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The Swampland program

The swampland
The set of anomaly free quantum effective field theories that

cannot be completed into quantum gravity in the ultraviolet.

Motivation:
Find underlying principles for a theory of quantum gravity.



The quest for mathematical principles for quantum gravity

Physics

Modularity Geometry
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The weak gravity conjecture

Consider a U(1) gauge theory coupled to gravity

— Black hole solutions of charge @ and mass Mgy subjected to:

Extremality bound: |
Mgn > Q.
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The weak gravity conjecture

Extremal black hole
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The weak gravity conjecture

The weak gravity conjecture (WGC)

There must exist a super-extremal state of charge g and mass m,
such that
Q

q
—_> — . 1
m — Mgy lext ()

Q: Black hole charge
Mgy: Black hole mass

[Arkani-Hamed,Motl,Nicolis,Vafa'06)

Principle: Extremal black holes should be allowed to decay.
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The tower weak gravity conjecture

The WGC can be argued by the finiteness of entropy/absence of
remnants, which imply a tower WGC version.

[Susskind’95][Arkani-Hamed,Motl, Nicolis,Vafa'06] [Hamada,Montero,Vafa,Valenzuela'21]

Need a WGC version for multiple U(1)" gauge factors, with r > 1.

[Cheung,Remmen’'14]

Consistency required for a Kaluza-Klein reduction:

[Heidenreich,Reece,Rudelius’15]

(d + 1)-dimensional U(1)" gauge theory : WGC v/
\d dimensional U(1)"*! gauge theory : WGC X
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The tower weak gravity conjecture

The tower weak gravity conjecture (tWGC) |

For every site Q of the charge lattice A, there is a positive integer
n such that there is a super-extremal state with charge nQ
satisfying the WGC.

[Montero,Shiu,Soler'16][Heidenreich,Reece,Rudelius'16'17] [Andriolo,Junghans,Noumi,Shiu’18]
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The tower weak gravity conjecture

Charge lattice: Ag = {e} U {o}
WGC Sublattice: Aext = {0}
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Charge lattice: Ag = {e} U {o}
WGC Sublattice: Aext = {0}



The tower weak gravity conjecture in M-theory

Consider M-theory on a Calabi-Yau threefold Xs.
= five-dimensional effective theory with eight supercharges.

U(1)“s induced by reducing the M-theory 3-form Cs into gauge
potentials A% that pair with harmonic forms [w,] in HY1 (X3, Z).

Charged objects:

e M2-branes wrapping curves C C X3 = BPS particles
e M>5-branes wrapping divisors D C X3 = strings (non-BPS)
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The tower weak gravity conjecture in M-theory

A tower for BPS particles was proposed by considering curve
classes [C] inside the movable cone Mov(X3,Z), which is dual to
the cone of effective divisors Eff'(X3, Z).

[Alim,Heidenreich,Rudelius’21], [Boucksom,Demaily,Paun,Peternell'13]

Non-trivial checks for the tWGC performed via explicit
computation of Gopakumar-Vafa invariants of several geometries.

[Alim,Heidenreich,Rudelius’21], [Gendler,Heidenreich,McAllister,Moritz, Rudelius'22]

However:

There exist ray charges where extremal black holes and such a
BPS tower do not coincide.

= Potential room for tWGC violation!
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The asymptotic weak gravity conjecture in M-theory |

Claim 1 |

Suppose there exists a primitive charge vector Q° € Ag such that

{AQ%}rer NG

is not populated by a BPS tower of super-extremal states. Then:

1. There exists no limit in moduli space in which

/\2
weak coupling limit: V\2/GC —0. (2)
Nae
2. There exists a non-BPS tower of states along {A\Q°}\ecr N Ag
that is part of the tower of excitations of weakly coupled

critical string in the limit (2). This tower satisfies the tWGC.

A2 2 g3
Here: Ajycc = gvmMp 18
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The emergence string conjecture

Emergence string conjecture |
Any infinite distance limit is either a decompatification limit or a
limit in which a weakly coupled critical string becomes tensionless.

y

[Lee,Lerche, Weigand'19]
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Geometrisation of emergent string limits in M-theory

Infinite distance limits in classical Kahler moduli space of a
Calabi-Yau threefold X3, subjected to a finite volume, are

[Lee,Lerche, Weigand'19]
1. Limits of type T2 : X3 admits a T?-fibration
T X3 — B>.

