aµ(x) dxµ be a matrix-valued connection one-form with corresponding deriva-
tive operator Dµ = ∂µ − Aµ(x), where ∂µ = ∂/∂xµ is the ordinary derivative operator.
Define the parallel transport operator

U10 = ~P exp

∫ x1

x0

A =
∞∑
n=0

1

n!

∫ x1

x0

· · ·
∫ x1

x0

~P
[
Aν1(y1) . . . Aνn(yn)

]
dyν11 . . . dyνnn , (3.1)

where ~P[. . .] orders all products by position on the the path from x0 to x1, with factors
closer to x1 to the left.

a) Show that the flatness condition [Dµ, Dν ] = 0 is equivalent to dA = A ∧ A.

b) Assuming that the connection A(x) is flat, show that

∂

∂xµ1
U10 = Aµ(x1)U10 ,

∂

∂xµ0
U10 = U10Aµ(x0) . (3.2)

3.2. Inverse Scattering Method for the KdV Equation (4 points)

We will use the inverse scattering method to find solutions to the KdV equation. The
GLM equation reads

K(x, y) + r̂(x+ y) +

∫ ∞
x

K(x, z) r̂(z + y) dz = 0 , h(x) = −2
∂

∂x
K(x, x) . (3.3)

For purely solitonic solutions, the potential h(x) is reflectionless, and r̂(x) reduces to

r̂(x) =
N∑
j=1

λj(t) e−κjx , λj(t) = λj(0) e8κ3j t , κj > 0 . (3.4)

First, consider the single-soliton case N = 1, with κ1 ≡ κ and λj ≡ λ.

a) Obtain the solution h(x) by solving the GLM equation (3.3) using the separation
ansatz K(x, y) = K(x) e−κy

b) Find the minimum x0(t) of h(x) as a function of κ and λ(t). Express h(x) in terms
of x, t, the velocity v of x0(t), and x0(0).

Now consider the two-soliton case N = 2. Assume that K(x, y) separates to

K(x, y) = K1(x) e−κ1y +K2(x) e−κ2y . (3.5)

c) Show that the GLM equation can be written as a matrix equation AK +L = 0, with

Ai,j = δi,j + λi
e−(κi+κj)x

κi + κj
, Ki = Ki(x) , Li = λi e

−κix . (3.6)

d) Derive that

K(x, x) = K1(x) e−κ1x +K2(x) e−κ2x =
∂

∂x
log detA(x) . (3.7)

Using this formula, show that h(x, t)→ 0 for x→ ±∞ and for any value of t.

−→
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3.3. Asymptotics of Two KdV Solitons (3 points)

Consider the two-soliton solution (3.7) with the matrix A in (3.6), and with 0 < κ1 < κ2.

a) Compare the magnitudes of the quantities λ1(t) e−2κ1x, λ2(t) e−2κ2x, and 1 as x varies
from −∞ to ∞, for the two cases t� 1 and t� 1.

b) For t� 0, compute the leading term detA−i of detA near x ≈ 4κ2
i t, for i = 1, 2. Drop

all terms that are irrelevant for h(x) ∼ (∂/∂x)2 log detA. In the same way, compute
the leading terms detA+

i for t� 0.

c) Show that the resulting expressions h±i (x) = −2(∂/∂x)2 log detA±i all take the form
of single solitons. Compute the parameters κ±i , λ±i of those single-soliton solutions in
terms of the two-soliton parameters (κ1, κ2, λ1, λ2).

d) Compare the minima x±0,i of h±i (x) at t� 0 and at t� 0. Interpret the result: What
is the effect of the scattering on the two solitons? Sketch the result.

3.4. KdV Solitons: Verification and Visualization (3 points)

Via h(x) = −2(∂/∂x)2 log detA, the N × N matrix A defined by (3.6) actually yields a
valid N -soliton solution h(x) for any N .

This is a Mathematica exercise. Please hand in a printout of your Mathematica
notebook as well as the digital file.

a) Validate the N = 2 solution by verifying with Mathematica that ḣ − 6hh′ + h′′′

indeed vanishes.

