The asymptotic weak gravity conjecture in F-theory & M-theory compactifications

String theory and mathematical physics journal club

Cesar Fierro Cota, Universität Hamburg

Tuesday 31, 2023

Based on: [2208.00009] & [2212.09758] by CFC, A. Mininno, T. Weigand, Max Wiesner

1. Introduction

- 2. The asymptotic weak gravity conjecture
- 3. A geometrical dictionary for the emergence string conjecture
- 4. Counting of non-BPS states in five dimensions

The swampland

The set of anomaly free quantum effective field theories that cannot be completed into quantum gravity in the ultraviolet.

Motivation:

Find underlying principles for a theory of quantum gravity.

The quest for mathematical principles for quantum gravity

What is the asymptotic weak gravity conjecture about?

What is the asymptotic weak gravity conjecture about?

Consider a U(1) gauge theory coupled to gravity

 \rightarrow Black hole solutions of charge Q and mass $\it M_{\rm BH}$ subjected to:

Extremality bound:

 $M_{\rm BH} \geq Q$.

 $M_2 < Q_2 \checkmark$

The weak gravity conjecture (WGC)

There must exist a super-extremal state of charge q and mass m, such that

$$\frac{q}{m} \ge \frac{Q}{M_{\rm BH}}\Big|_{\rm ext} \,. \tag{1}$$

Q: Black hole charge *M*_{BH}: Black hole mass

[Arkani-Hamed, Motl, Nicolis, Vafa'06]

Principle: Extremal black holes should be allowed to decay.

The WGC can be argued by the finiteness of entropy/absence of *remnants*, which imply a tower WGC version.

[Susskind'95][Arkani-Hamed,Motl,Nicolis,Vafa'06] [Hamada,Montero,Vafa,Valenzuela'21]

Need a WGC version for multiple $U(1)^r$ gauge factors, with r > 1. [Cheung,Remmen'14]

Consistency required for a Kaluza-Klein reduction:

[Heidenreich, Reece, Rudelius'15]

 S^1 (d+1)-dimensional $U(1)^r$ gauge theory : WGC \checkmark d-dimensional $U(1)^{r+1}$ gauge theory : WGC \checkmark

The tower weak gravity conjecture (tWGC)

For every site Q of the charge lattice Λ_Q , there is a positive integer n such that there is a super-extremal state with charge nQ satisfying the WGC.

 $[Montero, Shiu, Soler'16] [Heidenreich, Reece, Rudelius'16'17] \ [Andriolo, Junghans, Noumi, Shiu'18] \\$

The tower weak gravity conjecture

Charge lattice: $\Lambda_Q = \{\bullet\} \cup \{\bullet\}$ WGC Sublattice: $\Lambda_{ext} = \{\bullet\}$

The tower weak gravity conjecture

The tower weak gravity conjecture

Consider M-theory on a Calabi-Yau threefold X_3 . \Rightarrow five-dimensional effective theory with eight supercharges.

 $U(1)^{\alpha}$ s induced by reducing the M-theory 3-form C_3 into gauge potentials A^{α} that pair with harmonic forms $[\omega_{\alpha}]$ in $H^{1,1}(X_3, \mathbb{Z})$.

Charged objects:

- M2-branes wrapping curves $C \subset X_3 \Rightarrow \mathsf{BPS}$ particles
- M5-branes wrapping divisors $D \subset X_3 \Rightarrow$ strings (non-BPS)

The tower weak gravity conjecture in M-theory

A tower for BPS particles was proposed by considering curve classes [C] inside the movable cone Mov (X_3, \mathbb{Z}) , which is dual to the cone of effective divisors Eff¹ (X_3, \mathbb{Z}) .

[Alim, Heidenreich, Rudelius'21], [Boucksom, Demaily, Paun, Peternell'13]

Non-trivial checks for the tWGC performed via explicit computation of Gopakumar-Vafa invariants of several geometries.

[Alim, Heidenreich, Rudelius'21], [Gendler, Heidenreich, McAllister, Moritz, Rudelius'22]

However:

There exist ray charges where extremal black holes and such a BPS tower do not coincide.

 \Rightarrow Potential room for tWGC violation!

