Instantons and the Large $\mathcal{N}=4$ Algebra

Edward Witten

School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 USA

ABSTRACT: We investigate the differential geometry of the moduli space of instantons on $S^3 \times S^1$. Extending previous results, we show that a sigma-model with this target space can be expected to possess a large $\mathcal{N}=4$ superconformal symmetry, supporting speculations that this sigma-model may be dual to Type IIB superstring theory on $AdS_3 \times S^3 \times S^3 \times S^1$. The sigma-model is parametrized by three integers – the rank of the gauge group, the instanton number, and a "level" (the integer coefficient of a topologically nontrivial B-field, analogous to a WZW level). These integers are expected to correspond to two fivebrane charges and a one-brane charge. The sigma-model is weakly coupled when the level, conjecturally corresponding to one of the five-brane changes, becomes very large, keeping the other parameters fixed. The central charges of the large $\mathcal{N}=4$ algebra agree, at least semiclassically, with expectations from the duality.

$AdS_3 \times S^3$ Holography

 $AdS_3 \times S^3 \times T^4$

 $AdS_3 \times S^3 \times K3$

 $AdS_3 \times S^3 \times S^3 \times S^1$

(large $\mathcal{N} = 4$ symmetry)

$Candidate\,duals$

-Symmetric product orbifolds

Take a large number of copies of a known SCFT and mod out the symmetric group

$-\sigma$ -models

Find some target space and consider the WS-theory with an appropriate metric and B-field

$AdS_3 \times S^3$ Holography

 $AdS_3 \times S^3 \times T^4$ (pure NSNS, $Q_5 = 1$)

 $Sym_{\infty}(T^4)$

 $AdS_3 \times S^3 \times K3$ (pure NSNS, $Q_5 = 1$)

 $Sym_{\infty}(K3)$

 $AdS_3 \times S^3 \times S^3 \times S^1$

 σ -model of $\mathcal{M}(S^3 \times S^1)$

$Brane\ configuration$

Start with $\mathbb{R}^2 \times S^1 \times T^*S^3 \times \mathbb{R}$

	\mathbb{R}^2	S^1	S^3	$"T^*"$	\mathbb{R}
Q_5' units flux			×		
Q_5 D5-branes	×	×	×		
Q_1 D1-branes	×				

 Q_1 instantons in $SU(Q_5)$ gauge theory with level Q'_5

$\mathbb{C}^2/\{0\}$

$S^3 \times S^1$ geometry

$$\mathrm{d}s^2 = \frac{\mathrm{d}\vec{Y}^2}{\vec{V}^2}, \quad \vec{Y} \cong e^T \vec{Y}$$

$$ds^2 = d\Omega^2 + d\tau^2, \quad \tau \cong \tau + T$$

 $-e^{-}Y$ $\mathrm{d}s^2=\mathrm{d}\Omega^2+\mathrm{d}\tau^2,\ \tau\cong\tau+T,\ \mathrm{Hermitian,\ not\ K\"{a}hler}$ has SU(2) - S^3 has $SU(2)_L \times SU(2)_R$ symmetry, e.g.

$$g = \begin{pmatrix} z_1 & -\overline{z}_2 \\ z_2 & \overline{z}_1 \end{pmatrix}, |z_1|^2 + |z_2|^2 = 1, Z_i = z_i e^{\tau}.$$

 $SU(2)_R$ changes complex structure

May define $\mathcal{I}', \mathcal{J}', \mathcal{K}'$ for $SU(2)_L$

σ -model on $S^3 \times S^1$

(4,4) supersymmetry due to $\mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{I}', \mathcal{J}', \mathcal{K}'$

Allows for torsion-full connection generated by $H \sim Q_5' d\Omega_3$

WZW model $SU(2)_k + 1$ free boson + 4 free fermions

$$T = -J^{0}J^{0} - \frac{\sum_{i=1}^{3} J^{i}J^{i}}{\kappa + 2} - \sum_{a=0}^{3} \partial \psi^{a}\psi^{a}$$

$$G_{a} = 2J^{0}\psi_{a} + \frac{4\alpha_{ab}^{+,i}J^{i}\psi^{b}}{\sqrt{\kappa + 2}} - \frac{2\epsilon_{abcd}\psi^{b}\psi^{c}\psi^{d}}{3\sqrt{\kappa + 2}}$$

$$A^{-,i} = \alpha_{ab}^{-,i}\psi^{a}\psi^{b}$$

$$A^{+,i} = J^i + \alpha_{ab}^{+,i} \psi^a \psi^b$$
$$U = -\sqrt{\kappa + 2} J^0$$
$$Q^a = \sqrt{\kappa + 2} \psi^a.$$

Large $\mathcal{N} = 4$ algebra

"Pullback" to $moduli\ space$

- 1. If M satisfies the conditions for (0,2) supersymmetry it is a complex manifold with a hermitian metric whose torsion is closed in a sense reviewed in section 3.1 then \mathcal{M} is also a complex manifold⁴ [29, 30], with a natural hermitian metric that also has closed torsion [13], so the sigma-model with target \mathcal{M} also has (0,2) supersymmetry,
- 2. If M is a generalized Kahler manifold (the geometry that leads to (2,2) supersymmetry with a B-field) then so is \mathcal{M} [14, 16].
- 3. If M is an HKT manifold (the geometry that leads to (0,4) supersymmetry, with a small $\mathcal{N}=4$ algebra), then so is \mathcal{M} [15].
- 4. If M is generalized hyper-Kahler or bi-HKT (leading to (4,4) supersymmetry with the small $\mathcal{N}=4$ algebra), then so is \mathcal{M} . This follows on combining results in [14] and [15]; see section 5.
- 5. Finally, if M has the properties that lead to invariance under the large $\mathcal{N}=4$ algebra, then so does \mathcal{M} . This is shown in section 6.

$Morethings \, discussed$

Conformality of the σ -model

Symmetries, topology of the moduli space

Matching of central charges (functions of Q_1, Q_5, Q'_5)

Orbifolds $S^3/\mathbb{Z}_K \times S^1$

Multiple beautiful discussions, proofs, references...