Hint: Functions are defined as f[x_]:=(expression involving x). Matrices are best
defined with Table[.., {i,2}, {j,2}] (for a 2 × 2 matrix). There is a built-in
function KroneckerDelta[i,j]. Det[..] computes the determinant, Log[..] is the
natural logarithm. Derivatives can be computed with D[..], e. g. D[f[x], {x,2}]

would be f ′′(x). Use Simplify[..] to simplify expressions. An extremely useful
construct is expr /. X -> Y, which replaces all occurences of X in expr with Y. Get
help with the F1 key.

b) Plot the N = 2 solution for κ1 = 1/2, κ2 = 1/
√

2 , λi(0) = 2κi. Plots can be generated
with Plot[h[x,t], {x,-50,50}]. Repeat for various values of t. To show the full
plotting region, use PlotRange -> ...

Try Manipulate[Plot[h[x,t], {x,-50,50}], {t,-20,20}], play with the slider.

Advanced: Include also the single-soliton solutions of problem 3.3 c) in the plot, pos-
sibly with different colors or line styles (using PlotStyle -> ..).

c) Validate the N = 3 solution by evaluating the expression ḣ − 6hh′ + h′′′. The result
is bulky and not easily simplified. Instead, replace κi, λi, and x by random numbers
(generated with RandomReal[]) to check that the expression vanishes.

d) Plot the N = 3 solution for two different choices of parameters: One where all three
solitons scatter at once, and one where the three solitons only scatter pairwise. Use
Manipulate[..] as in b) to visualize the result.

3.2
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4.1. Heisenberg Magnet: Circle Solutions (3 points)

The Heisenberg magnet is described by two fields ϑ(t, x), ϕ(t, x) (altitude and azimuth
on the sphere), with equations of motion

ϑ̇ = 2 cos(ϑ)ϑ′ϕ′ + sin(ϑ)ϕ′′ , ϕ̇ = cos(ϑ)ϕ′2 − ϑ′′

sin(ϑ)
. (4.1)

The momentum P , energy E, and angular momentum Q are given by

P =

∫
(1− cosϑ)ϕ′ dx , E =

1

2

∫ (
ϑ′2 + sin2(ϑ)ϕ′2

)
dx , Q =

∫
cos(ϑ) dx . (4.2)

a) Find the most general solution ϕ(t, x) when ϑ(t, x) = ϑ0 is a constant (0 < ϑ0 < π).

b) Impose periodic boundary conditions ϕ(t, x + L) = ϕ(t, x). Note that the condition
only needs to be satisfied modulo the equivalence ϕ ≡ ϕ+ 2πZ.

c) Compute the momentum P , energy E, and angular momentum Q of these solutions.

4.2. Spectral Curve for the Heisenberg Magnet (4 points)

The simplest finite-gap solution of the Heisenberg magnet has a spectral curve with a
single branch cut. A suitable ansatz for the quasi-momentum q(u) is

q′±(u) = ± au+ b

u2
√
u2 + cu+ d

. (4.3)

The ± labels the two branches of the function, which are connected by a branch cut
stretching between two branch points at the zeros of the square root. Let A be a coun-
terclockwise cycle around the branch cut, and B a path going from u = ∞− on the one
branch trough the cut and back to u =∞+ on the other branch. Then q′(u) should satisfy∮

A

q′+(u) du = 0 ,
1

2π

∫
B

q′(u) du = n ∈ Z , I =
1

2πi

∮
A

u q′+(u) du , (4.4)

where I is called the “filling” of the cut. Moreover, the length L, momentum P , energy
E, and angular momentum Q appear in series expansions of q+(u) as

u→ 0 : q+(u) =
L

u
− P

2
+
uE

4
+O(u2) , u→∞+ : q+(u) =

Q

u
+O(u−2) . (4.5)

a) Express the coefficients a, b, and c in terms of d, L, and I using the A-cycle conditions
and series expansions. Hint: A-cycle integrals are sums of residues at u = 0,∞.

b) Integrate q′(u) to q(u), and find d in terms of n and L by the B-cycle condition.
Fix the integration constant by the vanishing of q+(u) at u = ∞. Hint: Compute(√