The asymptotic weak gravity conjecture in M-theory I

Claim 1

Suppose there exists a primitive charge vector $Q^0 \in \Lambda_Q$ such that

 $\{\lambda Q^0\}_{\lambda\in\mathbb{R}}\cap\Lambda_Q$

is not populated by a BPS tower of super-extremal states. Then:

1. There exists no limit in moduli space in which

weak coupling limit:
$$\frac{\Lambda^2_{WGC}}{\Lambda^2_{QG}} \rightarrow 0$$
. (2)

There exists a non-BPS tower of states along {λQ⁰}_{λ∈ℝ} ∩ Λ_Q that is part of the tower of excitations of weakly coupled critical string in the limit (2). This tower satisfies the tWGC.

Here: $\Lambda^2_{
m WGC} = g^2_{
m YM} M^3_{
m PI}$

- 1. Introduction
- 2. The asymptotic weak gravity conjecture
- 3. A geometrical dictionary for the emergence string conjecture
- 4. Counting of non-BPS states in five dimensions

Emergence string conjecture & Fibration structure of Calabi-Yau threefolds

Emergence string conjecture

Any infinite distance limit is either a decompatification limit or a limit in which a weakly coupled critical string becomes tensionless.

[Lee,Lerche,Weigand'19]

Geometrisation of emergent string limits in M-theory

Infinite distance limits in classical Kähler moduli space of a Calabi-Yau threefold X_3 , subjected to a finite volume, are [Lee,Lerche,Weigand'19]

1. Limits of type T^2 : X_3 admits a T^2 -fibration

 $\pi: X_3 \to B_2$.

The weak coupling limit corresponds to the volume of the generic fiber T^2 shrinking.

2. Limits of type $K3/T^4$: X_3 allows for a surface fibration

$$\rho: X_3 \to \mathbb{P}^1$$
.

The weak coupling limit corresponds to the volume of the generic surface fiber ${f S}$ shrinking.

Claim 2

In M-theory on a Calabi-Yau threefold X_3 , the only U(1)s that admit a weak coupling limit are obtained from the M-theory 3-form C_3 reduced on a curve:

- A generic T^2
- Curves in a generic $K3/T^4$ fiber
- Curves in degenerate fibers at finite distance in the fiber moduli space

- 1. Introduction
- 2. The asymptotic weak gravity conjecture
- 3. A geometrical dictionary for the emergence string conjecture
- 4. Counting of non-BPS states in five dimensions

Limits of type T^2

In a T^2 -fibered Calabi-Yau threefold $\pi : X_3 \rightarrow B_2$, the Shioda-Tate-Wazir-theorem states:

In a T^2 -fibered Calabi-Yau threefold $\pi : X_3 \rightarrow B_2$, the Shioda-Tate-Wazir-theorem states:

Role in six-dimensional F-theory dual:

Limits of type T^2

A basis for effective curves in X_3 is $\{C^a, C_f^i\}$, where:

- { C^{a} }_{a=1,...,h^{1,1}(B₂)}: base curves
- $\{C_f^i\}_{i=1,...,n}$: fibral curves

The generic T^2 -fiber is a linear combination

$$T^2 = \sum_{i=1}^n c_i C_f^i.$$

Limits of type T^2

 We proved that the only ray charge direction that allows for a weakly coupled limit Λ²_{WGC}(U(1))/Λ²_{QG} → 0 is

$$U(1)_{KK} = \sum_{i=1}^n c_i U(1)^i$$
 with $T^2 = \sum_{i=1}^n c_i \mathcal{C}_f^i$.

- Such a limit corresponds to a decompactification limit into the six-dimensional F-theory dual counterpart.
- Charge lattice Λ_Q in tWGC populated by non-trivial BPS states counted by genus zero Gopakumar-Vafa invariants

$$n_{kT^2}^0 = -\chi(X_3)$$
, with $k \in \mathbb{N}$,

which contribute of the base degree zero coefficient of the top. string partition function, which transforms as a Jacobi form of weight k = -2.

[Huang,Katz,Klemm'15][CFC,Klemm,Schimannek'19][Oehlmann,Schimannek'19][Kashani-Poor'19]

One can take a similar approach to separate base and curves in the fiber of $\rho: X_3 \to \mathbb{P}^1$.

However: K3 fibrations can have degenerations over points in \mathbb{P}^1 that occur at finite/infinite distance in the K3 fiber moduli space:

Semi-stable degeneration classification of K3 surfaces

 $\implies \begin{cases} \mathsf{Type I Kulikov models} & (\mathsf{at finite distance}) \\ \mathsf{Type II/III Kulikov models} & (\mathsf{at infinite distance}) \end{cases}$

Limits of type K3

Consider the restriction of the K3 fibration to a disk D centered around a point $p \in \mathbb{P}^1$

$$\rho_D: X_D \to D \,,$$

where the fiber S_u over a generic point $0 \neq u \in D$ is smooth, while the central fiber S_0 degenerates into a union

$$\mathbf{S}_0 = igcup_{M=1}^N \mathbf{S}_M$$
 .

