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Abstract

In this Journal Club we continue our presentation of recent advances in the topic of Generalised
Symmetries. Today we focus on one-form symmetries in four dimensional gauge theories and
the corresponding selection rules on RG flows of Line Observables thereof.
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1 Introduction

1.1 A new Renaissance of symmetries

Symmetries are arguably the most important guiding principle in physics. They are ubiquitous
in all branches of theoretical physics and provide organising principles and selection rules to
characterise observables. Even more importantly, symmetries constraint in a non-trivial way
the dynamics of quantum systems, allowing us to push the understanding of Field Theories
beyond the perturbative regime to probe strongly coupled systems. As a rule of thumb, given
a physical system the more symmetries we can identify the more information regarding the
dynamics we can infer. This paradigm, already fully employed in quantum mechanics, has
found its paramount application in Quantum Field Theories where symmetries represent the
main ingredient to building any physical theory. Yet, for many years, the interest of the high
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energy community has been mostly relegated to the particular class of continuous symmetries.
Only in the ’90, the works of Dijkgraaf and Witten on discrete symmetries laid the foundations
for a new wave of active research in Condensed Matter as a tool to study topological phases
of matter and critical phenomena. Yet, a new renaissance of symmetries in High Energy
Physics resulted from the work of Gaiotto-Kapustin-Seiberg-Willet [13] of 2014 that absorbed
and extended the progress of the previous two decades. The generalised notion of higher-form
symmetries proposed in the paper provides a formalism to describe symmetries under which
operators supported over higher-dimensional manifolds are charged. Non-local operators are
central in modern theory: the Gauge Theories are not specified by the local physics, but rather
depend crucially on the global properties. This Generalised symmetries provide us with new
tools to probe these non-local aspects that would not be accessible through perturbation theory
that is blind to them. Furthermore thier anomalies, being rigid under the Renormalization
Group, allow us to flow between the different regimes of Quantum Field Theories. Further
generalisations have been investigated in the last few years and are now a very active research
area. So far we learnt that Higher-form symmetries can combine and mix into Higher-Group
structures and, even more drastically, people are currently studying non-invertible symmetries
that do not have any underlying group structure. Indeed, the picture that is currently arising
is that the most general symmetric structure of a Quantum field theory is a intricate sum of
all those possibility.

1.2 Today’s talk

As one could expect, the subject is rich, vast and rapidly expanding. The goal of this short
note is surely not the one of trying to cover the entire subject. Rather, our main interest is
focusing on the case of 1-form symmetries to elucidate how this new formalism is not just
a rewriting of previous knowledge in a new, more general and systematic language, but it is
actually a new tool that allow us to access new data that was previously inaccessible, hoping
that, by the end of this note, you will be able to have in your hands a concrete example thereof.
To do that, we have decided to discuss the very exciting programm of trying to understand
the fate of Line Operators under the RG flows, i.e. studying the behaviour of the theory in
the long-distance regime.

These notes are organised as follows: hoping that it might serve as a motivation, we will
start with presenting the physical problem we are interested in studying using higher-form
symmetries. Then we will try to build up the necessary dictionary to navigate through this
generalised symmetry revolution. Successively, we will focus our attention on the particular
case of 1-form symmetries, discussing the presence thereof in the concrete case of unitary
gauge theories possibly coupled with matter fields. Then we will conclude by illustrating how
we can apply this new tools to study Line Operators RG flows following the recent results
obtained by Komargodski and friends.
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2 Motivation

Consider the physical case of a material in d+1 dimension, for instance, you can think of a
metal or of a graphene sheet. It is very well known that the behaviour of such a material in its
(quantum) critical point (second order phase transition) at zero temperature can be described
as a CFT. In the last decades a lot has been achieved in employing the conformal symmetries
to constraint correlation function of local operators, up to the point that there are cases in
which we can completely solve the interacting theory of local excitation only by exploiting
the symmetry of the theory. Yet, as remarked, local operators are not the end of the story.
Indeed, already from our very physical condensed matter example, we can understand the
experimental interest in studying the response of system once it is coupled with extended line
operators. Indeed, imagine that at any point of the lattice, we insert a point-like impurity.
This will change dramatically the theory modifying its Hilbert Space. In space-time this is
nothing but the insertion of a (time-like) 1 dimensional defect into the theory. Now, imagine
that the bulk theory is already a CFT, it is of crucial interest to understand what is the fate
of this impurity in the IR physics, or more physically, what is the effect on the local physics
at very large distance from the impurity. Such a point-like impurity is, in general, a non-
conformal line inserted in a conformal bulk and preserves only the subgroup of SO(d+ 1, 1):

R× SO(d− 1) (2.1)

at long distance, this line will flow to a critical point of some sort where it becomes a Conformal
line preserving:

SL(2,R)× SO(d− 1) (2.2)

that together with the bulk will be now described by a DCFT. Again, a lot of effort has been
dedicated to study DCFT and here in DESY we have many people that made huge advances in
the interesting program of developing tools to extract new CFT data from this setup. Today
we are not interested in making prediction on the physics of these critical points, rather we are
interested in showing how this flow can be constrained by using 1-form symmetries. Indeed,
albeit we know that there is a critical point of some sort, the qualitative essence of this critical
point might be dramatically different. Indeed in the IR, the impurity might be completely
screened, and hence the non-conformal line flows to the trivial line (unit operator), or it might
flow to some non-trivial conformal defect. As we will see, 1-form symmetries provides us with
selection rules telling us precisely when the impurity does not flow to a trivial line in the
IR. This is a very physical and interesting question with a plethora of applications both in
condensed matter (qunatum computing error-correction, spin-impurities in graphene etc) and
in high energy, where the fate of line operators is striclty connected with confinement and
other interesting strongly coupled phenomena. Not only this is insteresting, but there have
been some experimental results on graphene and other materials that we can use to directly
test this predictions.
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3 Higher-form Symmetries

Symmetries are crucial in quantum field theory as they constrain the spectrum of states and
operators. While gauge symmetries are redundancies in the description of the theory, global
symmetries are intrinsic properties of QFTs. This implies that, even though the same field
theory may have equivalent presentations in terms of different gauge theories, the global sym-
metries must be unambiguously the same, providing a probe for dualities. Global symmetries
are a powerful tool applicable in all the regimes of a field theory and even in the case of theories
where a Lagrangian description is not available at all. In this chapter we study the gener-
alisation of to higher-form global symmetry proposed in [13]. The charged operators are no
longer point-like operators, rather than are extended objects supported on higher-dimensional
manifolds.

3.1 Standard Symmetries

We are all familiar with the concept of standard global symmetries in Lagrangian QFT as
groups of functional transformations acting on the fields of the theory that leave the action in-
variant and under which local (point-like) operators “particles” are charged. Yet, the problem
with this formulation is that it makes hard to detach the intrinsic nature of the global sym-
metry from the specific lagrangian description of the theory. Hence, it is useful to formalise
the notion of global symmetry from a more modern perspective that, not only is particularly
suitable for the generalisation we are aiming to achieve, but also allow us to study generalised
symmetries of non-Lagrangian theories. Specifically, an ordinary global symmetry can be de-
scribed abstractly as a set of topological operators Ug(M(d−1)) associated with elements g of
the symmetry group G supported on codimension 1 manifolds and obeying its multiplication
law:

Ug(M(d−1)) ◦ Ug′(M(d−1)) = Ug◦g′(M(d−1)) (3.1)

This law, as always in the following, should be intended as an operator identity valid inside
correlation functions:

⟨Ug(M(d−1)) ◦ Ug′(M(d−1))Φ1(x1) · · ·Φn(xn)⟩ = ⟨Ug◦g′(M(d−1))Φ1(x1) · · ·Φn(xn)⟩ (3.2)

The topological nature of the operator means that any correlation function involving Ug(M(d−1))
is independent of deformations of M(d−1) → M(d−1)+δM as long as we do not cross any
other operator of the theory as in Fig 1. This topological property implies the (3.1) can be
extended to consider composition of topological operators supported on different manifolds,
as long as we can deform one into the other as in Fig 2.

These topological operators arise very naturally whenever we have a continuous symmetry
group G. In this case, we have a Noether (vector/one-form) conserved current j, for each
generator of the group and we can integrate its Hodge dual d − 1 closed form ∗j on any
M(d−1) manifold giving a charge:

Q(M(d−1)) =

∮
M(d−1)

∗j (3.3)

WhenM(d−1) is the entire space this is the usual conserved charge at a fixed time Q(t), but in
general we can takeM(d−1) to be any (compact or non-compact) manifold. We can construct

5



δM(d−1)

O(x)

M(d−1)

(a) Allowed

δM(d−1)

O(x)

M(d−1)

(b) Not allowed

Figure 1: Deformations of topological operators

Ug(M)
O(x) Ug′(M′) M′→M

= O(x)

Ug(M) ◦ Ug′(M) = Ug◦g′(M)

Figure 2: Composition of two topological operators supported onM andM′

surface operators labelled by group elements by exponentiation of the charges:

Ug(M(d−1)) ≡ exp
(
i g Q(M(d−1))

)
, g ∈ G (3.4)

To prove that indeed the operators as constructed are topological, we use that j conserved

implies ∗j closed d ∗ j = 0. Then, we consider a small deformation M(d−1) → M̃
(d−1)

and,

letting N (d) be a d-dimensional manifold with boundaries such that ∂N (d) =M(d−1) ∪M̃
(d−1)

,
it follows from Stoke’s theorem that:

Q(M(d−1))−Q(M̃
(d−1)

) =

∮
M(d−1)

∗j −
∮
M̃

(d−1)
∗j =

∮
N (d)

d(∗j) = 0 (3.5)

Hence, the description of global symmetries in term of topological operators is equivalent to
the standard treatment based on Noether theorem. To see how this topological operators
implement the symmetry action on charged operators, we pursue our continuous symmetry
case before generalising it. We recall the Ward identity (Ta generator associated with ja):

d ⟨∗ja(x) Φ1(x1) · · ·Φn(xn)⟩ =
n∑

i=1

δ(x− xi)⟨Φ1(x1) · · ·TaΦi(xi) · · ·Φn(xn) (3.6)
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O(x)

Uga(S
(d−1))

= R(ga)O(x)

Figure 3: Linking of Ug(S
(d−1)) and O(x)

implies, when a charged operator is inserted in the position xi, the operatorial identity1:

d ∗ ja = δ(d)(x− xi)Ta =⇒ d ∗ jaO(x) = −iδ(d)(x− xi)TaO(x) (3.7)

Hence, considering a topological operator Uga (the notation ga explicitly refer to the fact I
can have more than one generator in my symmetry group) supported on (WLOG) a sphere
S(d−1) centred in the operator O(x) living in the a representation R of the group, as in Fig 3.
We can shrink the sphere down to x using the topological property, but due to Eq (3.7), we
have (inside any correlation function):