The weak coupling limit corresponds to the volume of the generic
fiber T2 shrinking.
2. Limits of type K3/T% : X3 allows for a surface fibration
p: Xz — PL.
The weak coupling limit corresponds to the volume of the generic
surface fiber S shrinking.
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The asymptotic weak gravity conjecture in M-theory ||

Claim 2

In M-theory on a Calabi-Yau threefold X3, the only U(1)s that
admit a weak coupling limit are obtained from the M-theory 3-form
(3 reduced on a curve:

e A generic T?
e Curves in a generic K3/ T* fiber

e Curves in degenerate fibers at finite distance in the fiber
moduli space
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Limits of type T2

In a T2-fibered Calabi-Yau threefold 7 : X3 — By, the
Shioda-Tate-Wazir-theorem states:

Rl(X3) = AW(B) t 1t n—1

additional

sections
pullback of base divisors zero-N-section + kodaira
resolution

divisors
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Limits of type T2

In a T2-fibered Calabi-Yau threefold 7 : X3 — By, the
Shioda-Tate-Wazir-theorem states:

Role in six-dimensional F-theory dual:

hl(Xs) = ABY(B) t 1 T a1
aluza Klein abelian U(1

tensor multiplet U(1
b + Cartan U( )
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Limits of type T2

A basis for effective curves in X3
is {C?,CL}, where:

° {Ca}azl,...,hlvl(Bz):

base curves ( generic fiter
] \ fiber splitting over
o {Citiz1,.m & &\/ dogenerate loci
fibral curves X3 o

The generic T2-fiber is a linear

combination

T? = Z ciCt.
i=1
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Limits of type T2

e We proved that the only ray charge direction that allows for a
weakly coupled limit /\\QNGC(U(l))//\%?G —0is

Ul)kk = Z qU(1)  with T2= Z ciCh.
i=1 i=1

e Such a limit corresponds to a decompactification limit into
the six-dimensional F-theory dual counterpart.

o Charge lattice Ag in tWGC populated by non-trivial BPS
states counted by genus zero Gopakumar-Vafa invariants

o =—x(Xs), with keN,
which contribute ot the base degree zero coefficient of the
top. string partition function, which transforms as a Jacobi

form of weight k = —2.

[Huang,Katz,Klemm'15][CFC,Klemm,Schimannek’19][Oehlmann,Schimannek’19][Kashani-Poor'19] 57



Limits of type K3

One can take a similar approach to separate base and curves in the
fiber of p : X3 — P1L.

However: K3 fibrations can have degenerations over points in P!

that occur at finite/infinite distance in the K3 fiber moduli space:

Semi-stable degeneration classification of K3 surfaces

Type | Kulikov models (at finite distance)

Type Il/11l Kulikov models (at infinite distance)
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Limits of type K3

Consider the restriction of the K3 fibration to a disk D centered
around a point p € P!

pD:XD_>D7

where the fiber S, over a generic point 0 # u € D is smooth, while
the central fiber S¢ degenerates into a union

N
So = U SP
M=1

Here Sy has at worst normal crossing singularities.

Type | Kulikov models — N =1 and Sg is smooth.
Type I1/11l Kulikov models — N > 1.
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Limits of type K3

Semi-stable degeneration of K3 surfaces

Picture: [Lee,Lerche,Weigand'21]
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Limits of type K3

A basis for effective curves in p : X3 — Pl is {Pl,CL,C’",C“},
where:

e (' : curve generators located in the generic K3 fiber
e C™ : curve generators localized in special fibers of Kulikov Type |

e CH : curve generators localized in special fibers of Kulikov Type 11/

We proved that allowed U(1) charges with weakly coupled limit
/\\2NGC(U(1))//\%?G — 0 are of the form

U1)c = U@ + U, »
I

where C = Zu €uCH + Ciest lies inside the generic K3 fiber.
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Counting towers over limits of type K3

e Emergent string conjecture: The U(1)s arise from the

perturbative gauge sector of the heterotic string.

e Heterotic strings in five-dimensional M-theory arise by

wrapping Mb5-branes along the K3 fiber.

e The counting of heterotic strings excitations can be
determined via the modified elliptic genus of MSW strings:

[Maldacena,Strominger,Witten'97][Gaiotto,Strominger,Yin'06]
= _A [ R izl O;
Zs(,r)(ﬂ 7,z) = TrrrFR(—1)Rglomaiglo2i 272 @1 - (3)

Here S is the divisor wrapped by the M5-brane r times.
7 is the T2 modulus in the MSW-CFT and q = exp(27iT).

z' are U(1)s worldsheet fugacity parameters and Q; € Z.
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Counting towers over limits of type K3 — Kulikov Type |

Consider K3 fibrations p : X3 — P! of Type | Kulikov.
= the fibers admits a A-polarization with A C U3 @ Eg(—1)2.

This setup allows for a Noether-Lefschetz theory counting, which
counts intersection of special divisor loci in the moduli space of K3
surfaces M, with the base image in P! < Maj.

Modularity:

Noether-Lefschetz numbers determined by a vector-valued-modular
form & specified by the lattice information of A.

