### **Angular fractals in thermal QFT**

#### Nathan Benjamin, Jaeha Lee, Sridip Pal, David Simmons-Duffin, and Yixin Xu

Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, California 91125, USA E-mail: nbenjami@caltech.edu, jaeha@caltech.edu, sridip@caltech.edu, dsd@caltech.edu, yixinxu@caltech.edu

### **Angular fractals in thermal QFT**

1. Goal and main result

#### Nathan Benjamin, Jaeha Lee, Sridip Pal, David Simmons-Duffin, and Yixin Xu

Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, California 91125, USA E-mail: nbenjami@caltech.edu, jaeha@caltech.edu, sridip@caltech.edu, dsd@caltech.edu, yixinxu@caltech.edu

### **Angular fractals in thermal QFT**

- 1. Goal and main result
- 2. Thermal EFT

#### Nathan Benjamin, Jaeha Lee, Sridip Pal, David Simmons-Duffin, and Yixin Xu

Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, California 91125, USA E-mail: nbenjami@caltech.edu, jaeha@caltech.edu, sridip@caltech.edu, dsd@caltech.edu, yixinxu@caltech.edu

### Angular fractals in thermal QFT

- 1. Goal and main result
- 2. Thermal EFT
- 3. Twisting the partition function

#### Nathan Benjamin, Jaeha Lee, Sridip Pal, David Simmons-Duffin, and Yixin Xu

Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, California 91125, USA E-mail: nbenjami@caltech.edu, jaeha@caltech.edu, sridip@caltech.edu, dsd@caltech.edu, yixinxu@caltech.edu

### **Angular fractals in thermal QFT**

#### Nathan Benjamin, Jaeha Lee, Sridip Pal, David Simmons-Duffin, and Yixin Xu

Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, California 91125, USA E-mail: nbenjami@caltech.edu, jaeha@caltech.edu, sridip@caltech.edu, dsd@caltech.edu, yixinxu@caltech.edu

- 1. Goal and main result
- 2. Thermal EFT
- 3. Twisting the partition function
- 4. Corrections

### **Angular fractals in thermal QFT**

#### Nathan Benjamin, Jaeha Lee, Sridip Pal, David Simmons-Duffin, and Yixin Xu

Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, California 91125, USA E-mail: nbenjami@caltech.edu, jaeha@caltech.edu, sridip@caltech.edu, dsd@caltech.edu, yixinxu@caltech.edu

- 1. Goal and main result
- 2. Thermal EFT
- 3. Twisting the partition function
- 4. Corrections
- 5. Comment about holography

### **Angular fractals in thermal QFT**

#### Nathan Benjamin, Jaeha Lee, Sridip Pal, David Simmons-Duffin, and Yixin Xu

Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, California 91125, USA E-mail: nbenjami@caltech.edu, jaeha@caltech.edu, sridip@caltech.edu, dsd@caltech.edu, yixinxu@caltech.edu

- 1. Goal and main result
- 2. Thermal EFT
- 3. Twisting the partition function
- 4. Corrections
- 5. Comment about holography
- 6. Take-home message



### Goal and main result

• Part. function of a QFT on  $S^1_{\beta} \times S^{d-1}_L$  + discrete isometry R in the th.dyn. limit?

$$\operatorname{Tr}\left[e^{-\beta H}R\right] \sim ? \qquad R^q = 1, L \to \infty$$

An interesting example: odd spins vs even spins

Tr 
$$\left[e^{-\beta H}(-1)^J\right] \sim$$
?  $R = e^{i\theta J}, \ \theta = \pi$ 

• For a general QFT on  $S^1_{\beta} \times \mathcal{M}^{d-1}_L$ :

$$-\log \operatorname{Tr}_{\mathcal{H}(\mathcal{M}_L)} \left[ e^{-\beta H} R \right] \sim -\frac{1}{q} \log \operatorname{Tr}_{\mathcal{H}(\mathcal{M}_L)} \left[ e^{-q\beta H} \right] + \operatorname{topological} + \operatorname{KK} \operatorname{defects}$$

### Thermal effective action

• Thermodynamic limit of a gapped QFT:

$$\mathrm{Tr}_{\mathcal{H}(\mathcal{M}_L)}[e^{-\beta H_L}] \sim e^{-S_{\mathrm{th}}[g, \underbrace{A, \phi]}} + \underset{\text{KK gauge field and dilaton}}{\mathrm{nonperturbative}} \text{ in } 1/L$$

For a CFT:

$$S_{\rm th} = \int \frac{d^{d-1}\vec{x}}{\beta^{d-1}} \sqrt{\widehat{g}} \left( -f + c_1 \beta^2 \widehat{R} + c_2 \beta^2 F^2 + \ldots \right) + S_{\rm anom}.$$
Wilson coefficients!