Uga(S
d−1)O(x) = exp

(
iga
∫
Sd−1

∗j
)
O(x) = exp(igaTa)O(x) = R(g)O(x) (3.8)

where R(g) is the group element in the representation R. In other words, unlinking the
topological operator and a charged operator accounts for the action of a symmetry group
element on the charged operator itself. In the basic example of a U(1) symmetry R(g) this is
just a phase factor is just R(g) = eigq with q the abelian charge of O(x) under the symmetry.
Another key identity can be obtained from the Ward identity. Namely, we can integrate over
the Ward identity (3.6), over a “pillbox” bounded by two distinct times t+ and t−, extending
to spatial infinity in all the other directions and containing only the operator Φ1. Upon
converting the volume integral into a surface integral Σ+ ∪ (−Σ−) (the minus sign is due to
the surface orientation) we obtain:

⟨
∮
∗Σ+∪−Σ−

(∗jΦ1(x1)Φ2(x2) · · ·Φn(xn)⟩ = ⟨Qa(t+)Φ1(x1) · · · ⟩ − ⟨Qa(t−)Φ1(x1) · · · ⟩

= ⟨TaΦ1(x1) · · · ⟩ (3.9)

that, after taking the limit t+ → t− and exponentiating, implies at equal time:

Ug(Σ)O(x) = R(g)O(x)Ug(Σ) (3.10)

1We note that this does not contradict the that ∗j, for instance consider the form dθ = xdy−ydx
x2+y2 , that is

closed but still singular in the origin.
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Ug(Σ)

O(x) =

Ug(Σ)

R(g)O(x)

Figure 4: Operator crossing of a non-compact topological operator supported on a domain
wall Σ

Defect

Operator

Rt

Figure 5: Defects vs Operators

This equation can be interpreted in a very natural way: the crossing of a topological
operator supported on a domain wall Σ (we took the “pillbox” limit) implements the action
of the symmetry as in Fig 4. In (3.8), nothing stopped us to inserting the topological operator
in spacetime since we had not chose any “time” direction, while in (3.10) we insert topological
operator inside a spatial slide. There is a subtle distinction between the two pictures in
Lorentzian signature where have the natural foliationM(d) = Rt ×M(d−1). For each time t,
there is an Hilbert Space H (M(d−1)) supported on M(d−1); an insertion of Ug corresponds
to preparing a state in this Hilbert space and Ug is therefore a genuine operator of the theory.
Instead an insertion of Ug such that its support extends in the time direction modify the
Hilbert spaces associated with different slices (turning a QFT in a Defect QFT). In this case
Ug is not strictly speaking an operator of the theory but a topological defect.

For this reason, we limit ourselves only to insert symmetry operators. Even though,
this is not relevant for this section where charged operators are local operators, we stress
here that instead charged object can be either operators or defects and we will refer to them
interchangeably.

We showed that declaring a set of topological (equivalent to current conservation) operators
together with a group composition and “crossing” (Ward identity) laws completely describes
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Figure 6: Ising model’s Z2 symmetry implemented by a topological surface operator inserted
in spatial slice with “time” flowing perpendicular to it and the 2d lattice extending parallel
to it.

a continuous global symmetry. The crucial point is that now this formulation is completely
free from assuming the existence of a conserved current and even of a Lagrangian at all!
Symmetries are intrinsic and completely independent of any Lagrangian description of a theory
and topological operators allow us to describe them accordingly. At this point, nothing stops
us to include discrete global symmetries by simply assuming G to be a discrete group.
The fact continuous and discrete symmetries can be described in an identical fashion may
seem surprising. After all, we are taught that for discrete symmetries we do not have neither
a Noether theorem nor a Ward identity and therefore we are tempted to believe we possess less
tools to analyse them. Yet, since these two results follow from the existence of a Lagrangian
and manipulation thereof, we would lack of them even in the case of continuous symmetries
of non Lagrangian theories, suggesting that this apparent difference between discrete and
continuous symmetry is only a result of the existence of a Lagrangian description rather than
of the nature of the symmetries themselves. Furthermore, in the case of discrete symmetries,
topological operators as generators of discrete symmetries are even more natural! For instance,
consider the Ising model [6]. There is a Z2 global “spin-flipping” symmetry. I can detect and
implement a Z2 transfomation as in Fig 6 by pulling the spins over a domain wall Σ. Yet, this
time, Ug(Σ) is not the integral of any local quantity. This idea of domain walls as symmetry
generators can be readily generalised to any discrete symmetry, allowing us to treat them in
the same fashion of continuous symmetry.

In this entire section we have considered charged operators to be local “point-like” opera-
tors, e.g. O(x) or a spins ↑ / ↓ in a lattice point. We are now ready for the key generalisation.

3.2 Higher Form Symmetries

Point-like objects are not the only charged objects in Gauge Theories: for instance in the
previous chapter we have analysed line operators associated to 1-dimensional manifolds and
we discussed that they are characterized by a lattice of charges. Hence, we aim to extend
the formalism of the previous section to extend the notion of “symmetry” to include charged
observables that are supported on are higher dimensional manifolds. We define a Higher
q-form symmetry as characterized by a set of topological operators supported on codimen-
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Rd−2

t

R
Ug′

Ug

Ug′Ug′

=

Rd−2

t

R
Ug′

Ug

Ug′

Figure 7: Example for q = 1: operators supported onM(d−2) = Sd−2.

sion q + 1 manifolds without boundaries: Ug(M(d−q−1)), satisfying the group multiplication
property:

Ug(M(d−q−1)) ◦ Ug′(M(d−q−1)) = Ug◦g′(M(d−q−1)) (3.11)

Obviously for q = 0 we recover the standard symmetries. Albeit, (3.11) looks very similar to
its standard-symmetries counterpart (3.1), the former implies a very important consequence,
namely: Higher-Form symmetries can only be abelian. This follows from the simple observa-
tion that in a d-dimensional space, there is no way of defining an ordering for manifolds of
dimension δ < d − 1. To see that, consider the insertion of two defects Ug(M) and Ug′(M)
on a spatial slice at t = t∗ implementing their composition Ug ◦ Ug′ = Ug◦g′ ; then deform Ug′ ,
such that M ⊂ M′. Now, perform a slight shift such that M′ lies in the t = t∗ + δt spatial
slice. Since d− 1︸ ︷︷ ︸

space

− δ︸︷︷︸
support ofM′

> 0, there is at least one further dimension that we can use to

deformM′ such that at δt = 0,M′ ⊂M (see Fig7). Thus, for any element of the group and
for any manifold (as long as deformations are allowed):

Ug◦g′(M(d−q−1)) = Ug′◦g(M(d−q−1)) (3.12)

i.e. the higher-form symmetry groups must be abelian. Actually, there are some flaws in
this argument: namely there could be topologies of the base spaceM(d) such that we might
have obstructions to freely perform the procedure above on the topological operators. In that
case, the higher form symmetries may fail to be abelian (non-commuting fluxes[13]). This is
indeed the case for theories defined on spaces having non-trivial torsion cycles, e.g. M/Zk

and some examples are provided in [13]. Another thing that may happen is that some of the
operators inserted of the theory, viewed as states of the Hilbert Space at fixed time cannot be
simultaneously diagonalised2. In this case the operators are intrinsically non-commuting. We
will see an example of this in subsection 3.2.4 for topological operators on AdS5×S5.

2Thanks to Lakshya Bhardwaj for the clarification on this point
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The reason for which they are called “q-form symmetries” is that, in the continuous case,
the symmetry parameter is a q-form Λ(q), to be confronted with the 0−form (function) of
standard symmetries. This means that the fields charged under the symmetry are q-forms
as well transforming as A(q) → A(q) + Λ(q) for an infinitesimal global transformation. A
charged operators of charge ρ can be therefore constructed by taking the flux of these q-form
on q-dimensional manifolds (without boundaries):

Vρ(C(q)) = exp

(
iρ

∮
C(q)

A(q)

)
, V(C(q))→ exp

(
iρ

∮
C(q)

Λ(q)

)
V(C(q)) (3.13)

Hence, we can derive an analogous of the (classical) Noether theorem. Let L be a Lagrangian

of containing some higher dimensional operators VI(C(q)
I ), I = 1, · · ·N , L = L[VI(C(q)

I )],
then ∀δΛ(A):

δΛL︸︷︷︸
d

=
δL
δ dA︸ ︷︷ ︸
d−q−1

∧ δΛ(dA)︸ ︷︷ ︸
q+1

+
δL
δA︸︷︷︸
d−q

∧ δΛ(A)︸ ︷︷ ︸
q

(Integrating δΛS by part) (3.14a)

!
= d

(
δΛ(A)︸ ︷︷ ︸

q

∧ δL
δ dA︸ ︷︷ ︸
d−q−1

)
− δΛ(A)

��������(
d

δL
δ dA

− δL
δA

)
︸ ︷︷ ︸

=0(on shell)

= d(⋆(f (q+1)) ∧ δΛ(A))︸ ︷︷ ︸
d

(3.14b)

where the last bit is a convenient way of expressing a (possible) total derivative term. Thus,
on shell we have a closed (d− q − 1)-form dual to a conserved (q + 1)-form:

d

(
δL
δ dA

− ∗f (q+1)

)
:= d ∗ j(q+1) = 0, j(q+1) = ∗ δL

δ dA
− f (q+1) (3.14c)

In the quantum theory, assuming for now the invariance of the integration measures (i.e. there
are no anomalies), we get the corresponding Ward identity3, (δΛA = Λ):

0
∀Λ(q)

= δΛ⟨Vρ1(C
(q)
1 ) · · · VρN (C

(q)
N )⟩

=

∫
DA exp

(
iS[A]− i

∫
M(d)

Λ(q) ∧ d ∗ j(q+1)

)
exp

(
iρ1

∮
C(q)
1

Λ(q)

)
V1 · · · exp

(
iρN

∮
C(q)
N

Λ(q)

)
VN

=

∫
DA exp(iS[A])

N∑
I=1

[
1 + i

(
ρI

∮
C(q)
I

Λ(q) −
∫
M(d)

Λ(q) ∧ d ∗ j(q+1)

)
+O(Λ ∧ Λ)

]
VρI

from which we deduce:

d ∗ ⟨j(q+1)VI⟩ =
N∑
I=1

ρI δ
(d−q)(C(q)I ) ⟨VI⟩ (3.14d)

3To the best of our knowledge there is no explicit derivation of the Ward identity for Higher Form Symme-
tries in the literature. A similar derivation has been carried in the sole case of 1-form symmetries in the thesis
[30], where the derivation is original[29].
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Vρ(M(q))

Ug(S
(d−q−1))

= eigρ

Vρ(M(q))

(3.17)

Figure 8: Linking of a q-form symmetry operator with an extended dim q charged operator

where δ(C(d−1q)
I ) is a q-form generalisation of the Dirac delta function:∫

M(d)

ω(q) ∧ δ(d−q)(C(q)) =
∮
C(q)

ω(q), ∀ω(q) (3.14e)

Given the conserved currents, we can construct the topological operators by integrating the
closed (d− q − 1)-form ∗j over (d− q − 1) manifolds without boundaries:

Ug(M(d−q−1)) = exp

(
ig

∮
M(d−q−1)

∗j
)

(3.15)

As in the standard symmetry case, they are indeed topological as ∗j is closed. Furthermore,
from (3.14d) we deduce the topological operator Ward identity as in Fig 8:

Ug(S
(d−q−1))Vρ(C(q)) = exp(igρ)Vρ(C(q)) = RV(g)Vρ(C(q)) (3.16)

The fact RV(g) is simply a phase is consistent with the higher-form symmetries being always
abelian. The specific form of the phase in the equation above does not depend on the form of
the charged operators. In fact, by using the group multiplication of the topological operators
Ug = Uh ◦Uk and considering their composition ϕ(g, ρ) = ϕ(h, ρ)ϕ(k, ρ) we deduce that ϕ(g, ρ)
has to be the irreps ρ of dimension 1 (abelian) of g: ϕ(g, ρ) = eigρ. This also implies that
the set of allowed charges C ρ must be elements of the Pontryagin dual group of the q-form
symmetry C ∼= Ĝ as they provide a map C × G → U(1) that is injective upon restriction of
C to the independent charges. As before, we can also deduce the analogue of the equal time
commutator:

Ug(M(d−q−1))V(C(q)) = RV(g)
(C(q),M(d−q−1))V(C(q))Ug(M(d−q−1)) (3.18)

Respect to the standard symmetry (3.10), we introduced a factor due to the intersection
number between the two manifolds. In the standard symmetry case this term was not needed
as the linking of a dimension 0 can happen only in the trivial way, i.e. a crossing at the point.
Rather, for higher dimensional objects, this is not true in general. As a matter of fact, from
our discussion it is not clear if the two manifolds can be actually linked at all!