Here \mathbf{S}_M has at worst normal crossing singularities.

Type I Kulikov models $\longrightarrow N = 1$ and \mathbf{S}_0 is smooth. Type II/III Kulikov models $\longrightarrow N > 1$.

Semi-stable degeneration of K3 surfaces

Picture: [Lee,Lerche,Weigand'21]

Limits of type K3

A basis for effective curves in $\rho : X_3 \to \mathbb{P}^1$ is $\{\mathbb{P}^1, \mathcal{C}^{\iota}, \mathcal{C}^m, \mathcal{C}^{\mu}\}$, where:

- \mathcal{C}^{ι} : curve generators located in the generic K3 fiber
- \mathcal{C}^m : curve generators localized in special fibers of Kulikov Type I
- \mathcal{C}^{μ} : curve generators localized in special fibers of Kulikov Type II/III

We proved that allowed U(1) charges with weakly coupled limit $\Lambda^2_{WGC}(U(1))/\Lambda^2_{QG} \to 0$ are of the form

$$U(1)_{C} = \sum_{\mu} c_{\mu} U(1)^{\mu} + U_{\mathcal{C}_{\mathrm{rest}}} \, ,$$

where $C = \sum_{\mu} c_{\mu} C^{\mu} + C_{\text{rest}}$ lies inside the generic K3 fiber.

Counting towers over limits of type K3

- Emergent string conjecture: The U(1)s arise from the perturbative gauge sector of the heterotic string.
- Heterotic strings in five-dimensional M-theory arise by wrapping M5-branes along the K3 fiber.
- The counting of heterotic strings excitations can be determined via the modified elliptic genus of MSW strings:

[Maldacena, Strominger, Witten'97] [Gaiotto, Strominger, Yin'06]

$$Z_{\mathbf{S}}^{(r)}(\tau,\bar{\tau},z) = \operatorname{Tr}_{\mathsf{R}\mathsf{R}}F_{\mathsf{R}}^{2}(-1)^{F_{\mathsf{R}}}q^{L_{0}-\frac{c_{\mathsf{L}}}{24}}\bar{q}^{\bar{L}_{0}-\frac{c_{\mathsf{R}}}{24}}e^{2\pi i z^{i}Q_{i}}.$$
 (3)

Here **S** is the divisor wrapped by the M5-brane *r* times. τ is the T^2 modulus in the MSW-CFT and $q = \exp(2\pi i \tau)$. z^i are U(1)s worldsheet fugacity parameters and $Q_i \in \mathbb{Z}$.

Counting towers over limits of type K3 — Kulikov Type I

Consider K3 fibrations $\rho: X_3 \to \mathbb{P}^1$ of Type I Kulikov.

 \Rightarrow the fibers admits a Λ -polarization with $\Lambda \subset U^3 \oplus E_8(-1)^2$.

This setup allows for a Noether-Lefschetz theory counting, which counts intersection of special divisor loci in the moduli space of K3 surfaces \mathcal{M}_{Λ} with the base image in $\mathbb{P}^1 \hookrightarrow \mathcal{M}_{\Lambda}$.

Modularity:

Noether-Lefschetz numbers determined by a vector-valued-modular form Φ specified by the lattice information of Λ .

[Maulik,Pandharipande'07][Borcherds'99][Kudla-Millson'90]

Counting towers over limits of type K3 — Kulikov Type I

The elliptic genus for a heterotic MSW string decomposes as

$$Z_{\mathbf{S}}^{(r)}(\tau,\bar{\tau},z) = \sum_{\mu \in \Lambda^*/r\Lambda} Z_{\mu}(\tau)\Theta_{\mu,r}^*(\tau,\bar{\tau},z), \qquad (4)$$

where Λ^* is the dual lattice of Λ , $\Theta_{\mu,r}$ is a Siegel-Theta series, and Z_{μ} is a vector-valued-modular form encoding DT invariants that is equivalent to Noether-Lefschetz vector-valued-modular form Φ .

