SoSe 2018

10./11.04.2018

[P1] Hermitesche Konjugation

Seien M eine 2×2 Matrix, $|\phi\rangle$ und $|\psi\rangle$ beliebige Zustandsvektoren sowie λ eine komplexe Zahl. Man zeige:

- (a) $\langle \phi | M | \psi \rangle^* = \langle \psi | M^{\dagger} | \phi \rangle$,
- (b) $M|\psi\rangle = \lambda|\psi\rangle \implies \langle\psi|M^{\dagger} = \lambda^*\langle\psi|$.

[P2] Eigenwerte und Eigenvektoren einer hermiteschen Matrix

Gegeben sei die hermitesche Matrix

$$A = \begin{pmatrix} 7 & \sqrt{2} + i \\ \sqrt{2} - i & 5 \end{pmatrix}.$$

- (a) Bestimmen Sie die Eigenwerte a_i der Matrix A.
- (b) Bestimmen Sie die Eigenvektoren $|\Psi_i\rangle$ und normieren Sie diese $(\langle \Psi_i | \Psi_i \rangle = 1)$.

[P3] Entwicklung nach einer Basis

Entwickeln Sie

$$|\Psi\rangle \doteq \frac{1}{\sqrt{13}} \begin{pmatrix} 3\\2\mathrm{i} \end{pmatrix}$$

nach den orthogonalen (?) Basisvektoren

$$|\Psi_1\rangle \doteq \frac{1}{2} \begin{pmatrix} \sqrt{2} + \mathrm{i} \\ -1 \end{pmatrix} , \qquad |\Psi_2\rangle \doteq \frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{2} - \mathrm{i} \end{pmatrix} .$$

Gesucht ist also $|\Psi\rangle = c_1 |\Psi_1\rangle + c_2 |\Psi_2\rangle$. Ist $|c_1|^2 + |c_2|^2 = 1$ erfüllt?

[P4] Spur und Determinante

Seien A und B beliebige 2×2 -Matrizen. Zeigen Sie:

- (a) tr(AB) = tr(BA).
- (b) $\det(A \lambda I) = \lambda^2 \lambda \operatorname{tr} A + \det A$, $\lambda \in \mathbb{C}$.