For instance two knots (strings) in d = 4 are always unlinked, meaning that we can always
unknot them, while in d = 3 they can be linked non trivial ways (Fig 9).Luckily, in our case this
question have a really neat answer due to the Alexander Duality[17] Hp(M) ∼= Hd−p−1(Rd/M)
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(a) Unknotted L = 0

(b) Linked L = 1

Figure 9: Knots in d = 3

that allows us to generalise the concept of linking number from knots in d = 3 to p and
q dimensional (orientable) manifolds embedded in an Rd manifold satisfying the relation:
d = p + q + 1. But this is exactly our case as: (q)︸︷︷︸

C(q)

+(d− q − 1)︸ ︷︷ ︸
M(d−q−1)

+1 = d. Let us sketch how

you can define it for two (compact, connected, oriented and without boundary) manifolds
M(p) and N (q)[39, 17] included in Rd. The inclusion map: i : N → Rd/M induces on the
homology:

i∗ : Hq(N )→ Hq(Rd/M) ∼= Hp(M) ∼= Z (3.19)

where we used firstly Alexander duality and then Hp(M) ≡ Z when M is orientable. Also
Hq(N ) ≡ Z and therefore this i∗ is characterized by a single integer ℓ that corresponds exactly
to the linking number ℓ = (M,N ) between the two manifolds. To see that one can check that
it reduces in d = 3 to the usual definition and to the linking number of spheres Sp and Sq that
can be computed by other means([32] and [39] for a thorough discussion). As a result, not
only (3.18) is well defined but also the linking number is topological as defined by maps on
the (co)homology, so that we do not have to worry about deforming the topological operators.
As before, once the Ward Identity and the equal time commutator are formulated in terms
of topological operators, nothing depends on the conserved current and we can extend them
to the case of discrete symmetry group which are by far the most common cases of Higher
Form Symmetries. In particular, the linking property hold in the form of (3.18). In Tab 1 a
dictionary standard ←→ higher form symmetries.

3.2.1 1-Form Symmetries of U(1) gauge theory

One of the most enlightening examples of theories possessing Higher Form symmetries is given
by the d = 4 Maxwell Free U(1) gauge theory:

L = −1

4
F (2) ∧ ⋆F (2) F (2) = dA(1) (3.20)
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Standard symmetries Generalised Symmetries

Parameter α(x) Ug(M(d−q−1))

Charged operator O(x) A(q) supported on C(q)
Transformations O(x)→ O(x) + α(x) Crossing of Ug and C
Noether theorem ∂µj

µ = 0 Ug(M(d−q−1)) topological
Ward identity d ∗ ja(x)O(y) = δ(x− y)TaO(y) UgVρ = exp(igρ)Vρ
Commutator [Q,O(x)] = −iTaO(x) UgV = RV(g)

ℓVUg

Table 1: Dictionary standard-higher form symmetries

. With A(1) being an U(1) gauge field. The equations of motion and the Bianchi identity
imply that there are 2 U(1)-valued independent and closed 2-form currents:

E.o.m : d ∗ F (2) = 0 =⇒ j(2)e = F (2) (3.21)

Bianchi : dF (2) = 0 =⇒ j(2)m = ∗F (2) (3.22)

Therefore theory has the one form symmetry Γ(1) = U(1)
(1)
e ×U(1)

(1)
m generated by the topo-

logical (Gukov-Witten [16]) operators supported on d− 1− 1 = 2 dimensional spheres4:

U (e)
g (S(2)) = exp

(
ig

2π

∮
S(2)

∗j(2)e

)
= exp

(
ig

2π

∮
S(2)

∗F (2)

)
= exp

(
ig

2π

∮
S(2)

E⊥

)
(3.23)

U (m)
g (S(2)) = exp

(
ig

2π

∮
S(2)

∗j(2)m

)
= exp

(
ig

2π

∮
S(2)

F (2)

)
= exp

(
ig

2π

∮
S(2)

B⊥

)
(3.24)

The charged defects under these symmetries are line (q = 1) operators. But we know what
those operators are! They are exactly the Wilson W and ’t Hooft T lines (and mixings thereof)
we studied in the previous chapter. For a Dyonic defect Lne,nm(L) = Wne Tnm the linking
rule explicitly gives:

U (e)
g (S(2))Lne,nm(L) = e

igne
2π Lne,nm(L) , U (m)

g (S(2))Lne,nm(L) = e
ignm
2π Lne,nm(L) (3.25)

As U
(e)/(m)
g measure the electric/magnetic flux through the sphere S(2) that is proportional

to the electric/magnetic charge of the ∞-mass particle generating the worldline L. It is very
interesting to look at this from a Lagrangian point of view. Let us focus on the electric 1-form
symmetry. One can be tempted to say that the action of this symmetry on the field is exactly
given by a shift A(1) → A(1) → Λ(1), with Λ(1) being a flat connection (closed 1-form) as this is
indeed a symmetry of the action. Yet, this would be premature as the theory is a gauge theory
and such a shift could be reabsorbed by a gauge transformation A(1) → A(1) + dα0. Hence,
to actually check the action of the symmetry on the fields, we firstly need to fix a gauge, say
A0 = 0 (following[6]). Now, consider the simple case of a Gukov-Witten operator defined on a
constant x3 plane Σ. Then, then only relevant component in the flux of ∗F on this surface is
(∗F ) ⊂ ∂0A3 dx1 ∧ dx2, which is nothing but the the conjugate momentum to A3. Therefore
the operator exp(iα∂0A3) implements the translation by α(0) of the dx3 component of the

4In computing the pullbacks we recall that the operators are inserted at a fixed time.
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R3

U
(e/m)
g (S2)

L

Spatial slice

= e
ign(e/m)

2π L

L Rt

Figure 10: Gukov-Witten operators in a 4d Maxwell theory are inserted in the 3 dimensional
spatial slide where a line defect corresponds to a point.

connection (the delta’s follow from the definition of Σ):

Uα(Σ)A
(1) U−1

α (Σ) = A(1) + α δ(t)δ(x3) dx3 (3.26)

Thus, the 1-form symmetry indeed acts by shifting the fields by a flat connection (a 1-form
symmetry parameter) that cannot be reabsorbed into a Gauge transformation (we have already
fixed the gauge). Deriving explicitly the action of a magnetic 1-form symmetry is not possible
in this Lagrangian description as the electric and magnetic connections cannot made explicit
simultaneously. Still, one can appeal directly to the electromagnetic duality, or explicitly
choose a purely magnetic base, where connections are magnetic connections and ’t Hooft lines
are simply generated by their holonomy. In this basis, the situation is completely analogous:
the magnetic connection is shifted by a flat connection by the action of F (2).

3.2.2 Adding Matter

So far charged operators were supported on manifolds without boundaries. Let us generalise
this supposing that there are endable charged operators V(C(q)). We note straight away that
this is not always the case[18]: for instance in a pure YM theory Wilson lines supported on open
curves are not operators of the theory not being gauge-invariant. Assuming that there are such
endable operators in the spectrum, we can consider the linking between one of this operators
V(C(q)) and a topological operator implementing the q-form symmetry Ug(M(d−q−1)). Given
that C(q) has boundaries, we can unlink it fromM(d−q−1) via a deformation of the latter (Fig
11). But, since the Ug is topological:

Ug(M(d−q−1))V(C(q)) = RV(g)V(C(q)) = Ug(M̃
(d−q−1)

)V(C(q)) = V(C(q)) (3.27)

this results in a contradiction unless RV(g) = Id, . Hence, in presence of endable operators,
higher-form symmetries are broken down to their subgroup where all endable operators links
trivially with the topological operators. As the title of the section suggest, this has non-trivial
consequences on non-pure gauge theories with matter in a given representation of the gauge
group. In fact, in presence of matter fields, line operators ending on matter field in their same
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RV(g)

V(C(q))

∂C(q)

=

V(C(q))

∂C(q)
Ug(S

(d−q−1))

=

∂C(q)

Ug(S
(d−q−1))

=

V(C(q))

∂C(q)

Figure 11: Unlinking of endable operator

L+q
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− +
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− +
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− +

Figure 12: Screened line

representation become genuine gauge invariant operators and we are in the situation we have
just discussed: Higher-form Symmetries are broken down to the subgroup that act trivially on
all the matter fields. Furthermore, this argument, constrains the kind of fusions we may have
among line defects in a theory with a 1-form symmetry: namely we can only have network of
line operators, such that the charge at every vertex is “conserved”, meaning that independently
of where I contract the topological operator before and after the intersection vertex, the phase
must be the same. Interacting U(1) gauge theory To see the physical interpretation of this,
we go back to the U(1) theory.

But this time we take the interacting theory with matter fields in the representation with
abelian charge q. The U(1) is none but quantum electrodynamics where we know that the
insertion of a Line with charge +q induces a polarization of the vacuum pairs that screens
the line, see Fig 12. As a result, the line acquires a position-dependent effective charge that
is eventually zero at very long distances. Hence, we expect the Gukov-Witten operators to
become non topological (the charge depends on the position) and therefore a breaking of the
symmetry. Furthermore, we also expect lines having charge integer multiple of q to become
uncharged under the broken symmetry as they are completely screened by the charged matter.
To see that explicitly, consider a small deformationM→ M̃ with ∂N =M∪M̃(d ∗ F (2) =
∗Jmatter):

exp

(
ig

∮
M(2)

∗F (2)

)
exp

(
−ig

∮
M̃

(2)
∗F (2)

)
= exp

(
ig

∫
N
⋆Jmatter

)
= exp(igq) (3.28)

Thus, the operators are topological if and only if: g = 2πk
q , k ∈ Z, i.e. we have the electric
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Algebra Center Algebra Center

su(N) AN−1: ZN sp(2N) C2N : Z2

so(4N) D2N : Z4 so(4N + 2) D2N+1: Z2 × Z2

so(2N + 1) BN : Z2 e6 Z3

e7 Z2 e8 {e}
g2 {e} f4 {e}

Table 2: Center of the simply connected group relative to the 9 Lie algebra series.

one form symmetry explicit breaking: U(1) −→ Zq. Indeed, lines with charge q, and any local
fusion thereof, are uncharged under this symmetry. We may also considered more involved
examples: for instance take a theory with one form symmetry U(1)×U(1), adding matter with
opposite charge in the two groups results in the broken diagonal U(1)(1) 1-form symmetry
group.

