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Firstly, a few words about this exercise course. You can forms groups up to 3 persons. The
solutions should be uploaded to StudIP in form of a PDF file or a Mathematica notebook
into the corresponding folder. I will look at the latest version uploaded before 12:00 on the
submission day. The solutions should contain the code, its output and comments describing
what you do and why.
The preferred program is Mathematica. You can use other tools and languages (e.g. Py-
thon), but support is not guaranteed.
There is no strict grading system as these exercises are not about following a recipe. There
are several ways to approach the problem, and many ways to shape your approach into a
code. The exercises are not extensive: if you know what you’re doing, you can solve them
in a few lines.
If you have questions about this exercise, or if you’re stuck, you can contact me via
zhilin@math.uni-hannover.de .

[H13] The Ising model (12 points)

Let us play a bit with the Ising model. It is a famous toy model for ferromagnetism.
Imagine a square lattice (we will stick to two dimensions), each site occupied by a spin s.
Each spin can either point up (s = +1) or down (s = −1). Each link (i, j) connects two
spins (si and sj) and contributes εij = −sisj to the total energy. One can also turn on an
external magnetic field h, so that each spin contributes additional εi = −hsi. Hence the
total energy of a spin configuration {s} is

E({s}) = −
∑
(i,j)

sisj − h
∑
i

si.

An example of a spin lattice.

You can see that it is energetically favourable for spins
to point in the same direction. One might expect that
at high temperatures the spins will point random-
ly, while at low temperatures they will spontaneously
align. This is exactly what happens in ferromagnetic
materials.
In what follows we will consider a 64 × 64 peri-
odic square lattice. Periodic means that, for exam-
ple, a spin at site (1, 1) interacts with spins at
(1, 2), (2, 1), (1, 64), (64, 1). Even for such a modest
lattice it is hardly possible to sum over all 264×64 con-
figurations. The best we can do is to sample this sum
by a stochastic process — in this exercise we will use
the Metropolis algorithm.

Please turn



To implement the Metropolis algorithm you can start with a lattice of randomly chosen
spins. Then repeat the following steps:

1. Pick a random lattice site.

2. Calculate the energy ∆E needed to flip the chosen spin.

3. If ∆E < 0, flip this spin. Otherwise flip it with probability e−∆E/τ (τ is the tempe-
rature).

This process generates a sequence of spin configurations {s(t)}, where t is the number
of repetitions and can be thought of as a „time“ variable. If simulation time T is lar-
ge enough, one can compute statistical averages 〈O〉 = 1

Z

∑
{s}O({s})e−E({s})/τ as time

averages 〈O〉T = 1
T

∑t=T
t=0 O({s(t)}).

Your task is to make an animation of the Metropolis algorithm at work. You can repre-
sent the lattice as an array of coloured squares, the colour representing the state of the
corresponding spin. Make it possible to adjust the value of temperature τ and magnetic
field h in real-time without resetting the animation. Explore the behaviour of the system
at different values of τ and h (make sure that you update the lattice fast enough to see
„thermal fluctuations“). Estimate roughly the critical temperature τc that separates the
ordered and disordered phases at h = 0.
Compute the correlation function 〈sisj〉 at zero magnetic field. This function depends
on the temperature and on the distance d = |i− j| between the spins. For simplicity you
can average over all pairs of spins that lie on the same vertical or horizontal line and are
separated by distance d. Plot the correlation function as a function of d for several values
of temperature above and below τc. Check whether your computation is reliable, i.e. gives
the same result every time you run your program.

Bonus (4 points) Compute the heat capacity (per site) and the disorder correlation function
〈σaσb〉 at zero magnetic field. Plot the former as a function of τ , and the latter as a function
of separation d = |a− b| for several values of τ . The disorder variables σa live on the dual
lattice, i.e. on the centres of the squares formed by the links. Again, for simplicity let „dual“
sites a and b lie on a vertical or horizontal line. Connect these sites with a (shortest) line
and mark the links crossed by the line. The presence of σaσb insertion is equivalent to
flipping the interaction sign on the crossed links, i.e. each crossed link contributes sisj
instead of −sisj to the energy. Compare the behaviour of 〈σaσb〉 to that of 〈sisj〉.

Remark You can learn more about the Metropolis algorithm and its use in statistical
physics on the corresponding Wikipedia page.


