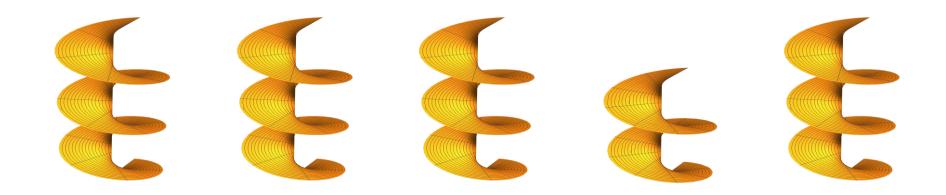
Perturbed symmetric-product orbifold First order mixing and puzzles for integrability

Matheus Fabri, Alessandro Sfondrini, TS



Overview $\mathrm{Sym}_N\mathbb{T}^4$

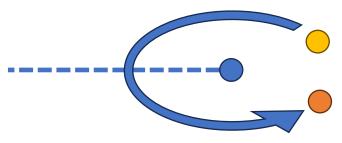
• Start from free 2d $\mathcal{N}=(4,4)$ SUSY theory of 4 bosons and 4 Majorana fermions (central charge c=6)

$$X^{A\dot{A}}(z,\bar{z}), \quad \psi^{\alpha A}(z), \quad \tilde{\psi}^{\dot{\alpha}\dot{A}}(\bar{z})$$

- Copy this N times $\phi o \phi_i$
- Orbifold projection introduces twisted vacua, captured by σ_H , $H \in S_N$ e.g.:

$$\phi_1(e^{2\pi i}z)\sigma_{12}(0) = \phi_2(z)\sigma_{12}(0)$$

• At large N: Decompose into "single cycle" vacua σ_w of "twist" w

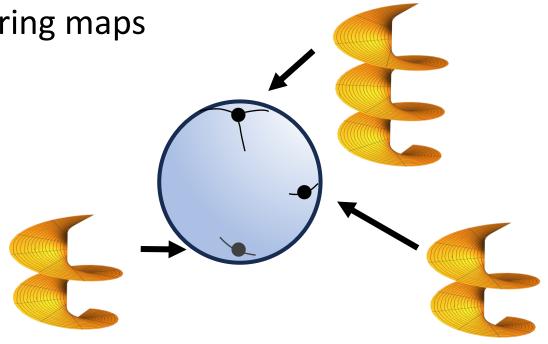


Covering space

- Mode expansion now features fractional modes painful
- Instead consider a covering map $z = \Gamma[t] = t^L$
- We need only one copy of the seed theory on covering space nice
- **Downside:** Need different covering maps for each correlator, e.g.:

$$\langle \sigma_2(0)\sigma_2(1)\sigma_3(\infty)\rangle$$
:

$$\Gamma[t] = 3t^2 - 2t^3.$$



First order perturbation theory

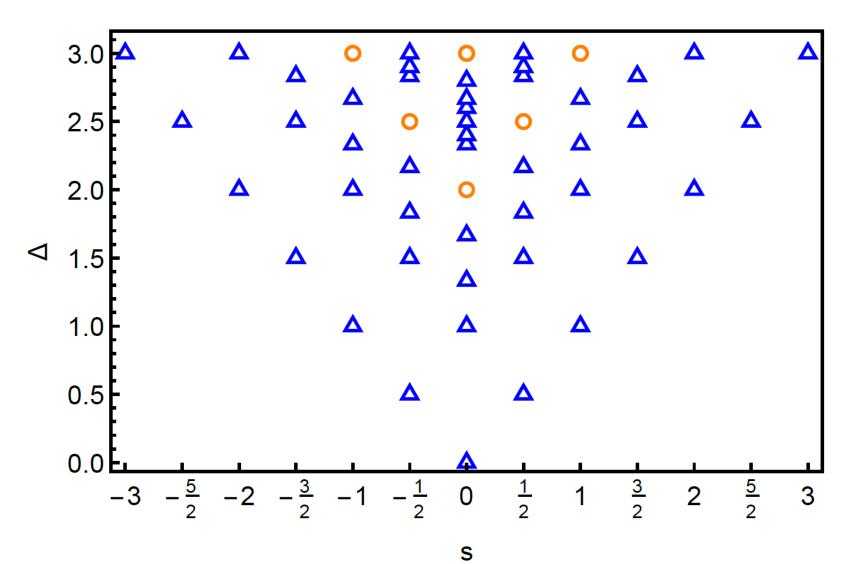
- Symmetric-product orbifold \longleftrightarrow IIB string on $AdS_3 \times S^3 \times T^4$ with k=1 unit of NSNS-flux
- Marginal deformation $\mathcal{D} \longleftrightarrow \text{Turning on RR-flux}$

$$\mathcal{D} = \frac{1}{2\sqrt{2}} \epsilon_{AB} \epsilon_{\alpha\beta} \epsilon_{\dot{\alpha}\dot{\beta}} G^{\alpha A}_{-\frac{1}{2}} G^{\dot{\alpha}B}_{-\frac{1}{2}} \sigma_2^{\beta\dot{\beta}}$$