3.2.3 1-Form Symmetries of non-Abelian gauge theories

We have now all the tools to discuss 1-form symmetries of non-Abelian gauge theories. We
avoid, for now, the non simply connected groups (e.g. SU(N)/ZN , SO(N) . . . ), so take only
simply connected groups G (e.g. Spin(N),SU(N)). We have already studied the spectrum of
the line operators of the theory finding that the electric lines are in bijection with the center
of the gauge group Z(G). This suggests that the theory has a 1−form symmetry valued in
the Pontryagin dual of the center of the group Ẑ(G)(1). To show that, we can interpret it as

the screening effect due to adding matter to the U(1)
(1)
e symmetry that shift the non-abelian

connection by a flat abelian (higher form symmetries must be abelian) connection. In fact, pure
non-Abelian Gauge theories have matter fields (gluons) valued in the Adjoint representation
of the group. According to what discussed in section 3.2.2, they screen the symmetry to the
subgroup that acts trivially on the Adjoint. The Adjoint rep Adg(h) = g ◦ h ◦ g−1 is only
defined up to elements of the center Z(G) (that commutes with all elements). Then, the
subgroup of U(1) that acts trivially on Adjoint is exactly the Pontryagin dual of the center
Hom(Z(G),U(1)) := Ẑ(G). We conclude that pure non-abelian gauge theories have an electric
1-form symmetry Ẑ(G)(1). Again, the physical interpretation is straightforward: the electric
charge of a Wilson line in the representation R can only be measured up to gluon screening.
In Table 2 a list of the centers and therefore of the of the one form symmetry of the simply
connected groups relative to the 9 Lie algebra series. For instance, in our favourite example of
SU(N) YM, there is a ZN symmetry under which the Wilson lines are charged. The charge of
a Wilson line under is the charge under the center that is the the N -ality of the representation
(see Tab 13): the number of boxes mod N of the Young tableaux of the irrep (the center
acts on each box as e2πiq/N , q = 0, · · · , N − 1).

The story is analogous e.g. for Spin(N) groups (simply connected with so(N) algebra) and
all the others. We have already discussed the fate of 1-form symmetries once matter is added

to the theory: adding matter fields with N -ality k1, · · · , kn explicitly breaks the Z(1)
N → Z(1)

K

with K = gcd(k1, · · · , kn). In the next chapter we will explain how to obtain all the other
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Rep Tableaux N -ality

N 1
S2 , Λ2 , 2

Adj ab
a...
a

N

Figure 13: N -ality of some SU(N) irreps

non-simply connected theories via gauging of a subgroup of the 1-form symmetry. For now,
let us just do the example of a PSU(N) YM theory that will be useful later in this chapter.
The spectrum of the ’t Hooft lines is ZN , while the electric lines are only the trivial ones.
Hence, we expect (and it will be the case) this theory to be the first example of a theory with
a magnetic ZN 1-form symmetry and no electric 1-form symmetry.

3.2.4 Holography and 1-form symmetries

According to the very well known AdS/CFT conjecture (that complete description is beyond
our scopes), Type IIB superstring theory on AdS5×S5 with N unit of five-form F5 = dC4 flux
on S5 is dual to N = 4 SYM with gauge algebra su(N). On the gauge side, we know that
theory posses a 1-form symmetry, which group depends on the center of the specific global
version of su(N)(all the matter fields are in the adjoint in N = 4). In this section we want to
discuss how how this symmetry is matched through holography[1]. The key is the topological
Chern-Simon term in type IIB[2](C2 is the RR 2-form and B2 is the NS-NS B-field):

SIIB ⊃
1

4π

∫
AdS5 ×S5

F5 ∧B2 ∧ dC2 (3.29)

Given that we are interested in the 4 dimensional dual theory, we take the dimensional reduc-
tion on S5 of (3.29). By expanding the fields around the background and integrating out the
S5 modes, among other terms, we obtain the topological term containing the fluctuations of
the B and C fields[37]:

N

4π

∫
AdS5

b2 ∧ dc2 (3.30)

This implies that b2 and c2 are flat (EoM) and that their components, once quantized, are
canonically conjugated variables [(b2)µν(x), (c2)ρσ(y)] = −ϵµνρσ 2πi

N δ(x−y) (the antisymmetric
symbol comes from the ∧ product). Furthermore, shifting any of the two form by a two form
λ such that Nλ is pure gauge, leaves the topological action invariant. So, b2 and c2 are really
classes in H2(M,U(1)) subjected to the property of being defined only modulo N . By taking
their flux over compact 2-manifolds, we can construct the topological operators Ub(M(2))
and Uc(M(2)) which are not mutually local as a result of the two fluxes being canonically
conjugated. This is one of the non commuting fluxes situations considered in Appendix F of
[13]). Having constructed the topological surface operators, we now proceed to identify the
objects dual to line operators of the 4d theory living on ∂AdS5. To do that, we just need to

consider manifolds with boundaries ∂M(2)
γ = γ ∈ ∂AdS5. Ba doing so, Ub(M

(2)
γ ) corresponds

exactly with an operator supported on the worldsheet of a fundamental F1-brane (electric B
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field). But this is exactly the object conjectured to be dual to the Wilson Loop W [γ] in the

4d theory[11, 31]5. Analogously, Uc(M(2)
γ ) is dual to the a ’t Hooft lines γ on ∂AdS5 as it

comes from the worldsheet of a magnetic D1-brane. This shed a new light on the non-mutual
locality condition, corresponding in the bounded manifold case with the non-mutual locality
of the full set of (Wilson + ’t Hooft lines) before imposing the constraints of Chapter 1.
Hence, in order to have a consistent theory, we must impose boundary conditions (Dirichlet
or Neumann) on the operators b2 and c2 such that the resulting spectrum of lines in 4d is
coherent with one of the global version of su(N). For instance, choosing Dirichlet on ∂AdS5
for b2 and Neumann for c2 gives the SU(N) theory with topological operators Uc and electric
lines Ub with linking implemented by the non-mutual locality of Uc and Ub, while the opposite
gives the PSU(N) theory with topological operators Ub and magnetic lines Uc. To prove that
the one generated by the topological operators is indeed the symmetry dual to the 1-form
center symmetry of su(N), we still need to show that the topological operators define ZN

gauge fields as the other global version will just restrict this condition. Indeed, a stack of N
F1-brane with one extremum on ∂AdS5 can terminate on an D5-brane wrapped on S5 (the
so-called Baryon vertex ) that is integrated out in the effective theory (for details cfr. [2, 38]);
an analogous holds for the magnetic counterpart. Hence, N bounded Ub/c are screened by
the D5 branes and therefore the topological symmetry generated by the U’s corresponds to a
ZN 1-form symmetry. Of course upon mixed choices of boundary conditions we get the global
SU(N)/ZK theory.

3.3 Spontaneous symmetry breaking

Ordinary global symmetry may be spontaneously broken (SB); this is captured by a local
operator (Landau order parameter) gaining a non-zero vacuum expectation value ⟨O(x)⟩.
Whenever the spontaneously broken symmetry is continuous then in the IR we have one
Nambu-Goldstone boson for each broken generator. We also recall the Mermin-Wagner theo-
rem stating that continuous symmetries cannot be broken in d ≤ 2. Instead whenever a discrete
symmetry is SB, the low energy description of a theory has degenerate vacua (superselection
sectors). The situation is completely analogous for Higher Form Symmetries[28, 13, 20] that
can be Spontaneously Broken as well. Hence, following the Landau paradigm, Higher Form
symmetries furnish an important tool to characterize low-energy phases of gauge theories.
Here, the order parameter is the large volume behaviour of the charged operators. The set-up
is very similar to the rectangular Wilson Loop we considered in Chapter 1 Fig ??. Namely,
we take the expectation value of charged defect supported on a large compact6 dimension-q
surface V(C(q)). We might have two distinct situations. The VeV can exhibit:

• an area law, i.e. it scales with the volume of the q + 1-dimensional region A(q+1)

enclosed by the compact surface C(q). Then, ⟨V(C)⟩ ∼ e−TArea → 0 upon sending its size
to infinity and the symmetry is unbroken. The defects have a non-zero tension T in the
large surface limit (before taking the infinite limit). A line operator exhibiting an area
law is the benchmark for confining vacua as we saw in Chapter 1, so that in this case
we say the the theory is in a confinement phase.

5To be more precise, in the non-effective theory, a string in AdS5 ×S5 defining a contour on ∂AdS5 is dual
to the supersymmetric Wilson Loop that we can think of the result of dimensional reduction from N = 1 susy
in 10d.

6Endable operators cannot be charged under an higher symmetry.
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• or a perimeter law (or even milder), i.e. it scales with the q-dimensional surface area
of the defect itself: ⟨V(C)⟩ ∼ e−Perimeter. This time, the perimeter divergence can be
reabsorbed by the introduction of a local counter term on the defect proportional to
the surface element [6], so that ⟨V(C)⟩ ̸= 0 and the symmetry is spontaneously broken.
Here, the defects are tensionless and fluctuate at all scales and we say that the phase
the theory is in a deconfined phase.

More generally, we can have a SSB G(q) → H(q) ⊂ G(q) when all but the defects charged
under the subgroup H(q) exhibit a perimeter law, while the others scale with their area.

