SoSe 2018

Abgabe: 03.07.2018

[H27] Paramagnetische Elektronspin-Resonanz

(3 Punkte)

Ein Teilchen der Masse m, Ladung e und Spin 1/2 befindet sich in einem zeitabhängigen Magnetfeld $\vec{B}(t)$. Der Hamiltonoperator dieses Systems lautet

$$H = \frac{e\hbar}{mc} \vec{B}(t) \cdot \vec{S} = \frac{e\hbar}{mc} (B_1 S_x \cos \omega t + B_1 S_y \sin \omega t + B_0 S_z) .$$

(a) Verwenden Sie zur Lösung der zeitabhängigen Schrödingergleichung den Ansatz

$$\begin{pmatrix} \langle +|\psi(t)\rangle \\ \langle -|\psi(t)\rangle \end{pmatrix} = \exp(\mathrm{i}\lambda t) \begin{pmatrix} a_1 \, \mathrm{e}^{-\frac{\mathrm{i}\omega t}{2}} \\ a_2 \, \mathrm{e}^{+\frac{\mathrm{i}\omega t}{2}} \end{pmatrix} .$$

Welche Werte für λ sind möglich? Die Rotationsfrequenz des Magnetfeldes sei gleich der Präzessionsfrequenz des Teilchens: $\omega = eB_0/mc$ (Siehe Präsenzübung [**P27**]). Bestimmen Sie a_1 und a_2 für alle erlaubten Werte von λ .

(b) Zur Zeit t=0 ist das System im Eigenzustand von S_z mit Eigenwert $s_z=1/2$. Berechnen Sie die Wahrscheinlichkeit, dass zur Zeit t>0 der Wert $s_z=-1/2$ gefunden wird.

[H28] Spin-Bahn-Kopplung

(3 Punkte)

Die Bewegung eines Protons (Spin 1/2) in einem rotationssymmetrischen Zentralpotential wird durch den Hamiltonoperator $H=H_0+H_1$ mit

$$H_0 = \frac{1}{2m}P^2 + V(R)$$
 und
$$H_1 = \alpha \, \hat{\vec{L}} \cdot \hat{\vec{S}} \quad \text{für} \quad \alpha = \text{konst.}$$

beschrieben. H_1 beschreibt dabei die Spin-Bahn-Kopplung.

Im Fall fehlender Spin-Bahn-Kopplung (α =0) lassen sich die Eigenzustände von H als Tensorprodukt

$$|n, \ell m_{\ell}, s m_{s}\rangle = |n \ell m_{\ell}\rangle \otimes |s m_{s}\rangle$$

aus einem Bahndrehimpuls-Eigenzustand $|n \ell m_{\ell}\rangle$ und einem Spin-Eigenzustand $|s m_{s}\rangle$ schreiben (n ist eine weitere Quantenzahl). Die Eigenenergien für $\alpha=0$ sind $E_{n,\ell}^{0}$. Betrachten Sie im folgenden den Fall $\alpha \neq 0$.

(a) Verwenden Sie die Tensorprodukt-Basiszustände $\{|n, \ell m_{\ell}, s m_{s}\rangle\}$ und geben Sie H bei festem n explizit in dieser Darstellung für $\ell=0$ und $\ell=1$ an. Es gilt die Beziehung:

$$\hat{\vec{L}} \cdot \hat{\vec{S}} = \frac{1}{2} \left(\hat{L}_{+} \hat{S}_{-} + \hat{L}_{-} \hat{S}_{+} \right) + \hat{L}_{z} \hat{S}_{z}.$$

(b) Geben Sie die Eigenzustände und Eigenenergien von H an. Benutzen Sie hierzu, dass die Drehimpulsoperatoren \vec{J}^2 , $\hat{\vec{L}}^2$, $\hat{\vec{S}}^2$ und J_z miteinander vertauschen.

Bemerkung: Man kann nun die Eigenvektoren von H in (b) durch die Produktzustände $\{|n, \ell m_{\ell}, s m_s\rangle\}$ ausdrücken. Ein Vergleich mit (b) gibt dann die Basistransformation. Die dabei auftretenden Koeffizienten heißen Clebsch-Gordan-Koeffizienten (Siehe Präsenzübung [**P28**]).

[H29] Dreidimensionaler harmonischer Oszillator

(4 Punkte)

Die zeitunabhängige Schrödingergleichung des dreidimensionalen isotropen harmonischen Oszillators lautet

$$\left(-\frac{\hbar^2}{2m}\Delta + \frac{m\omega^2}{2}r^2\right)\psi_E = E\,\psi_E\,.$$

(a) Machen Sie den Separationsansatz $\psi_E(r, \vartheta, \varphi) = \frac{1}{r} \chi_{E,\ell}(r) Y_{\ell,m}(\vartheta, \varphi)$ und zeigen Sie, dass $\chi_{E,\ell}(r)$ die Differentialgleichung

$$\frac{\mathrm{d}^2 \chi_{E,\ell}(r)}{\mathrm{d}r^2} + \left(\frac{2mE}{\hbar^2} - \lambda^2 r^2 - \frac{\ell(\ell+1)}{r^2}\right) \chi_{E,\ell}(r) = 0$$

mit $\lambda = m\omega/\hbar$ erfüllt.

(b) Bestimmen Sie das asymptotische Verhalten von $\chi_{E,\ell}(r)$ für $r\to 0$ und $r\to \infty$. Setzen Sie

$$\chi_{E,\ell}(r) = r^{\ell+1} e^{-\frac{1}{2}\lambda r^2} u_{E,\ell}(r)$$

und finden Sie die Differentialgleichung für $u_{E,\ell}(r)$

(c) Substituieren Sie $u_{E,\ell}(r) = v_{E,\ell}(\eta)$ mit $\eta = \lambda r^2$ und geben Sie die Differentialgleichung für $v_{E,\ell}(\eta)$ an. Entwickeln Sie $v_{E,\ell}(\eta)$ in eine Potenzreihe

$$v_{E,\ell}(\eta) = \sum_{n=0}^{\infty} a_n \eta^n$$

und bestimmen Sie die Rekursionsbeziehung für die Koeffizienten.

(d) Die Forderung nach polynomialen Lösungen liefert eine Abbruchbedingung für die Rekursionsbeziehung der Koeffizienten. Berechnen Sie über die Abbruchbedingung die Energieeigenwerte $E_{N,\ell}$, wobei $N=0,1,\ldots$ geschickt zu wählen ist. In kartesischen Koordinaten findet man übrigens $E_{n_1,n_2,n_3}=\hbar\omega(n_1+n_2+n_3+\frac{3}{2})$. Verifizieren Sie, dass Sie tatsächlich die gleichen Energien und Entartungsgrade gefunden haben.