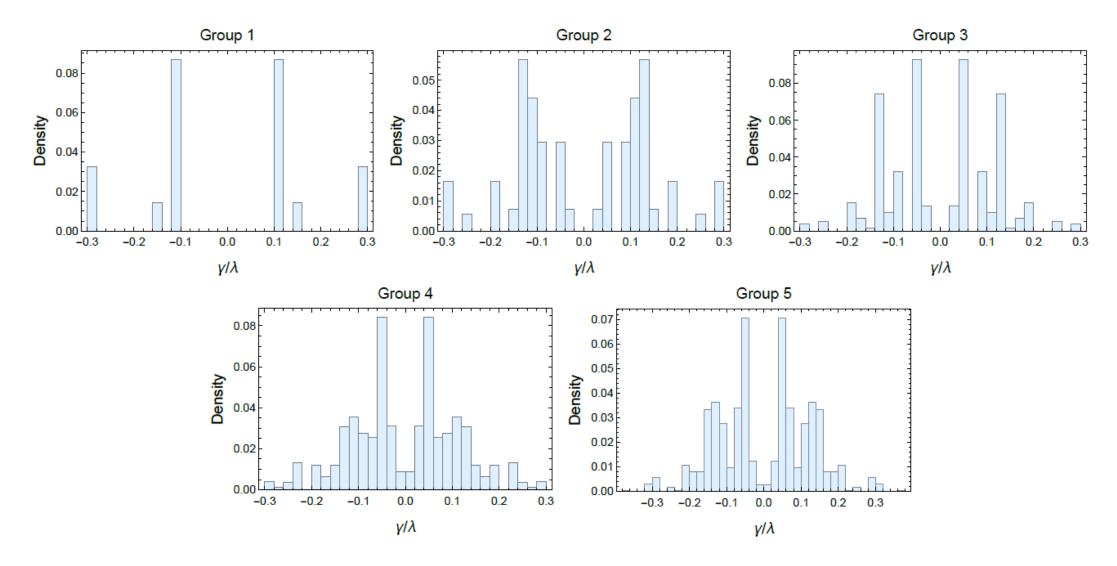
First order mixing matrix elements take the form

$$\langle \phi_{-\frac{n}{w}} \dots \sigma_w | \mathcal{D} | \phi_{-\frac{n}{w\pm 1}} \dots \sigma_{w\pm 1} \rangle$$

Lightest states



Results



Statistics

group	Δ	# states	# deformed states	fraction
1	2	276	74	26.8%
2	$\frac{5}{2}$	4 × 1090	4 × 464	42.6%
3	3	4 × 2368	4 × 1210	51.1%
4	3	4 × 6467	4 × 3828	59.2%
5	3	2 × 8280	2 × 4342	52.4%
All	≤ 3	248778	30766	12.4%

Statistics

Sparse

group	Δ	# states	# deformed states	fraction
1	2	276	74	26.8%
2	<u>5</u> 2	4 × 1090	4 × 464	42.6%
3	3	4 × 2368	4 × 1210	51.1%
4	3	4 × 6467	4 × 3828	59.2%
5	3	2 < 8280	2 × 4342	52.4%
All	≤3	248778	30766	12.4%

Big

Abundant

Large twist

- Checked that the dominant contributions to the mixing matrix go as $\frac{1}{u}$
- This is reassuring, because the integrability prediction is

$$E(p) = \sqrt{p^2 + 4\lambda^2 \sin^2(\pi p)}$$

- \rightarrow There should be now O(λ) terms, at least asymptotically
- For small twist maybe due to wrapping? Puzzle for integrability
- Causing trouble on the side: Gaberdiel et al. 23' claimed to have found $\{S_1, S_2\} | \text{phys.} \rangle \neq 0$ only at large w. We cannot confirm this.

Thank you!!!