3.3.1 SSB of discrete 1-form symmetry

We promised that Symmetries highly constrain the dynamics of gauge theories. Indeed,
1−Form Symmetries breaking are very interesting and rich to study as these new order pa-
rameters allow us to define and probe confinement in gauge theories. Vacua that preserve
the 1-form symmetry must be confining vacua, while vacua where the symmetry is sponta-
neously broken are deconfining. So, 1-form symmetries provide a very powerful diagnostic of
confinement. Take as an example a SU(N) gauge theory. Here, we have a ZN one form sym-
metry and Wilson lines Wn

e with electric charge ne ∈ ZN . Each of these operator can exhibit
a perimeter or area scaling law, specifically the minimum L such that ⟨WL⟩ ̸= 0 define a
confinement index that regulates the SSB ZN → ZL. More interestingly, 1-form symmetries
allow us to go beyond the realm of pure SU(N) theories. Consider the case of PSU(N), where
there are no purely electric dyonic lines, but rather only (ne, nm) = (p, 1)nm for nm ∈ ZN

and p = 0, · · · , N − 1 the discrete theta angle parameter. It is very well known that mag-
netic monopoles condensate in the vacuum of the theory[1]. To identify what is the broken
subgroup, we note that for each p the line with nm = K = N

gcd(p,N) has a trivial electric com-

ponent (is a power of WN ) but a non trivial magnetic one, so it must behave as a monopole
and therefore exhibit a non-zero VeV. Hence the magnetic symmetry is spontaneously broken
to ZK and the theory realises a phase with L degenerate vacua.7

3.3.2 Higher Nambu-Goldstone Theorem

When the spontaneously broken symmetry is continuous, we have an generalisation of the
Nambu-Goldstone Theorem, i.e. the SSB af a q-form symmetry results in a gapless q-form
(q-spin) Goldstone mode. This massless excitations arises as the transverse diffeomorphisms
of the tensionless p-defects populating the deconfined phase of the theory (VeV = 0 in the
vacuum). Let us sketch the proof (adapted with some modifications from [28]). To see that
the spectrum has a massless excitation we can consider the quantity:

K = ⟨0| [Q(S(d−q−1)),V(C(q))] |0⟩ ≠ 0 (3.31)

that is not zero upon choosing that S(d−q−1) links C(q), where |0⟩ is the vacuum state of the
spatial Hilbert Space. This quantity can be readily proven to be independent of the time

7There could be also a phase in which are dyons HW k that condensate (opposite to magnetic monopoles)
and analogously we easy can compute the unbroken symmetry to be ZN/ gcd(p−k,N)[13].
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insertion and the charge can be rewritten as an integral over the entire space slice as:

Q =

∮
M(d−1)

∗jq ∧ δ(q−1)(S(d−q−1)) (3.32)

that is now simply the pullback of a zero form. Hence, we can proceed by inserting a complete
set of states and, after integrating over the spatial slice we get:

K =
∑
n

(2π)d−1δ(p)
(
⟨0| ∗ j(q) ∧ δ(q−1) |n⟩ ⟨n| V |0⟩ e−iEnt − ⟨0| V |n⟩ ⟨n| ∗ j(q) ∧ δ(q−1) |0⟩ eiEnt

)
that, being non vanishing, is time independent if and only if the theory contains an excitation
with E = 0 at zero momentum energy8. The Goldstone bosons are the p-form fields that shift
linearly under the symmetry. Furthermore since higher form symmetries are always abelian,
in the IR theory they can only be coupled through an effective abelian gauge theory kinetic
terms:

S ⊂
∫
M(d)

F (q+1) ∧ ∗F (q+1) (3.33)

as a direct higher-form generalisation of the standard abelian Maxwell kinetic term.

Continuous 1-Form symmetries breaking In this case particular case, the expectation
value of Wilson Loops is the order parameter for the 1-Form symmetry breaking. When the
symmetry is spontaneously broken the spin-1 Goldstone boson can only couple through a
standard Maxwell Kinetic Term in the IR theory. This means that the low energy phase is
populated by free propagating spin-1 bosons: photons! This means that we can interpret a free
Mawell theory in the IR as the low energy realisation of a spontaneously broken continuous
1-form symmetry in the UK with the photon being the associated Goldstone boson[28, 13].

3.3.3 Higher Coleman-Mermin-Wagner

Quite interestingly, there is generalization of the Coleman-Mermin-Wagner theorem to higher-
form symmetries[13]. Namely: continuous q−form symmetries in d dimension (at finite tem-
perature) are never broken when d − 2 ≤ q. Of course for q = 0 we recover the standard
result. When we consider discrete symmetries, then the critical dimension is shifted by 1:

d − 1 ≤ q (For instance in the 2d Ising model we have a SSB of the Z(0)
2 spin-flipping global

symmetry indeed). We will not discuss the proof of the theorem that only consists in showing
that for d − 2 ≤ q the order parameter expectation value would have a (non renormalizable)
logarithmic IR divergence (due to the traverse modes ≡ Goldstone boson) unless unbroken
(cfr. [28]). An as application we can deduce that in d = 3 there is no confined/deconfined
phase transition.

8Here we have assumed that there are no other massless excitations
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4 RG flow of Line Operators

5 Appendix A: Line Operators

5.1 Spectrum of lines

Local correlation functions are not sensible to the global structure of the gauge group and
the local point-like operators observables are completely blind to any topological feature. Yet,
they are not the only operators of gauge theories. There are also extended operators supported
on p-dimensional manifolds, which are inherently not local. In this section we discuss line
operators: operators localised on 1-dimensional manifolds that preserve all the space-time
symmetries preserved by the line[21]. They are of two distinct classes: Wilson Lines and ’t
Hooft Lines, but can mix into more generic Dyonic Lines. Being labelled by representations
of the group, each Wilson Line operator can be associated by an highest weight vectors of the
algebra that are in bijective correspondence with elements of the Weyl chamber: Λw/W[1, 3]9.
Still, this does not imply that all the representation of the algebra are realised as Wilson Line.

Wilson operators are not the sole line operators. It is natural to consider their electromag-
netic duals: the ’t Hooft Lines. These magnetic operators are defined to be curves with a
Dirac monopole singularity of the ambient Gauge Field along them. Namely, this means that
a ’t Hooft line insertion imposes to perform the path integral over configurations subjected to
the Dirac quantization conditions of the Dirac monopole singularity along the line:

eim·H = 1 H ∈ Z(G̃) ⇒ m ∈ Λcw/W (5.1)

Where the 2π · 1 of the abelian Dirac quantization, is “replaced” in the non-abelian case by
an element of the Center Z(G̃) of the simply connected group G̃ uniquely determined [14]
by the exponentiation of the algebra g of G. In the dual electromagnetic basis, where the
connection is a magnetic connection, the ’t Hooft lines are nothing but the Holonomy of the
magnetic connection. Yet, a basis in which they are both “diagonalized” does not exists and
at least one of them have to carry the topological definition. As stated in (5.1), ’t Hooft Lines
are in correspondence with elements of the Weyl chamber of the Langland dual algebra ∨g:
Λcw/W, with Λcw ⊂ t being the co-weights lattice. 10[26, 5]. This is another manifestation
of the electromagnetic duality: under Langlands duality g ↔ ∨g, the lattices Λw ↔ Λw, and
therefore Wilson and ’t Hooft lines, are exchanged as well. 11 Analogously, ’t Hooft Lines may
be interpreted as worldline of magnetic monopoles and are magnetic probes. We can consider
mixed Wilson-’t Hooft operators: the Dyonic Lines by simply taking the local fusion thereof.
Their representations are labelled are labelled by [21]:12

(λe, λm) ∈ L = (Λw × Λcw)/W (5.2)

As we mentioned earlier, not all these couples are in one-to-one correspondence with the
realised of Dyonic Lines and indeed they are subjected to various constraints:

9Λw is the weight lattice contained in the dual t∗ = Hom(t,R/Z) of the cartan subalgebra t.
10We recall that the Langland dual algebra is the algebra generates by the co-roots ∨g = α

(α,α)
11In the case of U(1) it is nothing but (F, ⋆F ) ↔ (⋆F,−F ) that exchanges electric monopole of charge e

with magnetic monopoles of charge 1
e
= ∨e.

12One should note that this is more restrictive than (λe, λm) ∈ (Λw/W) × (Λcw)/W, we remand to the
reference [21] for details.
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• Allowed lines form a commutative algebra, meaning that if (ε, µ) and (ε, µ) are allowed
lines then also (ε + ε′, µ + µ′)/W is allowed. This follows from considering the local
fusion of two line operators: generically, the resulting line sits in general in a reducible
representation, decomposable in its irreducible content by an operator product expansion
that can be shown to always contain the highest weight representation (ε + ε′, µ +
µ′)/W[22].

• Gauge fields are defined on the adjoint representation of G̃; hence, electric operators cor-
responding to them are surely allowed lines of the G̃ theory being their parallel transport.
Since the weights of the adjoint are the roots, the weight lattice of inequivalent lines
(obtainable up to summing others) is restricted modulo the root lattice ΛG̃

r . By Lang-
land duality, the exact analogous holds for the magnetic ones, defined only up to the
co-root lattice Λcr. Therefore the Lattice of the G̃ is contained in:

LG̃ ⊂ (ΛG̃
w/Λ

G̃
r × ΛG̃

cw/Λ
G̃
cr)/WG̃ ∼= Hom(Z(G̃),R/Z)× Z(G̃) (5.3)

⇒ LG̃ ⊂ Ẑ(G̃)× Z(G̃) Ẑ(G̃) = Hom(Z(G̃),R/Z) (5.4)

It will be important for the following that for abelian groups Ĝ ∼= G.

• As we have already stated, [14], the Lie Group G is given in terms of G̃ trough the
quotient by an unique Z ⊂ Z(G̃). Therefore, Z(G) = Z(G̃)/Z with extension:

0→ Z → Z(G̃)→ Z(G)→ 0 (5.5)

Purely electric lines (Wilson Lines) must correspond to representations of G, i.e. they sit

in Z(G) ⊂ Z(G̃). We have also the group-theoretic relation ΛG̃
cw/Λ

G̃
cr = Z. From which

we deduce the lattice to sit in the extension:

0→ Ẑ(G)→ L → Z → 0 (5.6)

• A further constraint is given by the mutual locality imposed by requiring that the phase
accumulated by a total braiding of two dyonic lines is zero. This is a generalization the
non-abelian version of the Dirac quantization condition, the Dirac-Schwinger-Zwanziger
condition:

Z ∋ ⟨(λ, µ), (λ′, µ′)⟩ := ⟨λ, µ′⟩+ ⟨λ′, µ⟩ = 0 mod Z(G̃) (5.7)

⟨·, ·⟩ : Ẑ(G̃)× Z(G̃)→ Z = Hom(R/Z,R/Z) (5.8)

Where with 0 mod Z(G̃) means that it is zero as an element of the center, e.g. if
Z(G̃) = ZN then (5.7) becomes: ⟨(λ, µ), (λ′, µ′)⟩ = 0 mod N .

Summarising, the line operators lattice is defined by the two extensions (5.6) and (5.5) regu-
lated by the condition(5.7). More precisely, the lattice is given the pullback:

0 Ẑ(G) L Z 0

0 Ẑ(G) Ẑ(G̃) Ẑ 0

Id η (5.9)
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Note that the function η : Z → Ẑ ∼= Hom(Ẑ,U(1)), seen as η : Z × Ẑ is exactly the quadratic
refinement σ : Z × Ẑ → U(1) of the Lagrangian coupling of the Brauer class, starting to
establishing the correspondence with the bundle description in (??). With all this information,
we can write down explicitly the lattice. For G =

∏
Gk =

∏
G̃k/Zk, the lattice is specified

by set of roots

(n1, · · · , nN ;m1 · · · ,mN ) ≡ (nk,mk) ∈ (Ẑ(G1)⊕ · · · ⊕ Ẑ(GN ))× (Z1 ⊕ · · · ⊕ ZN ) (5.10)

and we can take all ZN finite order groups Zak as this is the case for all the Lie Algebras. We
normalise the pairing so that the locality condition is:

⟨(nk,mk), (n
′
k,m

′
k)⟩ =

∑
k

nkm
′
k − n′

kmk

ak
= 0 mod 1 (5.11)

Then, the multiplication for magnetic charges is killed by the division by ak mod 1. Therefore,
the condition that the electric line ni in the chamber relative to Zj , n

j
i (defined modulo kj)

must satisfy is
nj
i

kj
− ni

j

ki
= 0 mod 1 that has solutions [1]:

nj
i

kj
=

ni
j

ki
=

mij

gcd(ki, kj)

{
mij = 0, 1, · · · , gcd(ki, kj) i ̸= j

mii = 0, 1, · · · , ki − 1 i = j
(5.12)

These exactly saturates the independent (non-instantonic) bundle classification, showing that
it is indeeed maximal.

