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Smoothed asymptotics

We all know that
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Turn this into a weighted sum
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Where
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Replacetheregulator by a smooth function:
no =1
Nleo] -0
Schwartz function

Then
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Where

Calnl = L”dx X nix]

Example: nix] =e™*
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Example: n[x] =e* Cos[x]
nix_] := Exp[-Xx] Cos[x];

D nain/N1// Seriesfi, {N, =, 0}] &/ Normal
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Features:

1) Thereis no linear divergence.
2) Quadratic divergence depends on the regulator (can be made zero -- Enhanced regulators).
3) Thereis a universal behaviour (regulator independent): -1/12.

Similar featureto QFT:
1) Power law divergences are meaningless (regulator dependent).
2) Log-divergences are universal (regulator independent).
3) What areenhanced regulators for QFTs? Are they physical in some sense?

(Number Theory Z#_>2n< > ) > (QFT /d4k#—>/d4kn(| |)# -

n=0
regularization)
What they did:
1) Start with onefold irreducibleintegrals (ILS).
2) Implement the smoothed regularization to theintegrals.
3) Get that power law divergences arereg. dependent and log-divergences are log-independent.
4) Gaugeinvariant regulators -» enhanced regulators
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Details

1) Start with onefold irreducibleintegrals (ILS):

To develop 7 regularisation in more detail, it is convenient to introduce the concept of ir-
reducible loop integrals (ILIs) [25, 26, 29]. In general, n-fold ILIs are defined as the n-loop
integrals for which there are no longer the overlapping factors (k; — kj + p) in the denomi-
nator of the integrand and no factors of the scalar momentum k? in the numerator [29]. In
this work we focus on regularising ultra-violet divergences at one-loop, postponing a detailed
discussion of higher loops to future work [55]. It was shown in [25] that upon use of the
Feynman parameter method, all one-loop perturbative Feynman integrals of the one-particle
irreducible graphs can be evaluated as the following one-fold ILIs in Minkowski spacetime:

d'k 1
[0 (M?) = / e IZ T M (3.9)
v d'k Ktk
" (M?) = / T BT A (3.10)

d*k  krEYEPKC
(27r)4 (k2 + M2)4+a’

17507 (M?2) = / (3.11)

where the subscript (—2a) labels the power counting dimension (of energy-momentum) with
a = —1 and a = 0 corresponding to quadratic and logarithmically divergent integrals. The
mass term M2 = M?(m?,p?,...) is a function of Feynman parameters, external momenta, p;
and corresponding mass scales, m;. Note that k% = guwk# k¥ where the metric g, is written
with mostly positive signature.

2) Implement the smoothed regularization to theintegrals.

d*k 1 k
T-sa[m(M?) = / @n)t (12 + MEze <|A_|) ’
v 1 v d4k k2 &
T m(M?) = ZQ“ /( 2m)t (k2 + M2)3+a ! (%) ’

v v d'k k! L
" T[/,)](M2 S# pa/ (k2 _+_M2)4+a ’(T) 9

3) Get that power law divergences arereg. dependent and log-divergences are log-independent.
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For a > 0 the integrals are convergent as A — oo and one readily obtains

1

T-2all(M?) ~ 1672a(1 + a) M2’

(3.20)

For a < 0, the integrals diverge as A — oo, where they take the following asymptotic form

IlM®) ~ gz [InA/1M) 90 - 5. (321

BIM) ~ o [AC1la] = M2 (in(A/|M]) +{a))] (3.22)
and

Jasa[n)(M?) ~ 8% l; (;) Conr [ M2C~2) A2z+4] (3.23)

for any natural number s. These expressions are valid provided 7 is a regulator: a smooth
where
: 2 dn
C,nl = fx nix] dx and vinl = jx d—[x] In[x] dx
X

4) Gaugeinvariant regulators:

To investigate how gauge invariance is affected by 7 regularisation, we follow [25, 26, 29] and
consider a general gauge theory where the gauge group has dimension dg and where Ny Dirac
spinors ¥,, (n = 1,..., Ny) are interacting with the Yang Mills field AZ (a=1,...,dg). Such
a theory is described by a Lagrangian

7 . 1 a v
L= ’l‘b.n(?,’)'#D# — 7”)1,-/}11 - ZF#UF# s (325)
where
Ff, = 0,A% = 0,A% — gfanc ALAS, Dyt = (9, + igT* A%) by, (3.26)

and T are the generators of the gauge group whose commutator [T, T%] = if%T° defines
the structure constants f2¢. A careful computation of the vacuum polarisation for the gauge
field at one-loop (see [25, 26, 29] for details) yields an expression of the form

Iy, (p) = T (p) + T (p), (3.27)
where p* is the external momentum. Here H/(lg,,)ab(p) are the pure Yang Mills contributions

coming from gauge field loops and ghost loops. Hf},?ab (p) are the contributions from fermion

loops, arising from the interaction of the fermions with the gauge field. Gauge invariance is
understood in terms of the Ward identities p“HZ’,’, = H;‘f,’,p” = 0. Requiring this to hold for
any gauge theory and with any number of fermions means that Ward identities should hold

[25] Starts with the diagrams below and write the vacuum polarization in terms of theintegrals.
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Requiring gaugeinvariance puts the following constraintin theintegrals
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This constrains in terms of the regulators implies:
i) We need morethan oneregulator:

I 5, |regularised = iJ_2q ["—20]a

v .
Iﬁ?alregularised = 'Lsza[G_Qa]’
uvpo . quvpoT.
I—2a |regularised = L']—Qa [h_fza]’

ii) The satisfy the following properties:
N-2a(x) = nuj(z), O-2a(x) =nu(Az), K-2a(x) = npj(pz),
1/4

where A = e /4, = e 512 and npy(z) is any enhanced regulator of order one.

4) Gaugeinvariant regulators - enhanced regulators

2024-03-26_JC-test.nb | 5