### Thermal effective action

• CFT with angular fugacities on  $S^1_{\beta} \times S^{d-1}_{L}$ :

$$\operatorname{Tr}\left[e^{-\beta(H-i\vec{\Omega}\cdot\vec{J})}\right]$$

$$S_{\mathrm{th}} = \frac{\operatorname{vol}S^{d-1}}{\prod_{i=1}^{n}(1+\Omega_{i}^{2})}\left[-fT^{d-1}+(d-2)\left((d-1)c_{1}+\left(2c_{1}+\frac{8}{d}c_{2}\right)\sum_{i=1}^{n}\Omega_{i}^{2}\right)T^{d-3}+\ldots\right].$$

• Doesn't  $\beta\Omega=\pi$  solve the problem?

$$\beta \to 0 \Longrightarrow \Omega \to \infty!$$

### Thermal effective action

• CFT with angular fugacities on  $S^1_{\beta} \times S^{d-1}_{L}$ :

$$\operatorname{Tr}\left[e^{-\beta(H-i\vec{\Omega}\cdot\vec{J})}\right]$$

$$S_{\text{th}} = \frac{\operatorname{vol} S^{d-1}}{\prod_{i=1}^{n}(1+\Omega_{i}^{2})}\left[-fT^{d-1} + (d-2)\left((d-1)c_{1} + \left(2c_{1} + \frac{8}{d}c_{2}\right)\sum_{i=1}^{n}\Omega_{i}^{2}\right)T^{d-3} + \dots\right].$$

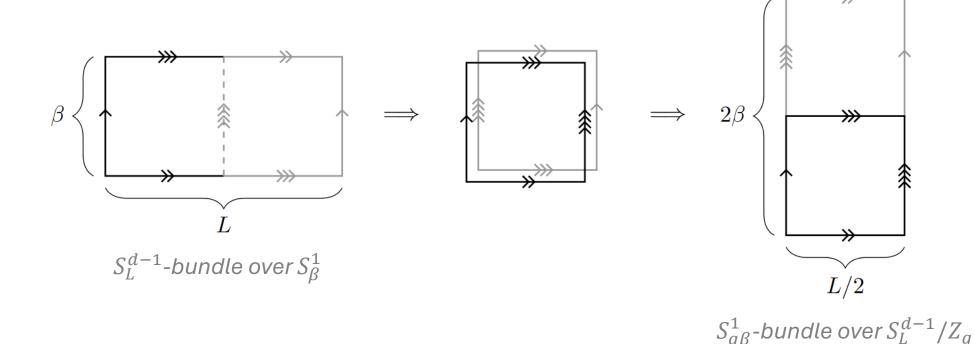
• Doesn't  $\beta\Omega=\pi$  solve the problem?

$$\beta \to 0 \Longrightarrow \Omega \to \infty!$$

The EFT picture breaks down!

## Twisting the partition function

In 2d the problem is solved thanks to modularity:


$$\operatorname{Tr}\left[e^{-\beta(H-i\Omega J)}\right] \sim \exp\left[\frac{4\pi^2}{\beta(1+\Omega^2)}\frac{c}{12}\right]$$

$$\operatorname{Tr}\left[e^{-\beta(H-i\Omega J)}(-1)^{J}\right] \sim \exp\left[\frac{1}{4}\frac{4\pi^{2}}{\beta(1+\Omega^{2})}\frac{c}{12}\right] \qquad \gamma = \pm \begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix} \in \operatorname{PSL}(2,\mathbb{Z})$$

$$\operatorname{Tr}\left[e^{-\beta(H-i\Omega J)}e^{2\pi i\frac{p}{q}J}\right] \sim \exp\left[\frac{1}{q^2}\frac{4\pi^2}{\beta(1+\Omega^2)}\frac{c}{12}\right] \quad \gamma = \pm \begin{pmatrix} -(p^{-1})_q & b \\ q & -p \end{pmatrix} \in \operatorname{PSL}(2,\mathbb{Z})$$

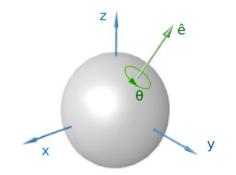
Can we replicate the pattern without modularity in higher dimension?