Overall, we found that, while the Lie Algebra determines completely the spectrum of
local operators, it does not fully determine the line operators which spectrum depends on the
global structure of the group. As anticipated, the global structure of the gauge group matters
and determined the allowed line operators of the theory. Furthermore, the lattice and the
discussion on the θ-angles are fully related, but we still need to wait until Chapter 3 to fully
disclose the connection.

The presence of a Sθ term in the action produces an interesting phenomenon on dyonic
lines: the Witten effect Lines. This accounts to:

θ → θ + 2π =⇒ (ε, µ)→ (ε+ µ, µ) (5.13)

This resemble the Witten effect of Wilson-’t Hooft monopoles stating that any magnetic
monopole with charge m, in presence of a Sθ term, gains an electric charge q = θ

2πm (more
generally for a dyonic monopole (q,m) → (q + 2πm,m) )[36, 15]. Yet, the generalization of
the latter to dyonic lines is not trivial. A formal proof of (5.13) can be found in [19] where
it is showed that the ’t Hooft lines, under θ → θ + 2π undergo a monodromy transformation
TR(γ)→ TR(γ)WR(γ) while WR(γ)→WR(γ), which is exactly the content (5.13).

5.1.1 Lattice of Unitary theories

In this section we want to apply our general discussion to the case of gauge theories with
unitary algebras. The discussion can be repeated without any difference for any other group
[1, 3]. U(1) group As a warm up, we start by considering the very simple case of an U(1)
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Gauge theory. On a non-Spin manifold the maximal lattice is readily determined to be:

L = {
(
(n+

θ

2π
e)m,m

2π

e

)
, n,m ∈ Z} := {(n,m), n,m ∈ Z} (5.14)

Where e is the abelian coupling if the theory is Lagrangian, or a reference charge U(1) charge
of the theory. We introduce a convenient notation: since the lines are generated by the two
fundamental lines (1, 0) = W and (0, 1) = T , we indicated the general line given by: WnTm

meaning the generic line (5.14). su(N) algebra Consider now the less trivial example of a
su(N) algebra. The simply connected G̃ = SU(N) has Z(SU(N)) = ZN . The non-trivial
subgroups of ZN are H = ZM with M |N13, and therefore we can consider gauge theories with
any gauge group SU(N)/H.

G = SU(N) When the gauge group is SU(N), the maximal set of lines L ⊂ ZN × ZN

comprises all the purely electric lines (n, 0), = 0, · · · , N−1 that correspond to allowedWilson
Lines. Mutual locality imposes that they are the all and sole dyons as ⟨(n, 0), (0,m) = nm
mod N = 0 ∀n = 1, · · ·N implies that the only possible m is m = 0, i.e. the ’t Hooft
lines have charges kN, k ∈ Z, corresponding with the adjoint holonomy of the magnetic gauge
connection in the magnetic dual picture. In this case we know that the bundles of the theory
are simply the instantonic bundles.

G = PSU(N) Here, Z(G) = 1. Then, the only purely electric line is (0, 0) (again only the
adjoint lines). For a fixed n = 0, · · · , N − 1, any line (n, 1) is allowed by locality and therefore
all the lines (nm,m), m = 0, · · · , N − 1 are in the spectrum.14. If (n, 1) is in the spectrum
then all the other lines (n′ ̸= n, 1) are forbidden by (5.7). Hence, there are N different theories
(SU(N)/ZN )n labelled by an integer n = 0, · · · , N − 1 and they are all related by a shift of
the theta angle via Witten effect:

(nm,m) 7→ (nm+m mod N,m) = ((n+ 1)m,m) (5.15)

This means that under a shift of θ-angle:

θ → θ + 2π : (SU(N)/ZN )n 7→ (SU(N)/ZN )(n+1) mod N (5.16a)

So that a 2π shift of θ is not trivial on the bundles:

(SU(N)/ZN )θ+2π
n = (SU(N)/ZN )θ(n+1) mod N (5.16b)

Hence, in a SU(N)/ZN gauge theory the θ angle is not 2π periodic but has an enlarged 2πN
periodicity:

(SU(N)/ZN )θ+2πN
n = (SU(N)/ZN )θn (5.17)

This means that an PSU(N) = SU(N)/ZN gauge theory is made of N distinct non-instantonic
bundles and indeed has a a non-trivial Brauer class wb ∈ H2(M,ZN ). In this case, the bundles
can be described by enlarging the periodicity of theta PSU(N). As an example consider

13M |N means M is a divisor of N .
14At this point, one should be careful to treating separately the cases N generic and N prime; yet the

conclusion in either cases are the same [1]
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SO(3) = SU(2)/Z2: there are two bundles SO(3)− and SO(3)+ with two different spectrum
of lines. At the level of the bundle this is the consequence of the non-trivial Stieffel-Witney
class w2 ∈ H2(M,Z2) of SO(3) bundles that is expected as SO(3) does not admit spinorial
representations.

G = SU(N)/ZK Since K|N , call K ′ the integer such that KK ′ = N . Then the allowed
purely electric lines are (neK mod N, 0) for every integer ne. Mutual locality constraints
dyons to be ne(K, 0) + nm(n,K ′) mod N , with nm ∈ Z and n = 0, · · · ,K − 1 fixed. As
before, we have a family of bundles parametrized by n: (SU(N)/ZK)n and related by:(
ne(K, 0) + nm(n,K ′)

)
mod N → ne(K, 0)+nm(n+K ′,K ′ mod K,K ′) mod N (5.18a)

As n+K ′ = n′ is again constrained to be n′ = 0, · · · ,K − 1 :

(SU(N)/ZK)θ+2π
n = (SU(N)/ZK)θ(n+K′) mod K (5.18b)

Yet, this is qualitatively different from the previous case. In fact, starting from a given n
and shifting the θ angle we can only reach theories with n′ = n mod (gcd(K,K ′)). This
means that if gcd(K,K ′) = 1 I can simply extend the θ angle periodicity. But when N is not
square-free, i.e. some of its prime factors appear more than once in its prime decomposition,
then we might have gcd(K,K ′) ̸= 1 and we have distinct orbits under shifts of θ. In this case,
enlarging the periodicity of θ is not enough to cover all the configurations and the theory has
discrete θ-angles. As an example of this is SU(4)/Z2 = SO(6). We can easily verify the theory
has 4 bundles, yet neither (SU(4)/Z2)0 and (SU(4)/Z2)1 nor (SU(4)/Z2)2 and (SU(4)/Z2)3
are connected through a θ periodicity, while 0 ↔ 2 and 1 ↔ 3 are. Therefore the theory has
2 distinct theta angles θ1 and θ2 both with 4π periodicity. Again, at the bundle level this is
the result of a non trivial wb ∈ H2(M,Z4).

6 Appendix B:Gauging and Anomalies

Exactly how standard global symmetries can, in some situations, be promoted to gauge sym-
metries, higher form symmetries can be gauged as well. As we will see in this chapter, not only
this modifies the global structure of the gauge theory but also produce new global symme-
tries. Yet, it is not always possible to gauge a global symmetry: there may be obstructions to
gauging, the ’t Hooft anomalies. These anomalies are very powerful to study being protected
under the renormalization group action and part of this chapter is dedicated to discussing
them.

6.1 Coupling to background Gauge Fields

In this section we describe how a theory possessing an higher form global symmetry G(q) can be
coupled to flat (closed) non-dynamical background gauge fields for the symmetry. As always,
let us start by considering the simple case of a continuous higher form global symmetry. Here,
the intuitive idea is generalising the standard minimal coupling prescription by activating
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Uα Uβ

γ

Ug

Uα ∩ Uβ

Figure 14: Symmetry defect at the junction between patches and a cycle γ linking with it.

(q + 1)-gauge fields acting as sources for the current:

S ⊂
∫
M(d)

B(1) ∧ ⋆j(1) −→ S ⊂
∫
M(d)

B(q+1) ∧ ⋆j(q+1) (6.1)

The correspondence between symmetry defects and background gauge fields is canonical,
meaning that the two descriptions are equivalent. Namely, we can realise the correspondence
between a topological defect Ug(M(d−q−1)) and a background field B(q+1) as the assignment
of a (higher dimensional) holonomy:

exp

(
i

∮
γ(q+1)

B(q+1)

)
= g ∈ G (6.2)

for each (q + 1)-cycle ofM(d). In other words, coupling to background gauge field B(q+1)

is equivalent to stretching a network of topological operators U(Σ) such that the homol-
ogy classes of Σ ∈ Hd−q−1(M(d), G) over which they are supported are Poincare’ dual to

B(q+1) ∈ H(q+1)(M(d)). Just for a sake of clarity, take the q = 0 case: here implementing a
global symmetry accounts to stretching a network of domain walls that, in turns, induces a
partition of the manifolds in a collection of d-dimensional patches Uα. Their (d−1)-dimensional
intersections correspond exactly to the support of the symmetry operators Ug(Uα ∩ Uβ). In
other words, a symmetry defect network is none but the assignment of a set of transition
functions gαβ between the patches Uα and Uβ. Then we define the background gauge fields by
imposing the condition (6.2) for each 1-cycle linking with the d − 1 intersection. All of this
remains true for q > 0. Going back to the general (continuous) discussion, by performing the
gauge transformation B(q+1) → B(q+1) + dΛ(q):∫

M(d)
δΛB

(q+1) ∧ ⋆j(q+1) =

∫
M(d+1)

dΛ(q) ∧ ⋆j(q+1) = −
∫
M(d+1)

Λ(q) ∧ d ⋆ j(q+1) = 0 (6.3)

we deduce that background gauge fields are cycle only defined up to exact forms, i.e. they are
classes in the Cohomology ofM(d) with elements in G:

B(q+1) ∈ Hq+1(M(d), G(q)) (6.4)
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At this point we can detach the discussion from conserved currents taking this as the definition
of background gauge field for higher form symmetries. There is a very neat way of writing
the linking between topological and charged operators, but one needs to be careful about the
definitions. In fact, the linking between them only happens in the spatial slice at fixed time,
rather than in the total space. Hence, for our purposes we must consider [B] ∈ Hq(M(d−1), G),
i.e. as a q-cocycle of the spatial slice. For instance, in the case od a (2+1)−dimensional theory
with a standard symmetry (e.g. 2d Ising model Fig[6]), the domain walls are 2-cocycle entirely
contained in the spatial slice, so that the linked γ cycle over which the B(1) holonomy is taken,
is a 1-cycle in M(3) but only a 0-cycle (a point) in space. Analogous considerations hold in
the higher-form case. At this point, we can easily write the linking making use of Poincare’
duality pairing (implementing Hk(Xd) ∼= Hd−k(X

d)), provided that the charged defects are
associated with elements in the Homology β ∈ Hd−q−1(M(d−1), G) as:

U(α)V (β) = ⟨α, β⟩V (β), α ∈ Hq(M(d−1), G) (6.5)

with ⟨α, β⟩ being the the Poincare’ duality pairing of the spatial sliceM(d−1) (already incor-
porating the linking number). To see that the dimension of the charged defects matches our
expectations, we can use the universal coefficient theorem[17]:

Hd−q−1(M(d−1), G) ∼= Hq(M(d−1), Ĝ) (6.6)

Since the dual q-cocycle α was initially a q + 1 cocycle ofM(d), then β is indeed a q-cycle of
M(d) with coefficients in Ĝ according with the dimension on which the topological defects are
supported.