[Maulik,Pandharipande’07][Borcherds’99] [Kudla-Millson'90]

Noether-Lefschetz Gromov-Witten

/

Donaldson — Thomas 33



Counting towers over limits of type K3 — Kulikov Type |

The elliptic genus for a heterotic MSW string decomposes as
ZS( Z | (7,7, 2), (4)
HEN*/rN

where A* is the dual lattice of A, ©,, , is a Siegel-Theta series, and
Z,, is a vector-valued-modular form encoding DT invariants that is
equivalent to Noether-Lefschetz vector-valued-modular form &.

[Bouchard, Creutzig,Diaconescu,Doran,Quigley, Sheshmani’16]

Moreover,
Z Q(y "+7 (5)

where Q(v) is a BPS (DT |nvar|ant) with D4-D2-DO0 brane charges
v=(r,Q,n) with r,n € Z>p and Q € A*.
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Counting towers over limits of type K3 — Kulikov Type |

e The lattice A* decomposes as A* = A, & A_ with Ay being
the self/anti-self dual part of A*.

e Using Noether-Lefschetz constraints, we proved that there is a

non-trivial tower of states with charges v such that
n= —Q3/2 with Q_ € A_.

e Moreover, we proved that such states correspond to
excitations of strings (non-BPS) in five dimensions at level
n = —Q@? /2 that fulfill the tWGC.

e Using Noether-Lefschetz theory, and BPS states with charges
also in Ay, we can populate the entire charge lattice A* with
superextremal states!
35



Counting towers over limits of type K3 — Kulikov Type I1/IlI

For Type II/I1l Kulikov models, Noether-Lefschetz theory needs to
be better understood.

For a general MSW string wrapped on a reducible divisor
D= Z">2 D;, the MSW string elliptic genus is of the form

ZY() (1,7, 2) Z ZM A7, 7 2), (6)
HEN*/r

similar definitions as before, but now
= B 1 B
Z(1,7) = Zu(7) = 5Ru(7,7) (7)

is a vector-valued mock modular form of depth n — 1.
[Alexandrov,Banerjee,Manschot,Pioline’16]
Z,, : holomorphic part
R,(7,7) : non-holomorphic completion
36



6 Example

We illustrate the possible weak coupling limits and their associated super-extremal towers by
means of a Calabi-Yau 3-fold X3 which admits both a K3-fibration p : X3 — P! and a compatible
elliptic fibration 7 : X3 — Bs. The elliptic fibration is constructed as a generic Weierstrass model
over the base B, = BI(F,), the blowup of the Hirzebruch surface F, in one point. Since Bj is
rationally fibered, X3 admits also a compatible K3-fibration.

The resulting Calabi-Yau X3 can be described torically via the following data:

Dy /-2 -3 -1 =2 1 -1 o0 1
Dy -2 -3 -1 110 1 0 -1
Dy -2 =3 0 —-1|-2 1 0 0
Dy|-2 -3 0 1y o o o 1] (6.1)
Ds| -2 -3 1 0 1 0 0 0
D¢ 1 0 0 0 0 0 2 0
D: 0 1 0 0 0 0 3 0
Dg\-2 -3 0 0| 0 -1 1 -1
Assigning projective coordinates [s 1t :w: v :w:x:y: 2] to the toric divisors {D;}; s in the
same corresponding ordering, we obtain the Stanley-Reissner ideal
SR = {tu, uv, sw, tw, sv,ryz}. (6.2)
The Euler number of X3 is x(X3) = —420. The Mori cone is simplicial and generated by the

curves C', i = 0,1,2,3. The dual Kihler cone generators .J; are expressed in terms of the toric
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divisors, for instance, as

1
Jo=Di+D;, Jy=D;+Ds, Jy=;Ds, Jy=Dj. (6.3)

In particular, Dy and D, are among the generators of the cone of effective divisors. Furthermore,
co(X3) - Jo = (24, 48,82,36). This identifies Jy as the divisor associated with the K3-fiber of p,
and Jo = Sp+ m*¢1(Ba) with Sy being the zero-section of the elliptic fibration. Its dual Mori cone
generator C? therefore corresponds to the class generic elliptic fiber.

The generic rational fiber of B, lies in the class C' + C3. The base of this rational fibration is
the base P! of the K3-fibration p; its class coincides with C°. Over a special point on the base P!,
the rational fiber of B, splits into two rational curves in class C' and C3, each of self-intersection
—1 on B,. The elliptic fibration over each of these two curves defines a rational elliptic surface,
or dPy, of Euler characteristic 12. As a result, the K3-fibration undergoes a Kulikov Type IT
degeneration, in which the generic K3 fiber class splits as

So=S1USs. (6.4)

‘We identify the class of S; and S, with the toric divisor classes Dy and D,.

