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Holography and Regge Phases with U(1) Charge
Giulia Fardelli, A. Liam Fitzpatrick, Wei Li

We use holography to study the large spin J limit of the spectrum of low energy states with charge @)
under a U(1) conserved current in CFTs in d > 2 dimensions, with a focus on d = 3 and d = 4. For
(Q = 2, the spectrum of such states is known to be universal and properly captured by the long-distance
limit of holographic theories, regardless of whether the CFT itself is holographic. We study in detail the
holographic description of such states at Q > 2, by considering the contribution to the energies of @
scalar particles coming from single photon and graviton exchange in the bulk of AdS; in some cases,
scalar exchange and bulk contact terms are also included. For a range of finite values of @ and J, we
numerically diagonalize the Hamiltonian for such states and examine the resulting spectrum and
wavefunctions as a function of the dimension A of the charge-one operator and the central charges
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We use holography to study the large spin J limit of the spectrum of low energy states with charge @ under a U(1) conserved currentin CFTs ind > 2
dimensions, with afocus on d — 3 and d — 4. For Q — 2, the spectrum of such states is known to be universal and properly captured by the long-distance
limit of holographic theories, regardless of whether the CFT itself is holographic. We study in detail the holographic description of such states at Q > 2, by
considering the contribution to the energies of () scalar particles coming from single photon and graviton exchange in the bulk of AdS; in some cases, scalar
exchange and bulk contact terms are also included. For a range of finite values of Q and J, we numerically diagonalize the Hamiltonian for such states and
examine the resulting spectrum and wavefunctions as a function of the dimension A of the charge-one operator and the central charges cr, ¢ of the stress
tensor and U(1) current, finding multiple regions in parameter space with qualitatively different behavior. We discuss the extension of these results to the regime
of parametrically large charge 2, as well as to what extent such results are expected to hold universally, beyond the limit of holographic CFTs. We compare our
holographic computations to results from the conformal bootstrap for the 3d O(2) model at @ = 3 and 2 = 4 and find excellent agreement.
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Only Coulomb Force
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W min (@1, w2)| for the 3-particle state with A = % in 3d

(Third particle is
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The same pictures
for four partons:
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Figure 7 Q —4 “I'min(lpl‘@% 7QgJ{))l for A = % in 3d and .J = 60.
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Figure 8. Q =5 |Urin(1. 02, 03, ¢4,0)| for A = % in 3d and J = 50.



Excited states
and radial
resolution

Figure 9. |V,.(p1,p2)| for the 3-particle state with A = % in 3d at J = 99 for various

eigenvalues. Recall that r labels different primaries at a fixed spin , r = 1,--- ,N(3,99) = 17.
We plot, from left to right, r = 2,4, 8, 16.
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Only Gravitational Interaction

(Third particle is
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the equator)
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Figure 16. |Ui (91, p2)| for the 3-particle state with A = 2 in 3d for different values
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Gauge + Gravity = Pretty Phase Diagrams!
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Gauge + Gravity = Pretty Phase Diagrams!
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For people who don’t like derivatives:
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More Partons, more phases.
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Feeding In non perturbative data and
matching known O(2) model results.
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