6.2 ’t Hooft Anomalies

At this point background fields are strictly non-dynamical, i.e. the partition function of the
theory depends explicitly on them Z = Z[B(q)]. In order to promote the global symmetry to a
gauge symmetry, we turn the background gauge fields into dynamical fields of the theory, i.e.
we sum over them in the path integral: Z =

∫
DB Z[B(q)]. Still, this is not always possible. As

a matter of fact, global symmetries may be affected by ’t Hooft anomalies. ’t Hooft anomalies
are quite tricky: they are neither anomalies of global symmetries: the symmetry is preserved
at the quantum level (the Ward identity indeed holds), nor gauge anomalies which would
be fatal for the theory itself as the symmetry is still a global symmetry (the backgrounds
are non-dynamical) 15. Generally, this anomalies arise as a global symmetry having a gauge
redundancy on its backgrounds does not automatically imply that the partition function of
the theory is invariant itself under this redundancy once we have coupled it to the background
fields. Indeed, in general the theory shifts by a local functional: [27, 8, 9]

S[B(q) + Λ(q)]− S[B(q)] =

∫
M(d)

Σ(d)[B(q),Λ(q)] (6.7)

Whenever the anomaly Σ[B(q),Λ(q)] can be cancelled by the insertion of local and gauge
invariant counterterm

∫
M(d) LLocal[B,Λ] the symmetry is anomaly free. Yet, sometimes

15For standard continuous symmetries ’t Hooft anomalies are detected through non vanishing triangle dia-
grams with global symmetry currents on all three vertices[35]
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such a counterterm is not possible to write. This is the essence of a ’t Hooft Anomaly: the
symmetry is preserved at the quantum level but cannot be gauged as, upon gauging, a ’t
Hooft anomaly (6.7) would turn into a gauge anomaly and the theory would ceases to make
sense. For this reason, we often say that ’t Hooft Anomalies are obstructions to gauging
global symmetries.

Anomaly matching The reason why we are interested in ’t Hooft anomalies is that they
impose important constraints on the structure of IR theories. We do not have space to
discuss it here thoroughly, but the main point is that the ’t Hooft anomalies satisfy non-
renormalization theorems and are RG invariant quantities. This means that for a theory
TUV with a global symmetry GUV, the ’t Hooft anomaly coupling κUV is rigid under the RG
flow and does not depend on any coupling in the space of the parameters of the theory. This
means that as we flow from the UV to the IR: (TUV, GUV) (TIR, GIR), even though the
degrees of freedom may be completely different, there must be a matching of the ’t Hooft
Anomaly at both scales, imposing very strong constraints on the dynamics of the IR theory.
An historically relevant example is the chiral breaking anomaly matching in QCD-like theories
giving crucial information on confinement in the IR.

ω−1(g1, g2, g3g4)ω
−1(g1g2, g3, g4)ω(g2, g3, g4)ω(g1, g2g3, g4)ω(g1, g2, g3) = 1 (6.8)

that is nothing by using the but the usual co-differential condition dω (g1, g2, g3, g4) = 0.
Hence, ω is a 3-cocycle in H3(BG,U(1)). At this point we can generalise this firstly to d
dimensions: ω ∈ Hd+1(BG,U(1)) and ultimately to the higher-form case. To do that, we use
again the isomorphism with the Eilemberg-MacLane homotopy classes and, with an analogous
derivation, we deduce that ’t Hooft anomalies of q-form symmetries G(q) are classified by the
cohomology classes[24, 25]:

ω ∈ Hd+1(Bq+1G,U(1)) (6.9)

This has a very neat interpretation as the result extending the spacetimeM(d) to another man-
ifold N (d+1) ⊃M(d) obtained by gluing to the d-simplex describing the junction, a new (d+1)-
simplex that modify the operators’ fusion on its boundary (cfr. Fig15 the (2+1)−dimensional
case. Anomalous (d + 1)-dimensional theory on M(d) are classified by the means of non-
anomalous (d + 1)-dimensional theory bulk theory on N (d+1) with ∂N (d+1) =M(d). In the
Lagrangian picture, we are saying that there is a gauge-invariant non anomalous and topolog-
ical Z[B] = exp

(
i
∫
J (d+1)[B]

)
(an Invertible field theory) in d+1 dimensions that reproduces

the anomaly of the original d-dimensional theory as a boundary term (an anomaly inflow [10]):

exp

(
i

∫
N (d+1)

S[B
(q)
i + Λ

(q)
i ]

)
− exp

(
i

∫
N (d+1)

S[B
(q)
i ]

)
= exp

(
i

∫
N (d+1)

dΣ(d)[B
(q)
i ,Λ

(q)
i ]

)
Determining the anomaly polynomial I(d+2)[B

(q)
i ] that reproduces the anomaly of the d

dimensional theory reduces to the cohomology problem:

dΣ(d)[B
(q)
i ,Λ

(q)
i ] = δΛiJ (d+1)[B

(q)
i ], I(d+2)[B(q)] = dJ (d+1)[B(q)] (6.10)
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Figure 15: Attaching a D + 1 simplex has the effect of changing the fusion algebra.

The concept of anomaly polynomial is a familiar one: for instance the axial anomaly in 4
dimension ∗JA ∼ c2(F

(2)) ∼ F (2) ∧ F (2) can be interpreted as the addition of the Lagrangian

term in 4+2 = 6 dimensions SA =
∫
dB

(1)
A ∧c2(F (2)) (B

(1)
A background gauge field of the Axial

symmetry) that, on shell, gives exactly the non-conservation of the axial current. Writing
the anomaly polynomials for a given theory basically accounts for writing all the possible
topological terms (dI = J ) of the theory in 6 dimensions (many of them will be zero or
not-independent (e.g. the gauge anomaly term must be trivial) (for a thorough review cfr.
chapter 2 [7].The fact that anomalous theories are described in terms of non-anomalous
Topological Field Theories in one dimension higher represents a touch-point with condensed
matter physics and in the last decade a lot of progress has been made in the study of SPT
phases whose formalism is exactly described in this terms.

6.2.1 Mixed ’t Hooft anomalies

There is a very subtle type of ’t Hooft anomalies. Namely, whenever we have a symmetry

G
(p)
1 ×G

(q)
2 (note that q and p can be different) we may have that separately the two symmetries

are non-anomalous but, whenever I try to couple both of them to background gauge fields,

the total symmetry develops a ’t Hooft Anomaly. In this case we say that G
(p)
1 and G

(q)
2

have a mixed ’t Hooft anomaly. They represent an obstruction to gauge the symmetries
simultaneously, but it is not an obstruction to gauge them separately, i.e. I could gauge the
former but not the latter and the gauged theory would remain perfectly meaningful. These
anomalies are everywhere in QFT!

Maxwell theory For instance, in the U(1) Maxwell theory in 4 dimensions the electric and
magnetic 1-form symmetries have a mixed ’t Hooft Anomaly. Too see that, let us start by
coupling with background fields for both the symmetries. From our general discussion we
know that the backgrounds couple with the conserved currents as, i.e. we must have:

S ⊃
∫
M(4)

(
B(2)

e ∧ ∗F (2) +B(2)
m ∧ F (2)

)
(6.11)

We must ensure gauge invariance F (2) → F (2) +dΛ(1)
e, B

(2)
e/m → B

(2)
e/m +dΛ(1)

e/m, that forces

us to add to the minimal (6.11) the term
∫
B

(2)
e ∧ ∗B(2)

e . Then, the total action, opportunely
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normalised, takes the form[34]:

S[A(1), B(2)
e , B(2)

e ] =
1

2e2

∫ (
F (2) −B(2)

e

)
∧ ∗
(
F (2) −B(2)

e

)
+

i

2π

∫
F (2) ∧B(2)

m (6.12)

The key point is that under an electric 1-form symmetry gauge transformation, the last term

in (6.12) is not invariant as S → S − i
2π

∫
Λ
(1)
e ∧ dB

(2)
m . To cancel this anomaly we can add

the local counter-term
∫
N B

(2)
e ∧ dB(2)

m defined on a N (5) (with ∂N (5) =M(4)) (in accordance
to our general discussion). Yet, there is no such local d = 4 counterterm: in fact, one might

be tempted to integrate the 5d term by part and add it to the d = 4 theory ∼
∫
MB

(2)
e ∧B(2)

m

as this would effectively cancel the electric anomaly. But, as a result of this the theory is

no longer invariant under a magnetic gauge transformation: δS =
∫
Λ
(1)
m ∧ B

(2)
e ! This is the

benchmark of a ’t Hooft anomaly: if we had not introduced any background field for U(1)
(1)
m we

would not have incurred in any anomaly (and vice-versa in the magnetic case by exchanging
e↔ m), but introducing background fields for both results in a mixed anomaly.

