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Central problem

 Two point of views: pheno and formal
 Pheno problem: can we predict number of particles in a jet analytically?

 Formal problem: what is the space of detectors in a weakly coupled field theory?

Consider one-point event shape in collider physics: | S o
J; is the Lorentz spin which is preserved by hadronization

Moo= - [ daem=@LON, M@0 N(7) = > (Ci( I, ) D) (7, 1)

Wilson Coefficients that describe parton-> hadron matching

JL=2—d:

| dd 1—* R
More generally: Ny, (z Z/ = 12EE2 —d—Jp §d=2 (55 _ )aT(ﬁjaz(”)

« J; = —2: multiplicity
« J; = — 3: energy (only this one IRC safe)

A
/A

Confinement

« J; = — 4: energy squared
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N(ri) = Z Ci(JL, U)DJL,i(ﬁa 1) I—9—d

» Dependence of (N(1)), on O can be
understood by analyzing the matrix elements

of gzJL,k(ﬁa //t)

 Above eqguation is an expansion In
(Agep/ Q)7 with — A being the

Eigenvalue of RG equation of 9 (71, u)

» What is the set of J; = — 2 operators that
describe the expansion of N(72)?
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Detectors In free theory

For a free massless scalar,

H x Jdd—lp’ a'(p)a(p) = Jdd‘ZfiJ dE E=* a"(En)a(En) = &,(i)
0

One can generalize this to define an operator measuring E/=1 flux:

E£7(n) o /000 dE E/T44gT(En)a(En).

Define n* = z# = (1,n). Under Lorentz boost along the direction 7, we have z — Az. The powers
of A under boost define the boost weight or the collinear spin or Lorentz spin J;:

Er(Az) = /\B_d_JgJ(Z) (A >0)

For & ,(n) we have mass dimension, —A; = J — 1, Lorentz spin,J; =3 —d —J
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Detectors In interacting theory

* Instead of using creation-annihilation operators, define the detectors in terms of light-ray operators:

E£7(z) = 2L[0Os]|(o0, 2) Qr{x,2) = Ny :¢(z)(2 - 0) ¢(x): +(z-0)(-- )

| Contract Lorentz indicies with z¥
Spin of the local operator

direction ,.~c

L|O|(x,n) :/ do(—a) 2770 (:1: n,n) E(n) = lim TQ/()OC dt ;T (t,ri)

Y T— 00
. . — O
starting point (Kravehuk, Simmons-Duffin, 2018] [Sveshnikov, Tkachov, 1996; Hofman, Maldacena, 2008;.. ]

» For free theory, A = J + 2(d — 2)/2, such that scaling dimension A; = 1 — J and Lorentz spin

» In the interacting theory we can’t have both A; and J; come out as expected:

Shrinking the € to 7 forces us to consider the OPE ~

By(Q) o 99 2Bk, (n)

E5(2) E/ﬂdd_zné’z(n)

This happens because the dimension of O ; becomes anomalous
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Disaster?

Turn on qb4 interactions and tune to Wilson-Fisher fixed point

3 1672

1 63_[2g2+0(82) g =3¢ 0(&?)

L0 & 4 _
E—E(aqb) | 4!¢ p(g) =—¢&g

Mass dimension of O,: A(J) =24, + J + y(J)

108° T 11664°

11 109 7217 2¢(3)
Ay =1 | 2 ’
¢ 2° ) " (1259712 243

) e+ O(¢),

1 o (22J% —32J — 27 2H(J)
v(J) = € + 3 3
9J(J + 1) 486J2(J + 1) 27J(J + 1)

) 5 + O(eh).

