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ABSTRACT: Despite tremendous progress in our understanding of scattering amplitudes in
perturbative (super-) gravity, much less is known about other asymptotic observables, such
as correlation functions of detector operators. In this paper, we initiate the study of detec-
tor operators and their correlation functions in perturbative quantum gravity. Inspired by
recent progress in field theory, we introduce a broad class of new asymptotic observables
in gravity. We outline how correlation functions of detector operators can be efficiently
computed from squared, state-summed amplitudes, allowing us to harness the wealth of
perturbative scattering amplitude data to explore these observables. We then compute the
two-point correlator of energy detectors in the annihilation of two scalars into gravitons,
in Einstein gravity minimally coupled to a massive scalar field. We study the kinematic
limits of this correlator, finding that it is finite in the collinear limit, and exhibits a soft
divergence in the back-to-back limit, as expected from the understanding of the factoriza-
tion of gravitational amplitudes in the soft and collinear limits. Our results offer a first
exploration into the structure of detector operators and their correlators in perturbative
quantum gravity, and we outline numerous directions for future study.



What is an energy correlator?

QFT: an energy detector.! Consider a calorimeter cell in an idealized collider experiment.
1: The calorimeter cell sits asymptotically far away at a particular angular position n on the
celestial sphere S% 2 surrounding the experiment. In this idealized context, we imagine

2: it is placed there for all time, collecting radiation escaping to asymptotic infinity along
its angular direction, and recording its energy. One way to define it is as the following
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What this corresponds to?
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Are they interesting?

1: Phenomenological applications (e.g. old but very active story in QCD)
2. Understanding CFTs (light-ray operators)
3: Understanding QFTs (null energy conditions, positivity theorems, causality, ...)

4: Understanding QFTs in non-vacuum states (e.g. heavy states)

5: Understanding quantum gravity 7



Are they interesting in gravity?

Local observables | Asymptotic observables | Energy correlators
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How to compute EC in gravity?
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How to compute EC in gravity?
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To compute the perturbative square S-matrix elements one can use e.qg.
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How to compute EC in gravity?

adi dm, q1
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Example 1-pt function
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Example 1-pt function

Both the terms before do not include “loops” (momenta integration), but the
next term requires an integration:
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x | M, (03, a1, 42, 43)|* 6% (g1 +g2+g3— P)

— OO —Jr—1 d S 2\ AL o
~ Ni (2m)d /0 dpp /d 420" (q3)0" ((P—Bz — q2)*)

2
X |Mk'—>3 pz>Q1:/8Z7Q27Q3:P_/8Z_qz)| |

Simplifications arise in collinear limits...



Scalar minimally coupled with (EH) gravity
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Scalar minimally coupled with (EH) gravity

We need to construct the coupling ®® — hhh = 15 cubic diagrams
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Calculations...




Scalar minimally coupled with (EH) gravity
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Scalar minimally coupled with (EH) gravity

Collinear limit (massless) 8 — ()
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Scalar minimally coupled with (EH) gravity

Back to back (massless) 8 — «
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Conclusion and future

We have perturbative setting for energy correlators in PQG and first example

What’s next?
OPE of detector operators in gravity

The space of detector operators in (quantum) gravity

Perturbative structure of multi-point correlators in supergravity

Asymptotic symmetries and their interplay with detector operators

Detectors in nontrivial spacetimes and nonperturbative effects in quantum
gravity
Conformal collider bounds in gravitational theories

Detector operators in flat space from the flat space limit of AdS/CFT

This is only my (personal) selection...