A− 2Bu+Du2 /u
)′

. The square root has different signs on the two branches.

c) Expand q+(u) at u = 0,∞, and find expressions for P , Q, and E by matching (4.5).
Compare the results to your results of 4.1 c)

−→
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4.3. Zamolodchikov–Faddeev Algebra and Sine–Gordon (5 points)

Consider operators Ai(u) that satisfy the commutation relations

Ai(u2)Aj(u1) =
∑
k,`

Sklij (u12)Ak(u1)A`(u2) , u12 = u1 − u2 . (4.6)

For i different from j, Ai(u) and Aj(u) are independent operators. Aj(u) can be thought
of as creating a particle of type (flavor) j with rapidity u: Aj(u)|0〉 = |Aj(u)〉. The
scattering factors Sk`ij (u) are scalar functions of u that form the scatterin matrix S(u).

Obtain consistency conditions for the matrix S(u) from the commutation relations by

a) taking the limit u12 → 0.

b) iterating (4.6) twice. Draw a diagram for the resulting condition.

c) relating the product Ai(u3)Aj(u2)Ak(u1) back to a sum over Ar(u1)Ap(u2)Aq(u3) by
iteratively applying (4.6) in two different ways. Draw a diagram for the resulting
condition. Interpret triple products of Ai(uk) as states of a three-site system, and
write the condition as an equation for S12(u) and S23(u), where the indices denote
the sites on which the respective matrix acts.

Specialize to a model with particles A and Ā, and three different scattering amplitudes:

SI(u) = SAAAA(u) = SĀĀĀĀ(u) , ST(u) = SĀAAĀ(u) = SAĀĀA(u) , SR(u) = SĀAĀA(u) = SAĀAĀ(u) .

d) Write the relation (4.6) for all combinations of A and Ā. Show that the conditions
from c) with Sx ≡ Sx(u12), S ′x ≡ Sx(u13), and S ′′x ≡ Sx(u23), x ∈ {I,T,R} amount to

SIS
′
TS
′′
R = STS

′
IS
′′
R + SRS

′
RS
′′
T , SIS

′
RS
′′
I = SRS

′
IS
′′
R + STS

′
RS
′′
T ,

SRS
′
TS
′′
I = SRS

′
IS
′′
T + STS

′
RS
′′
R . (4.7)

e) Show that the existence of a non-trivial solution to (4.7) requires that the quantity

∆ =
S2

I (u) + S2
T(u)− S2

R(u)

2SI(u)ST(u)
(4.8)

is independent of u.

Hint: Write (4.7) in matrix form M ·
(
S ′′I , S

′′
R, S

′′
T

)T
= 0.

Remark: This type of system is realized in the Sine–Gordon model with Lagrange density

L = 1
2

(
∂µφ
)2

+ m2

β2 cos(βφ). In that case, A(u) and Ā(u) are the soliton and anti-soliton
solutions, with scattering factors

SI(u) = sinh

[
8π

η
(iπ − u)

]
f(u) , ST(u) = sinh

[
8π

η
u

]
f(u) , SR(u) = i sin

[
8π2

η

]
f(u) ,

and with ∆ = − cos(8π2/η), where 1/η = 1/β2 − 1/(8π).
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5.1. Heisenberg Spin Chain: Direct Diagonalization (4 points)

Consider the Heisenberg spin chain with periodic boundary conditions and Hamiltonian

H =
L∑
j=1

(Ij,j+1 − Pj,j+1) . (5.1)

Compute the spectrum of eigenvalues of H (energies) by direct diagonalization for the
cases specified below. M denotes the number of up spins.

a) Compute the spectrum for a spin chain of length L = 3 and arbitrary number M of
spin flips. How do the eigenstates organize into su(2) multiplets? The generators of
su(2) are Qα =

∑
i σ

α
i /2, α = x, y, z, and Q± = Qx ± iQy.

b) Restrict to cyclic states, i. e. identify all states that are equivalent under cyclic per-
mutations of the spin chain sites. Compute the spectrum for the states with L = 4,
M = 2, and for L = 6, M = 2, 3.