Notice that y(J) has poles for J/ = 0, — 1. This means we have failed to appropriately renormalize the
operators & ,(n) at these points. Predicts absurd scaling under boosts: J; = 1 — A(J)

The reason for poles is because we have ignored other Regge trajectories



Regge trajectories in free theory

Light transforms analytically

continued in J: L[O)] * |tis important to know if there are other
SN T T T T S I operators that could mix with L[ O]
\Spin-Shadow -
s o , ! * The spin shadow defines another set of
S70)(z, 2z) = /D 2'(—2z-2') LO(z, 2"). _ _
- light-ray operators with the same
AL: 1 _JbUtJL—> Z—d—JL
* For interacting theory, mixing at the
: Regge intercept described by a
/ ' quadratic equation with roots:
ight transforms
of higher twist v =QA,—d2+J+y(J))?, v=A-d/2
operators /
\ '  Solution gives: A = d/2 = \/J2 — ¢?
e 0 o T « Naive expansion at a generic J:

d €2
A=—+[J——]+...
5 2 J



Perturbation Theory in QM

Slides from Hao Chen’s talk at EEC Workshop, Wuhan
Physicists are extremely good at doing perturbation theories.

Hamiltonian: H = Hy + \V » Goal: solving equation H|V,,) = E,|V¥,,)

perturbation

Hilbert space: Hy|n) = E”|n) [assume no degeneracy]

| | (k|V|n) |?
Perturbative expansion: E,(\) = E + X\ (n|V|n) + A\ Z | (0)‘ W(‘O)

(k|V|n) |2 Z Z (n|V|m) (m|V]k) <kVn>) L

0 0 0 0 0 0
(EO _ g0z " £ 2 (g0 g0 g0 _ glo)

At each order in the expansion, we find pole structures when energy levels are very close.

— Numerically, this approximation is not good when the energy gap is O(4) [resummation is needed]
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https://indico.ihep.ac.cn/event/24880/contributions/187645/attachments/90593/117768/EEC_workshop_Hao_Chen.pdf

Two-level system example

Slides from Hao Chen’s talk at EEC Workshop, Wuhan
If the first excited state is close to the ground state, while all other states are far-separated,

—— the leading approximation for lowest two states is a two-level system

B
Example: H = EO'Z -+ )\(30‘;,; -+ O'Z) |B| is the energy gap for “free” Hamiltonian Hy = 50

Perturbative expansion for the ground state energy

B ONZ  18X%  45A\% 414)\°
b, = A | | .- B>0
7 2 B B? B3 B4

Not easy to resum if one does not recognize the pattern of coefficients

dE, a1\ + as solution 1
N <¢g| Wg> NS russ e E, 2\/3 + 4B + 40\

Hellmann-Feynman theorem

But everyone knows there is a straightforward way! [direct diagonalization]

1
det(H — EI) = E?> — (B*/4+ BA+10\?) ——— E = ::5\/32 + 4B + 402

0


https://indico.ihep.ac.cn/event/24880/contributions/187645/attachments/90593/117768/EEC_workshop_Hao_Chen.pdf

1.

Avoided Level Crossing

Slides from Hao Chen’s talk at EEC Workshop, Wuhan

s I

A = 0.02

1) The “free” Hamiltonian has degeneracy at

B = 0, but is lifted by small perturbation.

Comparison btw two methods:

1. Perturbation + resummation

4
7/
4
4
7/
7/
‘T>/

Varying the external field B, we find
avoided level crossing near B ~ 0.

B [may not know the existence of the second level]

Apply perturbation within the valid regime

Resum the series near the intersection

2. The existence of the second level is known,
the direct diagonalization is much simpler.
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Regge trajectories in Wilson Fisher theory

e The poles at J = 0 are in fact smooth once
expanded properly:

V' = (204 —d/2 + J +v(J))*
‘ J 1 2 .
_ 72 _ L= 2
= ‘]€+(27 "4 9(J+1))6

3 249 — 4H
109.J° + 164.J% + 265J — 114 (J) 3 4 0@,
2916(J + 1)2 27(J + 1)

e Poles at J = 0 have cancelled.

d
2 * One can obtain further Regge trajectories by
Clebsch-Gordon coefficient for the Lorentz group combining light ray operators:

Hy, (x,2) = /Dd_Zled_zzQH(a:, 21,722). H(z, z1, z0) =:L[¢%(z, z1)L[¢%] (z, z2)

» ForJ =J,+J,— 1> J,(the Regge intercept, here J = () the product requires regularization. For

Wilson Fisher theory, these start at max J = — 1.
13



Constructing detectors in perturbation theory

Convenient to work in the detector frame. Define fields at future null it it
infinity:

-t | st

d(a,z) = lim L%%p(x + Lz), a=—-2x-7

L — 00

Detectors transform like primary operators at infinity: [P#, &] = 0.

