Generalised symmetries and
Line Operator RG flows
Plow
(i) Introduction \& Motivation
(ii) Generalised sym dictionary
(iii) 1 -form syencm. in unitary gauge th.
(iv) Line ops RG flows
(i) (1) Org. principles \&
(2) section rues a
$d+1$ dim

bulk theory CFF DEFT
W: short distance

$$
\mathbb{R} \times \delta 0(d-1)
$$

Line operator mo conforund line os $\operatorname{SL}(2, \mathbb{R})$ y $\$ 0(\alpha-1)$ bets

$$
\left\langle\theta_{b}\right\rangle=\frac{1}{r_{\perp}}
$$

(1) in the IR $L \rightarrow$ trivia line 1

$$
\langle\theta\rangle=\frac{a(\Lambda)}{r_{1}} \rightarrow 0
$$

(2) $L \rightarrow \tilde{c}$

$$
\begin{aligned}
& {[Q, \theta]=R(g) \theta} \\
& Q \theta a^{-1}-\theta=R(y) \theta a^{\prime \prime}
\end{aligned}
$$

(3) 1-form symmetries $4 d$

Charge ops (top) d^{2}
(1) Moxwell (t mattor)

$$
\begin{aligned}
& \mathcal{L}=F \wedge * F \\
& d F=0 \quad d * F=0 \\
& U_{g}^{(Q)}=\exp \left(i g \int_{\delta^{2}} * F\right) \quad U_{\rho \in U(1)}^{(m)}=\exp \left(i g \int_{\delta^{2}} F\right) \\
& v_{g}^{(e)} \alpha_{(e, \omega u)}=\exp (i g e) L_{(e, w)} \\
& \Gamma^{(1)}=U_{e}^{(1)} \times U_{m}^{(1)} \\
& u_{y}^{(m)} \mathcal{L}_{(e, m)}=\exp (i g m) L_{e, m m}
\end{aligned}
$$

$u(1)=P^{(1)} \longrightarrow G \subset p^{(1)}$ preserves the matler
clayje 9 sudar field

$$
\begin{aligned}
& e^{i g Q^{2 / \pi}}=1 \\
& 99 \in \mathbb{Z}
\end{aligned}
$$

$g \in I_{q}$

$$
\Gamma^{(1)}=U(1) \rightarrow \mathbb{Z} q
$$

SU(N) pouge th levere)

$$
\begin{aligned}
& p_{e}^{(1)}=\mathbb{Z}_{N} \quad p_{m}^{(1)}=\phi \quad \rho A j^{-1}=A \\
& p_{e}^{(1)}=\mathbb{Z}_{N}
\end{aligned}
$$

G $\quad p_{e}^{(1)}=Z(G)$
बU(2) $\quad \mathbb{Z}_{2} \quad$ ou(2) $\quad P_{\text {S(in) }}^{(1)}=\mathbb{Z}_{2}$

$$
\Phi\left((N) / \mathbb{Z}_{k} \quad ?=p^{(1)} / \mathbb{Z}_{k}\right.
$$

+ edd westier $\quad \mathbb{Z}_{k} \rightarrow \mathbb{Z}_{k} / \mathbb{Z}_{q} \quad 9$

$$
\$ v(3) \times \$ v(2) \times v(1) / \mathbb{Z}_{3} \times \mathbb{Z}_{2} \quad \quad(\text { Teng })
$$

1-form symundry

$$
\begin{aligned}
& \begin{array}{ll}
\langle W\rangle=0 \text { sroserved \& dopped } \\
\langle W\rangle \neq 0 \quad \text { S.b. \& gopless } \underset{\rightarrow}{t}
\end{array} \\
& \begin{aligned}
\langle\omega\rangle \sim e^{-v(r) t} & e^{-A} \rightarrow 0 \\
& e^{-p} \neq 0
\end{aligned} \\
& v(1) \geq r \\
& v(r)<r
\end{aligned}
$$

$(\omega)=0 \quad$ presores
(w) 10

SSB of p-form symun
spin P excitation (Nossless)
1 form S.B. \sim photen
$\$(2) \quad D_{(e, \mu)}$

$$
\begin{equation*}
1, m \in z(a) \times z(u)=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \tag{0,0}
\end{equation*}
$$

 $(1,0)$

$\$ 0(3)+$	$\$ 0(3)$	$\$ 0(3)$	$p(c)=0$
$(0,1)$	$(1,1)$		$p(m)=\mathbb{Z}_{2}$
$(0,0)$	$(0,0)$		

$$
\begin{gathered}
W=T_{r_{\text {vett }}} \exp \left(A+r^{I} \underline{\Phi}_{z}\right) \\
r \bmod z=0
\end{gathered}
$$

(mosilecs) Scalar QED $(2+1)$ dim

CFT in the bulk
$\phi(=q=1)$

$$
S=\int(F)^{2}+\left.P \rho\right|^{2}+|\phi|^{4}+\stackrel{\phi^{2}}{\underline{2}} \int d\left(A_{+}+\rho \phi^{2} \phi\right)
$$

 $\frac{\text { sure. line }}{4}$
$9 \sim 67$
$137 \rightarrow 6$

$$
9 \sim 7 \quad \operatorname{~N~} 10^{-2} \mathrm{~m}
$$

$$
p^{(1)}=O(1) \rightarrow e
$$

(0) (1) is charged under, 1 -form symm

No d-2 form symuntries
SUI) G.T. $\left.\quad \mathbb{Z}_{2} \int\left(A+d t+g^{\Phi} \Phi^{t}\right)^{\prime}+n^{\top} \Phi_{x}\right)$
there are just abd lines in the IR (at s.c.)