5.2. Heisenberg Spin Chain: Bethe Equations (4 points)

The Bethe equations for the XXX1/2 Heisenberg spin chain read(
uk + i/2

uk − i/2

)L
=

M∏
j=1
j 6=k

uk − uj + i

uk − uj − i
, k = 1, . . . ,M . (5.2)

Each solution to these equations (such that all finite uk are distinct) defines an eigenstate
of the Heisenberg Hamiltonian with M up spins (magnons). The energy E and momentum
P are given by

E =
M∑
k=1

(
i

uk + i/2
− i

uk − i/2

)
, eiP =

M∏
k=1

uk + i/2

uk − i/2
. (5.3)

a) Use the Bethe equations to compute the energy spectrum for L = 3 and M ≤ 1.
States with M > L/2 are obtained from states with M ≤ L/2 by flipping all spins.
Compare to the results of problem 5.1 a). How are the su(2) multiplets realized?

In the following, restrict to cyclic states, i. e. require eiP = 1.

b) Compute the energy spectrum for L = 4, M = 2, and for L = 6, M = 2. Compare to
the results of problem 5.1 b).

c) Compute the energy spectrum from the Bethe equations for any L and M = 2.

d) The solution for L = 6, M = 3 is singular. Show that the regularized rapidities

u1 =
i

2
+ ε+ c ε6 , u2 = − i

2
+ ε , u3 =

1− 4u1u2

4(u1 + u2)
+ d(ε) (5.4)

solve the Bethe equations and the condition eiP = 1 in the limit ε→ 0 for a suitable
constant c and function d(ε). Compare to your result of problem 5.1 b).

−→
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5.3. Coordinate Bethe Ansatz for the XXZ Spin Chain (4 points)

Consider the Hamiltonian H of the XXZ spin chain with periodic boundary conditions:

H =
L∑
j=1

Hj,j+1 , Hj,k =
1

2

[
σxj σ

x
k + σyjσ

y
k +∆(σzjσ

z
k − 1j1k)

]
, σL+1 ≡ σ1 , (5.5)

which acts on a spin chain of length L with spins |↓〉 = (0, 1)T and |↑〉 = (1, 0)T. Here,
σij, i ∈ {x, y, z} are the Pauli matrices acting on the spin state at site j.

a) Consider a general state with a single up spin

|ψ1〉 =
L∑
k=1

f(k) |k〉 , |k〉 = |↓↓ . . . ↓↓
k

↑↓↓ . . . ↓↓〉 . (5.6)

Convert the eigenvalue equation H|ψ1〉 = e1|ψ1〉 to a finite difference equation for
f(k). Show that the one-magnon ansatz f(k) = eipk solves the equation, and that the
dispersion relation becomes e1(p) = 2(cos(p)−∆).

b) Now consider states with two up spins:

|ψ2〉 =
∑

1≤k<`≤L

f(k, `) |k, `〉 , |k, `〉 = |↓ . . . ↓
k

↑↓ . . . ↓
`

↑↓ . . . ↓〉 . (5.7)

Starting with the eigenvalue equation 〈k, `|H|ψ2〉 = e2 f(k, `), derive two difference
equations for f(k, `) by considering the two cases k + 1 < ` and k + 1 = `. Using the
two-magnon ansatz

f(k, `) = eipk+iq` + S(p, q) eiqk+ip` , (5.8)

show that the dispersion relation is e2(p, q) = e1(p) + e1(q), and that the scattering
phase S(p, q) must satisfy

S(p, q) = − 1 + ei(p+q) − 2∆ eiq

1 + ei(p+q) − 2∆ eip
. (5.9)

Hint: First compute the action of H on neighboring spins |↓↓〉, |↑↑〉, |↓↑〉, and |↑↓〉.

c) Express S(p, q) in terms of rapidities u, v, which are related to the momenta p, q via

eip =
u+ i/2

u− i/2
. (5.10)

Taking the limit ∆→ 1, show that the Bethe equations eipkL =
∏M

j=1,j 6=k S(pj, pk) for
an M -magnon state become(

uk + i/2

uk − i/2

)L
=

M∏
j=1
j 6=k

uk − uj + i

uk − uj − i
. (5.11)
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