To the given basis {C®}4—o
gauge factors and hence a basis of charges {Qq} that parametrize the charge lattice. We notice
that C? is the only Mori cone generator that is also a movable curve. Hence the results of [20]
imply that there is an infinite tower of BPS states with charge

3 of the Mori we can now associate a basis {U(1)?} of the Abelian

Q = (Qo, Q1. Q2. Q3) = (0,0,7,0). (6.5)
In fact, since C? is the elliptic fiber class, the genus-zero BPS invariants along this direction are
Nopong) = —X(Xs) = 420. (6.6)

On the other hand, the rays in the charge lattice with Q2 = 0 do not support towers of BPS
states and hence invite an application of Claim 1.
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To this end we should first consider which linear combinations of U(1)%, U(1)}, and U(1)* admit

weak coupling limits. Let us begin with the K3-fibration p and its associated weak coupling limit
of Type K3. The dual of the polarization lattice is spanned by the generators of the p-relative
Mori cone that lie in the generic K3-fiber. This identifies

A= (C3C' 4+ CY ~ U, (6.7)

where U is the hyperbolic lattice of signature (1, 1). According to the general discussion of Section
4.2, the two Kihler cone generators J; and .J3 dual to the curves C! and C® in the generic rational
fiber must satisfy a homological relation of the form (4.48). Indeed, from the intersection form

T(Xs) =TT+ 202 Jo+AJ2 - Jy +3J2 - Js+ 202 Ty + J2 - Jo+ Jo - Jy - Ja

(6.8)
o dy Ty 20y Ty Ty
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it follows that

Jo-Ja=JdyJo-Ju, Va=0,.. ., 3. (6.9)

An infinite distance limit of Type K3 is parametrised as

1
J =Ny + ——i'J;, A= oo. (6.10)
VA

In terms of the rescaled Mori cone volumes 6@ = 37, the gauge kinetic matrix fug at leading
order in A takes the form
00 0 0
01 1
— NE o(l/ﬁ) . (6.11)
ot (01 + i+ ) )
01 1

We notice that the second and the fourth rows (or columns), associated to the divisors .J; and Jg
satisfying (6.9), are identical. At leading order, the rank of the matrix f; is therefore reduced,
as expected from the discussion in Section 4.2. In particular, the space of asymptotically weakly
coupled abelian gauge symmetries is spanned by the combination

U(1), = U(1)' + U(1)%, (6.12)

together with U(1)2, while any U(1) involving the orthogonal combination U(1)" — U(1)* as well
as U(1)° cannot become asymptotically weakly coupled in the limit of Type K3. In particular,
U(1)" and U(1)? individually do not admit weak coupling limits as in (3.8). Hence, we do not
expect to find any super-extremal non-BPS string excitations with charge @ = (0,7,0,0) or
Q = (0,0,0,n) for n > 1. Instead a tower of super-extremal excitations charged under U(1)!
or U(1)* must have Q; = Q3. And indeed, U(1); and U(1)? are precisely the abelian gauge
symmetries under which the curve classes in the dual polarization lattice A* are charged. From
the heterotic perspective, these are the U(1)s associated to winding and momentum along the
heterotic S'. For these U(1)s the existence of states satistying (5.5) can be established from the
elliptic genus as in Section 5.2.1.
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string is

23E,E; 1 E}E. . . .
LalT) =~ g = 2 XKD+ 0@ =0 Y Noand’. (619)
d

As discussed at the end of Section 5.2.1, from the latter expression we derive the holomorphic
piece for the heterotic MSW string from (5.22). Since A* = U, the discriminant group A*/A only
contains the trivial class. Hence, the non-holomorphic completion constrains the five-dimensional
heterotic elliptic genus Z_(]L)(T.f. z,B) = Zo(7,7)05,,(7, 7,2z, B) to take the form

12 o 12

5 _ 23EE 1(&)2@2

o, 7) = - (6.15))
n

where E, = E,—3/xIm(7) is the non-holomorphic second Eisenstein series, which is also a mock
modular form. Notice that the quadratic factors E,/n'? in (6.15) are meromorphic modular
forms corresponding to the MSW strings deriving from the dP, surfaces [62] given by D; and
D,; their quadratic product is expected to be present in the non-holomorphic contribution since
Jo = Dy + D, [72]. Using (6.15), similar arguments as discussed in Section 5.2.1 can be repeated
to argue for the existence of a non-trivial tower of states satisfving (5.5).
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e In five-dimensional theories realized by M-theory: We
proved the existence of towers of non-BPS objects & BPS
objects that satisfy the tWGC in the charge lattice directions
allowing for an asymptotic weakly coupled limit.

e A similar story holds for four-dimensional N' = 1 theories
realized by F-theory compactifications. See [2208.00009].

e Work in progress: Type-T# limits

o A generalization for Noether-Lefschetz theory for Type I1/11]
Kulikov models is desirable to argue Type-K3 limits in full
generality.
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