Dimension of the detector: [D, 2(2)] = — A; D(2)

: d
CD version: 1 N —A e (T
Q d]'og Q Og(NJL (n))cg [”'mm(JL, X, (Q)) +

Example of a primary detector: Dy (2) = /da1 e da"’M: ¢, 2) - - plan, 2) :

Translationally invariant kernel

 The translation invariance condition and the detector spin J; remains exact in perturbation theory

» Interactions renormalize the detector dimension A;: A; = A; ((J;) + 7,(J;)
14



Spacetime reciprocity

e Starting with the fact that it’s the detector

anomalous dimension A; that gets
renormalized, we can draw interesting

conclusions. Use (J;, A;) = (1 — A1 = J)

Ap =40 +7.Up)

J=Jy—7;(1 —A)

 |n the traditional frame we write
This is renormalizing local operators in the
bulk

o This yields y;(Jy) = y(Jy — y7(Jp)) with
y (1 —A4A) = yr(Jp)

15
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 Turning on interactions will lead to IR divergences. Only the combination &

DGLAP
JLg (2) = Z / (27)
DGLAP

-2 | a5

DGLAP detectors in QCD

« We now consider the E’~!-flux detectors in QCD

JLdE ) t

d—19 [ _a)\,c(p)a’)\,c(p)_ p—E2 :

E~LdE :
d—-19 _b];,'/( )b ( )_|_dJr ( )db,i.(p)_ p=Ez.

jgt D

J; = 1 — d for the energy flow operator (J = 2) is IRC safe.

* Another way to write this:

DGLAP

JLag

F¥(a,z) = lim

L—oo

LAA

@=5

1 HF,,(Lz + az/4)

X Féz)y(al, Z)ngab

17

JLq

(1, 00)Fy (a2, 2) -,

or

/daldag (((){1 — oo + ’1:6)2AA+JL + (g — a1 + 7:6)2AA+JL)



Tree-level matrix elements

! DGLAP ' DGLAP ! DGLAP
* DJI g (z) ' DJI \q (z) ' DJI g (z)
QQ}Q/;\ 39}\\ | | l |
s \ B N NN
}(\;)SU | | p | P
b, v a u j j i i
(a) Gluon case (b) Quark case (¢) Anti-quark case

(0] AL (—q) D24 (2) A% (p)|0) = (2m)46' (p — g) [é“bH,Lu(z)V;L(z;p)] Vi (z:p) = 7 / T 4B gD (p — B2)
0

(0‘%,@-(—‘1)77?3}' AP(Z)’S_'Uj,,fa(P)|O> = (27T)d5 (@) (p—q) _5-ij2fﬂ,gVJL (Z;P)_

(019, 5(—q)DYCEEAP (2)4h; o (p)|0) = (2m) %6 (p — g) _5z'j¢aﬂVJL (2; P)_

 These rules and a lot of algebra gives the tree-level matrix elements:

d— 2
DGL AP tr _
< JL,9g (Z»OE();) 9d+1d—2

: d—2 _
< !I])EC?AP(Z»S&?) — 9d—3 rd—2 NC(ZZ 'p)JL (p2) T )

(N2 = 1)(22 - p) 2 (p2) %




One-loop computation

* At one-loop one has real emission and virtual oA by e ALK oM ki o M.y
contributions i
b, A2, ko m@&%j‘ b, A2, k2
 The one-loop calcualtion yields an € pole which fég b, Az, k2 ééééé b, Az, ko
defines the DGLAP anomalous dimension: & & & &
c, A3, k3 c, A3, k3 c, A3, k3 c, A3, k3

DGLAP 1-loo
<DJL g (2)) [O]RFP)

g° (N —1) (22 - p)°" , 1 1
256me  (p?)/r—] [4CA (V(—JL) T (Jp+2)(Jp+1) Jp(Jr — 1)) B ’30} +0(e)

[DYCLAP (2 p) = [ZDGTAP(%(“))]*ﬁDGLAP(z) p di[DDGLAPJ (23 ) = Y5 (o (1)) [DRIAF R (25 )