## Twisting the partition function



$$-\log \operatorname{Tr}\left[e^{-\beta H}R\right]$$

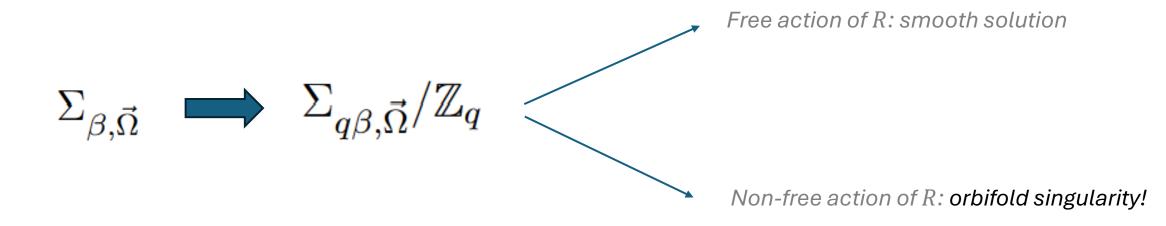
$$-\frac{1}{q}\log\operatorname{Tr}\left[e^{-q\beta H}\right] + \text{topological}$$


### Corrections

• Topological corrections: new, non-trivial bundle! Chern-Simons terms in the Thermal EFT can be sensitive to the features of the bundle

$$-\frac{1}{q}\log\operatorname{Tr}\left[e^{-q\beta H}\right] + \text{topological}$$

• KK vortices: if the action of the isometry R is not free, there are fixed points





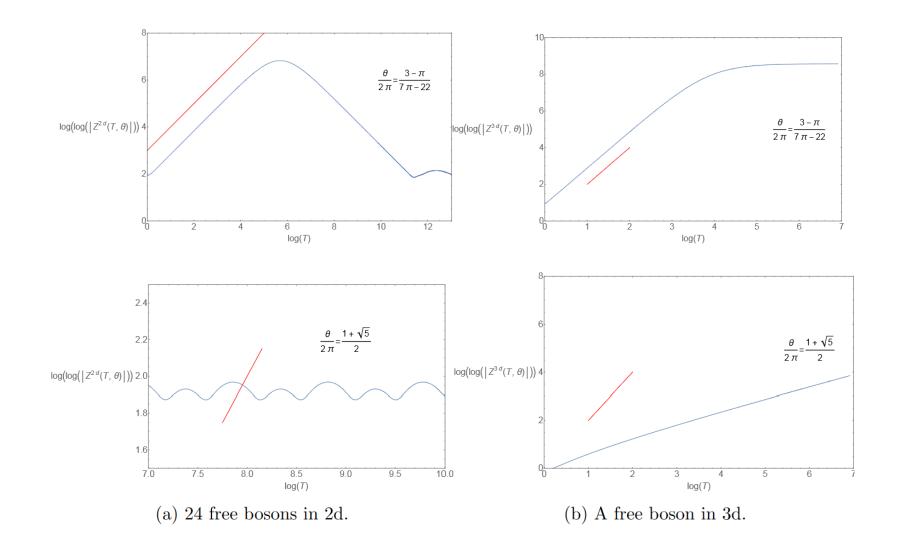

$$-\frac{1}{q}\log\operatorname{Tr}\left[e^{-q\beta H}\right] + \operatorname{topological} + \sum_{\mathfrak{D}_{i}} S_{\mathfrak{D}_{i}}$$

## Comment about holography

- High temperature on the boundary → AdS BH thermodynamics
- Folding trick on the boundary → New geometry!



### Take-home message


- →Interesting consequences for strongly coupled theories?

 Powerful predictions in CFTs (explicit form for the Thermal EFT is available)

$$\log \operatorname{Tr}[e^{-\beta(H-i\vec{\Omega}\cdot\vec{J})}R] \sim \frac{1}{q^d} \frac{\operatorname{vol}S^{d-1}}{\prod_{i=1}^n (1+\Omega_i^2)} \frac{f}{\beta^{d-1}} + \dots$$

The same Wilson coefficients describe twisted and untwisted partition functions

# $Bonus:\ irrational\ angles$