N = 1 SYM Another interesting example is given by pure N = 1 SYM theories. This
theories have h∨ (dual coxeter number) distinct vacua; let us sketch why this is true very
briefly[33]. The U(1) R-symmetry λ→ eiωλ is affected by an ABJ anomaly which computation
is analogous to the axial anomaly in QED, with the only difference that, since the fermions
are in the adjoint representation of the group, the trace over the colour dof dresses the axial

anomaly g2

16π2F ∧ F with a factor 2C2(Adj)≡ 2h∨ - equivalently one can restate the Atiyah-
Singer theorem for Weyl fermions. This shift is reabsorbed via the transformation θ → θ +
2h∨ω (the axial anomaly is proportional to F ∧ F ), and therefore we have that the explicitly
breaking U(1) → Z2h∨ since the transformation λ → e2πik/(2h

∨)λ gives a 2kπ θ-angle shift
that leaves the theory invariant. Furthermore, we also have that the quantity η = Λ3h∨ ∝ eiτ

(τ complexified coupling) is invariant at all order in perturbation theory. Hence Λ transforms
as Λ → Λe2πi/(3h

∨) under R-symmetry (η is invariant). Hence, a mere R-charge counting
implies that the VeV of the fermion bilinear must be of the form ⟨λαλα⟩ ∝ Λ3 that implies
that the theory spontaneously breaks Z2h∨ → Z2 acting as λ → −λ. Thus, the theory has
indeed h∨ degenerate vacua. In the special case of SU(N) h∨ = N and we also know that the
1-form symmetry is preserved (at least in the UV theory). The crucial point is that in the
UV, where we have the Lagrangian description, this theory posses a mixed ’t Hooft anomaly

between the global zero form symmetry Z(0)
2N and the one form symmetry Z(1)

N . As we stressed
before, ’t Hooft anomalies can also affect p and q higher symmetries with p ̸= q and this is an

explicit example of this. To see that, we couple the theory with a background field for Z(1)
N

through the usual F → F + B, as discussed in the abelian case. Hence, the action contains
a term ∝ θ

∫
B ∧ B signalling a mixed cubic ’t Hooft anomaly with anomaly inflow term

∼
∫
A(1) ∧B ∧B [4] as Z2N (A(1) its background) shifts θ → θ+2π. According to the general

theory, we know that such a ’t Hooft anomaly should be matched also in the IR where the
R-symmetry is Z2, implying (see [13] for details) that the system must contain classical ZN

2-form background gauge fields, i.e. an unbroken 1-from symmetry, from which we can infer
that the N vacua are indeed confining, showing all the power inherited by studying higher
symmetries and their anomalies!
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6.3 Gauging

As anticipated, assuming that the symmetry is not anomalous, gauging an higher form sym-
metry G(q) accounts to promoting the background fields B(q+1) to dynamical fields of the
theory, i.e. to summing over them in the path integral, schematically:

Z[B(q+1)] =
∑

bundles
B(q+1)fixed

∫
D[Xi] exp

(
−S[B(q+1)]

)
gauging
=====⇒

⇒Z̃ =

∫
DB

∑
bundles

∫
D[Xi] exp

(
−S[B(q+1)]

)
G discrete

=
∑

bundles,
B∈Hq+1(M,G)

∫
D[Xi] exp(−S[B])

(6.13)

Very often the symmetry is discrete and therefore in the last line we have a sum over the value
of the discrete connection. Gauging an higher form symmetry has the result of producing a
new higher form symmetry in the gauged theory, analogous to the quantum symmetry of the
discrete orbifold. As always, there are two ways of showing this. The first one is purely topolog-
ical. Exactly as we have considered charged defects supported on manifolds with boundaries,
we can also consider bounded topological operators Ug(Σ

(d−q−1)) with ∂Σ(d−q−1) = γd−q−2.
Then, the action of g is produced by the holonomy of the poincare’ dual of B(q+1) on the
spatial submanifold of γ(d−q−2) (Σ is inserted in the spatial slice so γ extends in one non
space direction, where we should not take the holonomy as the Ward identity is at fixed time)
each time that a charged operator links with it. Gauging the symmetry makes B dynamical
and subsequently γ a charged defect: γ ∈ Hd−q−2(M(d), G) or ≡ Hd−q−1(M(d−1), G) in the
spatial slice. Hence, the topological operators linking with γ in the spatial slice are valued in
Hq−1(M(d−1), G) ∼= Hd−q−1(M(d−1), Ĝ) ≡ Hd−q−1(M(d), Ĝ) as γ was a cocycle extending in
the time direction. Thus, gauging a q-form symmetry G(q) produces a new magnetic (d−q−2)-
form global symmetry with values in the Pontryagin dual group Ĝ(d−q−2). In the Lagrangian
description this follows from the fact that the kinetic term for the dynamical G(q) field must
be of the BF-like form

∫
⟨A,B⟩ ∈ U(1) with B ∈ Hq+1(M(d), G) and A ∈ Hd−q−1(M(d), G);

then, upon Poincare’ duality and the universal coefficient theorem, we retrieve the same result,
i.e. that the dynamical B field is coupled with a background field A ∈ Hd−q−1(M(d), Ĝ) which
is exactly a background for a Ĝ(d−q−2) symmetry [13].

6.3.1 Gauging 1-form symmetries in su(N) bundles

Eq (6.13) resemble very closely the discussion of Chapter 1 on bundles in gauge theories.
Of course this is not a coincidence as we have stressed many times that the global physics
couples with extended defects and hence with the global symmetries thereof. There is a very
neat connection of the two discussion that subsequently connect also the spectrum of the line
operators with the bundles of the theories as we promised in Chapter 1. Namely, the key
result is that we can construct any bundle with lie algebra g in 4d, starting with the simply
connected G gauge theory and gauging a subgroup of its electric 1-form symmetry. We explain
this in the context of su(N) bundles in 4 dimensions, but the discussion can be easily repeated
for the other groups. As we have already explained, an SU(N) theory is divided in instantonic
sectors but, being simply connected, has a fixed Brauer class wb ∈ H2(M(d),ZN ) ≡ 0. We
can think of this last condition as being implemented by a Lagrange multiplier in analogy
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with what discussed at the end of section ??. At the same time, in SU(N) bundle we can also

introduce a background gauge field for the global Z(1)
N symmetry: B(2)(M(d),ZN ). If we gauge

the entire 1-form symmetry, the latter becomes a dynamical field that (see again section ??)
fixes wb ≡ B(2) once the multiplier has been integrated out. We conclude that gauging the
1-form symmetry produces exactly the partition function of a PSU(N) bundle!

ZSU(N)[B(2)]→
∑

wb∈H2(M,ZN )

ZSU(N) ≡ ZPSU(N) (6.14)

Furthermore in 4 dimension, the gauging of a 1−form symmetry produces a new global 4−1−
2 = 1-form symmetry valued in ZN that exactly matches the magnetic 1-form symmetry of
PSU(N) bundles under which ’t Hooft lines are charged. Alternatively, we could have started
with a PSU(N) theory and by gauging the ZN 1-form magnetic symmetry we would have
obtained the SU(N) theory back. The discussion is very similar also for the general case:
gauging any subgroup ZK ⊂ ZN of the 1-form symmetry results in a SU(N)/ZK theory.

Another, more explicit way of showing this, is making Z(1)
K dynamical by minimally cou-

pling the theory to a BF term for a continuos Z(1)
K background to the theory, i.e. rather than

describing the backgrounds with a discrete connection, we promote it to a continuos one[12].
In fact, the BF theory with continuos degrees of freedom:

LBF =
iK

2π
B(2) ∧ dA(1) − ipK

4π
B(2) ∧B(2), A(1) → A(1) + pλ(1), B(2) → B(2) + dλ(1)

and quantized integral fluxes is well-known to describe a ZK gauge theory when the fields
are dynamical (see [23] and Appendix C [13]) and therefore corresponds to a gauging of
the background field - this is analogous to gauging a continuous symmetry: we minimally
couple the theory and we introduce a kinetic term for the gauge connection. We restrict for
simplicity to K = N as the general case does not add particular flavour. To elucidate the
emergent magnetic 1-form symmetry of the gauged theory, it is convenient to consider its
dualised version L = −i 1

2πF
(2) ∧ (dÂ(1) − NB(2)) − ipN

4π B ∧ B for a field Â having 1-form

symmetry: ZN Â(1) → Â(1) +Nλ(1). This theory by the virtue of the “Lagrange multiplier”
F (2) = dA(1) reduces to the BF theory upon using the Equation of Motions. To couple it to
the SU(N) theory, we take Â(1) to be a SU(N) connection (in general it is a U(N) connection
but it reduces to a SU(N) one as a consequence of its gauge freedom) that we identify with
Â(1) = A(1) the gauge connection of the YM theory . Hence, the full gauge invariant action
for the SU(N) theory coupled to the BF term has the action:

S =
1

4

∫
(F (2)−B(2))∧∗(F (2)−B(2))+

i

2π

∫
F (2)∧ (dA(1)−NB(2))− ipN

4π

∫
B(2)∧B(2)+Sθ

As promised this theory has a Z(1)
N magnetic symmetry corresponding to the symmetry of

Â(1) and coincides with the PSU(N) theory as thoroughly explained in section 7 of [23].
Furthermore the θ term:

Sθ =
iθ

8π2

∫
(F (2) −B(2)) ∧ (F (2) −B(2)) (6.15)
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under the shift θ → θ + 2π, using the equation of motion for F (2) changes as:

∆Sθ =
i

4π

∫
F (2) ∧ F (2) − iN

4π

∫
B(2) ∧B(2) (6.16)

That is equivalent to p → p + 1. Furthermore, as a result of the dA-flux quantization

(Z(1)
N magnetic symmetry) and the equation of motion of F (2): 1

4π

∫
B ∧ B ∈ (2πZ)/N2.

Hence, when p → p + N , iN
4π

∫
B(2) ∧ B(2) → 2πNZ. Putting all together, this means that

Sθ − iN
4π

∫
B(2) ∧B(2) define a fractional theta angle θPSU(N) = 2πp+ θSU(N) with periodicity

2πN : exactly as we expected from Chapter 1. In the old language used in that chapter,
magnetic lines had values in the gauged subgroup which is nothing but the magnetic 1-form
symmetry of the gauged theory. We started in Chapter 1 by studying the topology of gauge
bundles and we have now completed the task of linking it to the genuine (higher dimensional)
symmetries of the theory.

6.3.2 Time reversal anomaly

A very nice example Mixed ’t Hooft anomaly has been studied in [12]: in pure SU(N) YM in
4 dimensions there is a mixed anomaly between the electric 1-form symmetry and the time
reversal (equivalently CP as CPT is always a symmetry) T : t → −t. The YM coupling is
invariant under T as the change in sign of t is reabsorbed by the change of sing of the oriented
volume form inside ∗. Instead, the θ-term is not invariant as F ∧F 7→ −F ∧F , i.e. the action of
time reversal is T : θ → −θ. Therefore, for SU(N) YM theory T is a symmetry at the specific
values θ = 0 and θ = π. As follows from the discussion above, once we couple background
gauge fields, the theta angle becomes θ′ = [2πp + θ] ∈ [0, 2πN ], p = 0, · · · , N − 1. However,
given that the background is non-dynamical, we have the freedom of fixing a particular value
of p since we are still describing a SU(N) bundle that strictly has a 2π periodic θ-angle. Now,
at θ = 0 the T symmetry is preserved as we can fix p = 0 and therefore the theory is not-
anomalous at θ = 0. Instead at θ = π the situation is different. In order to preserve T , we
must satisfy θ′ = 0 or θ′ = Nπ (respectively equivalent to θ = 0 and θ = π). Given that
θ′(θ = π) = (2p + 1)π, we readily conclude that the former option is not achievable. For N
even neither the latter is possible and therefore the theory has a mixed ’t Hooft anomaly at
θ = π for N even. The situation for N odd is trickier: in this case fixing p = (N − 1)/2 makes
the theory anomaly free at θ = π. However, such a value of p is not consistent with p = 0 at
θ = 0 for N > 1. Hence an anomaly free theory at θ = π would imply a ’t Hooft anomaly at
θ = 0: for N odd there is no consistent choice of p that preserves the time reversal at either
places simultaneously. In [12] it is argued that lattice simulations push toward assuming that
at θ = 0 T is indeed preserved. Then, we must have a mixed ’t Hooft anomaly at π even for N
odd. Summarising, there is a mixed ’t Hooft anomaly between the electric 1-form symmetry
and time reversal at the value of θ = π. More recently, by employing an anomaly-matching
argument, this result has been used in [10] to show that the IR theory vacuum at θ = π
must be either T -breaking or confining or gapped, illustrating the power of ’t Hooft anomaly
matching.
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