[Bouchard, Creutzig, Diaconescu, Doran, Quigley, Sheshmani'16]

Moreover,

$$Z_{\mu}(\tau) = \sum_{n=0}^{\infty} \Omega(\gamma) q^{n + \frac{Q^2}{2r} - 1}, \qquad (5)$$

where $\Omega(\gamma)$ is a BPS (DT invariant) with D4-D2-D0 brane charges $\gamma = (r, Q, n)$ with $r, n \in \mathbb{Z}_{\geq 0}$ and $Q \in \Lambda^*$.

Counting towers over limits of type K3 — Kulikov Type I

- The lattice Λ^* decomposes as $\Lambda^* = \Lambda_+ \oplus \Lambda_-$ with Λ_\pm being the self/anti-self dual part of Λ^* .
- Using Noether-Lefschetz constraints, we proved that there is a non-trivial tower of states with charges γ such that n = -Q²₋/2 with Q₋ ∈ Λ₋.
- Moreover, we proved that such states correspond to excitations of strings (non-BPS) in five dimensions at level $n = -Q_{-}^{2}/2$ that fulfill the tWGC.
- Using Noether-Lefschetz theory, and BPS states with charges also in Λ_+ , we can populate the entire charge lattice Λ^* with superextremal states!

Counting towers over limits of type K3 — Kulikov Type II/III

For Type II/III Kulikov models, Noether-Lefschetz theory needs to be better understood.

For a general MSW string wrapped on a reducible divisor $\mathcal{D} = \sum_{i=1}^{n \ge 2} \mathcal{D}_i, \text{ the MSW string elliptic genus is of the form}$ $Z_{\mathcal{D}}^{(r)}(\tau, \bar{\tau}, z) = \sum_{\mu \in \Lambda^*/r\Lambda} \widehat{Z}_{\mu}(\tau) \Theta_{\mu,r}^*(\tau, \bar{\tau}, z), \quad (6)$

similar definitions as before, but now

$$\widehat{Z}(\tau,\bar{\tau}) = Z_{\mu}(\tau) - \frac{1}{2}R_{\mu}(\tau,\bar{\tau})$$
(7)

is a vector-valued mock modular form of depth n-1.

[Alexandrov, Banerjee, Manschot, Pioline'16]

 Z_{μ} : holomorphic part

 $R_{\mu}(au,ar{ au})$: non-holomorphic completion

Example

6 Example

We illustrate the possible weak coupling limits and their associated super-extremal towers by means of a Calabi–Yau 3-fold X_3 which admits both a K3-fibration $\rho : X_3 \rightarrow \mathbb{P}^1$ and a compatible elliptic fibration $\pi : X_3 \rightarrow B_2$. The elliptic fibration is constructed as a generic Weierstrass model over the base $B_2 = Bl(\mathbb{F}_2)$, the blowup of the Hirzebruch surface \mathbb{F}_2 in one point. Since B_2 is rationally fibered, X_3 admits also a compatible K3-fibration.

The resulting Calabi–Yau X_3 can be described torically via the following data:

					\mathcal{C}^{0}	\mathcal{C}^1	\mathcal{C}^2	C^3	
D_1	(-2)	-3	-1	$^{-2}$	1	-1	0	1	
D_2	-2	-3	-1	1	0	1	0	-1	
D_3	-2	$^{-3}$	0	-1	-2	1	0	0	
D_4	-2	$^{-3}$	0	1	0	0	0	1	
D_5	-2	-3	1	0	1	0	0	0	
D_6	1	0	0	0	0	0	2	0	
D_7	0	1	0	0	0	0	3	0	
D_8	(-2)	$^{-3}$	0	0	0	-1	1	-1/	

Assigning projective coordinates [s:t:u:v:w:x:y:z] to the toric divisors $\{D_i\}_{i=1,\dots,8}$ in the same corresponding ordering, we obtain the Stanley–Reissner ideal

$$SR = \{tu, uv, sw, tw, sv, xyz\}.$$
(6.2)

The Euler number of X_3 is $\chi(X_3) = -420$. The Mori cone is simplicial and generated by the curves C^i , i = 0, 1, 2, 3. The dual Kähler cone generators J_i are expressed in terms of the toric

Example

divisors, for instance, as

$$J_0 = D_1 + D_2$$
, $J_1 = D_2 + D_4$, $J_2 = \frac{1}{2}D_6$, $J_3 = D_4$. (6.3)

In particular, D_1 and D_2 are among the generators of the cone of effective divisors. Furthermore, $c_2(X_3) \cdot J_\alpha = (24, 48, 82, 36)$. This identifies J_0 as the divisor associated with the K3-fiber of ρ , and $J_2 = S_0 + \pi^* c_1(B_2)$ with S_0 being the zero-section of the elliptic fibration. Its dual Mori cone generator C^2 therefore corresponds to the class generic elliptic fiber.

