[P25] Darstellungen der Drehimpulsalgebra und Drehgruppe für $\ell=1$

Die gemeinsamen Eigenvektoren $|\ell,m\rangle$ zu \vec{L}^2 und L_3 erfüllen

$$\vec{L}^{2} |\ell, m\rangle = \ell (\ell + 1) |\ell, m\rangle,$$

$$L_{3} |\ell, m\rangle = m |\ell, m\rangle,$$

$$L_{+} |\ell, m\rangle = \sqrt{(\ell + m + 1)(l - m)} |\ell, m + 1\rangle,$$

$$L_{-} |\ell, m\rangle = \sqrt{(\ell - m + 1)(l + m)} |\ell, m - 1\rangle,$$

und spannen für jeden Wert von ℓ einen $2\ell+1$ -dimensionalen Vektorraum \mathcal{R}_{ℓ} auf.

(a) Finden Sie für den Fall $\ell=1$ (also Spin 1) eine Matrixdarstellung \mathcal{D}_{ℓ} der Operatoren L_+, L_- und L_3 bzw. L_1, L_2 und L_3 der Drehalgebra. Wählen Sie dazu

$$|1,1\rangle \doteq \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad |1,0\rangle \doteq \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \quad |1,-1\rangle \doteq \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

als Basis des Darstellungsraumes \mathcal{R}_{ℓ} .

(b) Führen Sie eine unitäre Basistransformation aus mit der Matrix

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 0 & 1\\ -i & 0 & -i\\ 0 & \sqrt{2} & 0 \end{pmatrix}.$$

Wie lauten die Operatoren L_1 , L_2 und L_3 in dieser Darstellung \mathcal{D}'_{ℓ} ?

(c) Auf dem Darstellungsraum \mathcal{R}_{ℓ} operiert die Darstellung \mathcal{U}_{ℓ} der Drehgruppe durch Exponentiation der Darstellung \mathcal{D}_{ℓ} der Drehalgebra,

$$\mathcal{U}_{\ell}(g = e^{-i\theta_i L_i}) = e^{-i\theta_i \mathcal{D}_{\ell}(L_i)}$$
.

Finden Sie die Darstellung des Gruppenelementes

$$q = e^{-\mathrm{i}\theta L_3}$$

sowohl in der Darstellung \mathcal{U}_{ℓ} als auch in der Darstellung \mathcal{U}'_{ℓ} .

[P26] Eigenfunktionen zum Drehimpuls für $\ell=2$

Betrachten Sie die Drehimpulsalgebra in kartesischer Ortsraumdarstellung,

$$L_x \doteq -i(y\partial_z - z\partial_y),$$

$$L_y \doteq -i(z\partial_x - x\partial_z),$$

$$L_z \doteq -i(x\partial_y - y\partial_x),$$

wobei $\hbar = 1$ gesetzt wurde.

(a) Bilden Sie damit die Operatoren L_+ und L_- . Finden Sie ein homogenes Polynom $p_2(x, y, z)$ zweiten Grades, das eine Eigenfunktion zu L_z und \vec{L}^2 ist und von L_+ vernichtet wird, d.h.

$$\vec{L}^2 p_2(x, y, z) = 6 p_2(x, y, z), \quad L_z p_2(x, y, z) = 2 p_2(x, y, z), \quad L_+ p_2(x, y, z) = 0.$$

Dieses Polynom entspricht dem Zustand $|\ell, m\rangle$ mit höchstem Gewicht $m = \ell = 2$.

(b) Berechnen Sie für das soeben gefundene Polynom die weiteren Polynome

$$p_{2-k} = (L_{-})^k p_2(x, y, z)$$

für $k = 1, \dots, 5$. Proportionalitätsfaktoren dürfen vernachlässigt werden.

(c) Transformieren Sie schließlich die $p_m(x, y, z)$ in Kugelkoordinaten und nehmen Sie dabei an, dass $x^2 + y^2 + z^2 = 1$ ist. Vergleichen Sie Ihre Resultate mit der expliziten Form für die Kugelflächenfunktionen

$$Y_{\ell,m}(\varphi,\theta) = e^{im\varphi} P_{\ell,m}(\cos\theta)$$

wobei die benötigten assoziierten Legendre-Polynome definiert durch

$$P_{2,2} = 3\sin^2\theta$$
, $P_{2,1} = 3\sin\theta\cos\theta$, $P_{2,0} = \cos^2\theta - \frac{1}{2}\sin^2\theta$

gegeben sind und die Symmetrien

$$P_{2,-1} = P_{2,1}, \qquad P_{2,-2} = P_{2,2}$$

besitzen.