« Renormalizaing this way does not remove the J; poles

 These poles as before signal recombination of the DGLAP trajectory with another trajectory

19
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The origin of the J; = — 2 pole

» The poles at J; = — 2 + N arise from the soft limit £ — 0 in the loop computation of the DGLAP

detector

<DDGLAP( ?) n + 1 particle contribution
JLag (P

1 [ EtdE ﬁ di-1k;
- nl ) (2n)d12E (2

(2m)%6' D (p— Ez =Y k)| Fus1(ks, ..., kn, Ez;p)|?
1=1

261

= 1 gzﬁ / 2t R : arpa
— JL 22dﬂ.d—1 n' dLIPSnZ (Z‘Zi)(Z‘Zj)<Fn(k1,...,kn,p)|Ti T7 fn(klaakn,p)>+

n particle form factor

Cross-section level soft factor &
1 2 7

E? (z-z)(z - 24)

Sij(ps) =
21



BFKL Detector

Slides from Hao Chen’s talk at EEC Workshop, Wuhan . .
Apply DGLAP measurement and extract its leading J; pole from soft theorem

® full phase space

°
ddc:f@; Z 2 / \ /z\
/ (2m) "~ 12E; / 999' o Soft Thm I

9 2
@® DGLAP detector Fn —e —_— Z .Z — >~ Jr +2

g
—Jr . t te £
/ (ir)d—clifE [ it B2 \\0 7 \' / T 7 \iji /
; ;

[constrained P.S.]

New “measurement” function — BFKL detector
BFKL detector

detector at J; = — 2

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
* *

DEFRE(:)

— | .. . _JL/2
I‘(]L—I—d 2) /dd_QZidd_27{j (( 22’7, < )> NC(ZZ)N’C(ZJ)

[(Jetd=2)2 22 2;)(22 - 2,

- *
------------------------------------------------------------------------------------------------------

number detector

y E{*dE;
color-interference NC(Zz) o T;/ i ./ddpié(pi —EiZz')


https://indico.ihep.ac.cn/event/24880/contributions/187645/attachments/90593/117768/EEC_workshop_Hao_Chen.pdf

Structure of the BFKL-DGLAP mixing

One aims to define renormalized DGLAP and BFKL detectors whose loop matrix elements have no

¢ poles and no J; poles near J; ~ — 2

<DDGLAP (Z) > 1-loop _

At generic J; we have 7

<DBFKL( )) l-loop _

JLag

<IDDIG;JAP ( z) > 1-loop _

For generic € the J; poles are given by

BFKL( )>l-loop _

~(0
(s 75(79)(JL) <DJ GLAP(z»tree 1 O(EO)
L ’

477 €
as YBFKL(JL) _
22 2 UL) o ) 4 0(e),

as1t%¢ R (e) (
dr  J; + 2

2€
g ld RZ(G) <.DDGLAP(z)>t.rcc + O((JL 4 2 — 46)0).

PR () 4+ O((J5 +2)1),

JL:g

1.9 Ar Jp 42— 4de JLS
These two detectors become identical at J; = — 2 + 2¢. This requires i DROLAP | gfi pBEKL
working with a non-degenerate basis. R PO S
BFKI 9} THDGLAI é g Dé)(i}h‘\l) DH] [/I
Renormalization yields the detector anom. dim: N »
¥
204 11C4 ’
Ap(Jp=-2)), =/ —as as + 0(a®/?)
(AL(JL = ~2)) Ao+ = ag +0(f?)

23



Renormalized Regge trajectories in pure YM

This technology allowed them to predict the

leading and subleading poles of the y;and the
leading poles of y¢

2C 4 11C4 4C% 11C4%
T _ . 2 A - A
7 () = o ( n(J —1) u 67 T ) T <7r2(J —1)3  3w2(J —1)2 L )
. 16C3 22C5 80C" 440C%
3 _ A A A A _ A
—|—a3( 7r3(J—1)5+7r3(J—1)4+'”)+as(7r4(J—1)7 37r4(.]—1)6+”')+””
(4.57)
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