The generic rational fiber of B_2 lies in the class $C^1 + C^3$. The base of this rational fibration is the base \mathbb{P}^1 of the K3-fibration ρ ; its class coincides with C^0 . Over a special point on the base \mathbb{P}^1 , the rational fiber of B_2 splits into two rational curves in class C^1 and C^3 , each of self-intersection -1 on B_2 . The elliptic fibration over each of these two curves defines a rational elliptic surface, or dP_3 , of Euler characteristic 12. As a result, the K3-fibration undergoes a Kulikov Type II degeneration, in which the generic K3 fiber class splits as

$$S_0 = S_1 \cup S_2$$
. (6.4)

We identify the class of S_1 and S_2 with the toric divisor classes D_1 and D_2 .

To the given basis $\{C^{\alpha}\}_{\alpha=0,...,3}$ of the Mori we can now associate a basis $\{U(1)^{\alpha}\}$ of the Abelian gauge factors and hence a basis of charges $\{Q_{\alpha}\}$ that parametrize the charge lattice. We notice that C^2 is the only Mori cone generator that is also a movable curve. Hence the results of [20] imply that there is an infinite tower of BPS states with charge

$$Q = (Q_0, Q_1, Q_2, Q_3) = (0, 0, n, 0).$$
 (6.5)

In fact, since C^2 is the elliptic fiber class, the genus-zero BPS invariants along this direction are

$$N_{(0,0,n,0)}^{0} = -\chi(X_3) = 420.$$
(6.6)

On the other hand, the rays in the charge lattice with $Q_2 = 0$ do not support towers of BPS states and hence invite an application of Claim 1.

To this end we should first consider which linear combinations of $U(1)^0$, $U(1)^1$, and $U(1)^3$ admit weak coupling limits. Let us begin with the K3-fibration ρ and its associated weak coupling limit of Type K3. The dual of the polarization lattice is spanned by the generators of the ρ -relative Mori cone that lie in the generic K3-fiber. This identifies

$$\Lambda^* = \langle C^2, C^1 + C^3 \rangle \simeq U,$$
 (6.7)

where U is the hyperbolic lattice of signature (1, 1). According to the general discussion of Section 4.2, the two Kähler cone generators J_1 and J_3 dual to the curves C^1 and C^3 in the generic rational fiber must satisfy a homological relation of the form (4.48). Indeed, from the intersection form

$$\mathcal{I}(X_3) = 7J_2^3 + 2J_2^2 \cdot J_0 + 4J_2^2 \cdot J_1 + 3J_2^2 \cdot J_3 + 2J_1^2 \cdot J_2 + J_3^2 \cdot J_2 + J_0 \cdot J_1 \cdot J_2 + J_0 \cdot J_2 \cdot J_3 + 2J_1 \cdot J_2 \cdot J_3$$
(6.8)

Example

it follows that

$$J_3 \cdot J_0 \cdot J_\alpha = J_1 \cdot J_0 \cdot J_\alpha, \quad \forall \alpha = 0, \dots, 3.$$

$$(6.9)$$

An infinite distance limit of Type K3 is parametrised as

$$J = \lambda \tilde{v}^0 J_0 + \frac{1}{\sqrt{\lambda}} \tilde{v}^i J_i \,, \quad \lambda \to \infty \,. \tag{6.10}$$

In terms of the rescaled Mori cone volumes $\hat{\tilde{v}}^{\alpha} = \frac{\vartheta^{\alpha}}{V^{1/3}}$, the gauge kinetic matrix $f_{\alpha\beta}$ at leading order in λ takes the form

$$f_{\alpha\beta} = \lambda \frac{\hat{v}_0^2 \hat{v}_2^2}{\left(\hat{\hat{v}}_0 \hat{\hat{v}}_2 \left(\hat{\hat{v}}_1 + \hat{\hat{v}}_2 + \hat{\hat{v}}_3\right)\right)^{4/3}} \begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & 1 & 1 & 1\\ 0 & 1 & \frac{\hat{e}_1^2 + 2(\hat{e}_2 + \hat{e}_3)\hat{e}_1 + 2\hat{e}_2^2 + \hat{e}_3^2 + 2\hat{e}_2 \hat{e}_3} & 1\\ 0 & 1 & \frac{\hat{e}_1^2 + 2(\hat{e}_2 + \hat{e}_3)\hat{e}_1 + 2\hat{e}_2^2 + \hat{e}_3^2 + 2\hat{e}_2 \hat{e}_3} & 1\\ 0 & 1 & 1 & 1 \end{pmatrix} + \mathcal{O}\left(1/\sqrt{\lambda}\right). \quad (6.11)$$

