Statistische Physik

Übungskoordination: Dr. T. Bargheer

Präsenzübung, Blatt 14

WiSe 2018/19

31.1.2019

[P28] Temperaturprofil im Erdinneren

(a) Erweitern Sie die Wärmeleitungsgleichung

$$\frac{\partial \tau}{\partial t} = D_{\tau} \vec{\nabla}^2 \tau \tag{1}$$

um einen Quellterm g_u , welcher eine Wärmeerzeugungsrate je Volumeneinheit darstellt, mit Maßeinheit $[g_u] = J/(s m^3)$.

- (b) Für den Wärmehaushalt im Erdinneren wird ein solcher Quellterm durch den Zerfall radioaktiver Elemente realisiert. Lösen Sie die erweiterte Wärmeleitungsgleichung für den Fall der Erdkugel. Nehmen Sie dabei an, dass die Oberflächentemperatur konstant $\tau_0 = 280\,\mathrm{K}$ beträgt, die Temperaturverteilung im Erdinneren zeitunabhängig ist, und dass sowohl die Wärmeerzeugungsrate g_u als auch die Wärmeleitfähigkeit K konstant und ortsunabhängig sind.
- (c) Wenn die Temperatur im Erdmittelpunkt 6000 K und die Wärmeleitfähigkeit $K \simeq 3 \,\mathrm{J/(s\,m\,K)}$ beträgt, wie hoch ist dann die Wärmeerzeugungsrate g_u ? Der Erdradius beträgt $R_{\rm E} \simeq 6.4 \cdot 10^6 \,\mathrm{m}$, und $k_{\rm B} \simeq 1.38 \cdot 10^{-23} \,\mathrm{J/K}$.

[P29] Ehrenfestsches Urnenmodell zur Irreversibilität

Das Erscheinen der Irreversibilität in statistischen Systemen kann gut durch ein einfaches Urnenmodell dargestellt werden. Betrachten Sie N durchnumerierte Kugeln, welche sich in beliebiger Weise auf zwei Urnen U_0 und U_1 verteilen. In jedem Zeitschritt wird eine zufällige Zahl zwischen 1 und N gezogen und die entsprechende Kugel aus ihrer Urne genommen und in die andere Urne gelegt. Die mikroskopischen Zustände des Systems sind durch $x = (x_1, \ldots, x_N)$ gegeben, mit $x_i = a, a \in \{0, 1\}$, wenn Kugel i sich in Urne U_a befindet. Als makroskopische Observable wird die Zahl n der Kugeln in Urne U_1 genommen.

- (a) Welche mikroskopischen Zustände sind benachbart? Wie groß sind die mikroskopischen Übergangswahrscheinlichkeiten? Welches ist die mikroskopische Gleichgewichtsverteilung $p_{eq}(x)$?
- (b) Geben Sie die bedingte Wahrscheinlichkeit (Übergangswahrscheinlichkeit) $T_{n,n'}$ an, in Urne U_1 n' Kugeln zu finden, wenn sie im vorigen Schritt n Kugeln enthielt. Finden Sie die makroskopische Gleichgewichtsverteilung $P_{eq}(n)$, und zeigen Sie, dass detailliertes Gleichgewicht gilt:

$$P_{\text{eq}}(n) T_{n,n'} = P_{\text{eq}}(n') T_{n',n}. \tag{2}$$

- (c) Es sei n_t die Zahl der Kugeln in Urne U_1 zum Zeitpunkt t. Betrachten Sie die Zufallsvariable $f(\tau) := n_{N\tau}/N$. Berechnen Sie zu gegebenem $f(\tau)$ den Erwartungswert $\langle f(\tau+1/N) \rangle$ und gewinnen Sie hieraus eine Differentialgleichung für den Erwartungswert $\langle f(\tau) \rangle$ im Grenzwert $N \to \infty$. Lösen Sie die Differentialgleichung. Finden und lösen Sie auf die gleiche Weise die Differentialgleichung für die Varianz $\sigma^2(\tau) = \langle f(\tau)^2 \rangle \langle f(\tau) \rangle^2$. Interpretieren Sie das Ergebnis.
- (d) Simulieren Sie das System für N = 8/16/32, z. B. mit Hilfe numerierter Karten.