We notice that the second and the fourth rows (or columns), associated to the divisors J_1 and J_3 satisfying (6.9), are identical. At leading order, the rank of the matrix i_{fj} is therefore reduced, as expected from the discussion in Section 4.2. In particular, the space of asymptotically weakly coupled abelian gauge symmetries is spanned by the combination

$$U(1)_{+} = U(1)^{1} + U(1)^{3}$$
, (6.12)

together with U(1)², while any U(1) involving the orthogonal combination U(1)¹ – U(1)³ as well as U(1)⁰ cannot become asymptotically weakly coupled in the limit of Type K3. In particular, U(1)¹ and U(1)³ dindividually do not admit weak coupling limits as in (3.8). Hence, we do not expect to find any super-extremal non-BPS string excitations with charge $\mathbf{Q} = (0, n, 0, 0)$ or $\mathbf{Q} = (0, 0, 0, n)$ for n > 1. Instead a tower of super-extremal excitations charged under U(1)¹ or U(1)³ must have $Q_1 = Q_3$. And indeed, U(1)₊ and U(1)² are precisely the abelian gauge symmetries under which the curve classes in the dual polarization lattice Λ^* are charged. From the heterotic perspective, these are the U(1)s associated to winding and momentum along the heterotic S¹. For these U(1) sthe existence of states satisfying (5.5) can be established from the elliptic genus as in Section 5.2.1.

40

string is

$$Z_{\text{het}}(\tau) = -\frac{23}{12} \frac{E_4 E_6}{\eta^{24}} - \frac{1}{12} \frac{E_4^2 E_2}{\eta^{24}} = -2q^{-1} - \chi(X_3) + \mathcal{O}(q) = q^{-1} \sum_d N_{\mathcal{C}^1 + \mathcal{C}^3 + d\mathcal{C}^2}^0 q^d.$$
(6.14)

As discussed at the end of Section 5.2.1, from the latter expression we derive the holomorphic piece for the heterotic MSW string from (5.22). Since $\Lambda^* = U$, the discriminant group Λ^*/Λ only contains the trivial class. Hence, the non-holomorphic completion constrains the five-dimensional heterotic elliptic genus $Z_{J_0}^{(1)}(\tau, \bar{\tau}, z, \mathcal{B}) = \widehat{Z}_0(\tau, \bar{\tau})\Theta^*_{0,1}(\tau, \bar{\tau}, z, \mathcal{B})$ to take the form

$$\widehat{Z}_{0}(\tau,\bar{\tau}) = -\frac{23}{12} \frac{E_{4}E_{6}}{\eta^{24}} - \frac{1}{12} \left(\frac{E_{4}}{\eta^{12}}\right)^{2} \widehat{E}_{2}, \qquad (6.15)$$

where $\hat{E}_2 = E_2 - 3/\pi \text{Im}(\tau)$ is the non-holomorphic second Eisenstein series, which is also a mock modular form. Notice that the quadratic factors E_4/η^{12} in (6.15) are meromorphic modular forms corresponding to the MSW strings deriving from the dP_9 surfaces [62] given by D_1 and D_2 ; their quadratic product is expected to be present in the non-holomorphic contribution since $J_0 = D_1 + D_2$ [72]. Using (6.15), similar arguments as discussed in Section 5.2.1 can be repeated to argue for the existence of a non-trivial tower of states satisfying (5.5).

Outlook

- In five-dimensional theories realized by M-theory: We proved the existence of towers of non-BPS objects & BPS objects that satisfy the tWGC in the charge lattice directions allowing for an asymptotic weakly coupled limit.
- A similar story holds for four-dimensional N = 1 theories realized by F-theory compactifications. See [2208.00009].
- Work in progress: Type-T⁴ limits
- A generalization for Noether-Lefschetz theory for Type II/III Kulikov models is desirable to argue Type-K3 limits in full generality.