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The Swampland program

The swampland

The set of anomaly free quantum effective field theories that

cannot be completed into quantum gravity in the ultraviolet.

Motivation:

Find underlying principles for a theory of quantum gravity.
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The quest for mathematical principles for quantum gravity

Physics

GeometryModularity
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The weak gravity conjecture

Consider a U(1) gauge theory coupled to gravity

→ Black hole solutions of charge Q and mass MBH subjected to:

Extremality bound:

MBH ≥ Q .
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The weak gravity conjecture

Extremal black hole

MBH = Q

M1 > Q1

M2 < Q2 ✗
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The weak gravity conjecture

Extremal black hole

MBH = Q

M1 > Q1

Super-extremal state

M2 < Q2 ✓
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The weak gravity conjecture

Extremal black hole

MBH = Q

M1 > Q1

Super-extremal state

M2 < Q2 ✓
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The weak gravity conjecture

The weak gravity conjecture (WGC)

There must exist a super-extremal state of charge q and mass m,

such that
q

m
≥ Q

MBH

∣∣∣
ext

. (1)

Q: Black hole charge

MBH: Black hole mass

[Arkani-Hamed,Motl,Nicolis,Vafa’06]

Principle: Extremal black holes should be allowed to decay.
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The tower weak gravity conjecture

The WGC can be argued by the finiteness of entropy/absence of

remnants, which imply a tower WGC version.

[Susskind’95][Arkani-Hamed,Motl,Nicolis,Vafa’06] [Hamada,Montero,Vafa,Valenzuela’21]

Need a WGC version for multiple U(1)r gauge factors, with r > 1.

[Cheung,Remmen’14]

Consistency required for a Kaluza-Klein reduction:

[Heidenreich,Reece,Rudelius’15]

(d + 1)-dimensional U(1)r gauge theory : WGC ✓

d-dimensional U(1)r+1 gauge theory : WGC ✗

S1
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The tower weak gravity conjecture

The tower weak gravity conjecture (tWGC)

For every site Q of the charge lattice ΛQ , there is a positive integer

n such that there is a super-extremal state with charge nQ

satisfying the WGC.

[Montero,Shiu,Soler’16][Heidenreich,Reece,Rudelius’16’17] [Andriolo,Junghans,Noumi,Shiu’18]
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The tower weak gravity conjecture

Charge lattice: ΛQ = {•} ∪ {•}
WGC Sublattice: Λext = {•}
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Charge lattice: ΛQ = {•} ∪ {•}
WGC Sublattice: Λext = {•}
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The tower weak gravity conjecture

Charge lattice: ΛQ = {•} ∪ {•}
WGC Sublattice: Λext = {•}
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The tower weak gravity conjecture in M-theory

Consider M-theory on a Calabi-Yau threefold X3.

⇒ five-dimensional effective theory with eight supercharges.

U(1)αs induced by reducing the M-theory 3-form C3 into gauge

potentials Aα that pair with harmonic forms [ωα] in H1,1(X3,Z).

Charged objects:

• M2-branes wrapping curves C ⊂ X3 ⇒ BPS particles

• M5-branes wrapping divisors D ⊂ X3 ⇒ strings (non-BPS)
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The tower weak gravity conjecture in M-theory

A tower for BPS particles was proposed by considering curve

classes [C ] inside the movable cone Mov(X3,Z), which is dual to

the cone of effective divisors Eff1(X3,Z).

[Alim,Heidenreich,Rudelius’21], [Boucksom,Demaily,Paun,Peternell’13]

Non-trivial checks for the tWGC performed via explicit

computation of Gopakumar-Vafa invariants of several geometries.

[Alim,Heidenreich,Rudelius’21], [Gendler,Heidenreich,McAllister,Moritz,Rudelius’22]

However:

There exist ray charges where extremal black holes and such a

BPS tower do not coincide.

⇒ Potential room for tWGC violation!
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The asymptotic weak gravity conjecture in M-theory I

Claim 1

Suppose there exists a primitive charge vector Q0 ∈ ΛQ such that

{λQ0}λ∈R ∩ ΛQ

is not populated by a BPS tower of super-extremal states. Then:

1. There exists no limit in moduli space in which

weak coupling limit:
Λ2
WGC

Λ2
QG

→ 0 . (2)

2. There exists a non-BPS tower of states along {λQ0}λ∈R ∩ ΛQ

that is part of the tower of excitations of weakly coupled

critical string in the limit (2). This tower satisfies the tWGC.

Here: Λ2
WGC = g2

YMM
3
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The emergence string conjecture

Emergence string conjecture

Any infinite distance limit is either a decompatification limit or a

limit in which a weakly coupled critical string becomes tensionless.

[Lee,Lerche,Weigand’19]
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Geometrisation of emergent string limits in M-theory

Infinite distance limits in classical Kähler moduli space of a

Calabi-Yau threefold X3, subjected to a finite volume, are

[Lee,Lerche,Weigand’19]

1. Limits of type T 2 : X3 admits a T 2-fibration

π : X3 → B2 .

The weak coupling limit corresponds to the volume of the generic

fiber T 2 shrinking.

2. Limits of type K3/T 4 : X3 allows for a surface fibration

ρ : X3 → P1 .

The weak coupling limit corresponds to the volume of the generic

surface fiber S shrinking.

21



The asymptotic weak gravity conjecture in M-theory II

Claim 2

In M-theory on a Calabi-Yau threefold X3, the only U(1)s that

admit a weak coupling limit are obtained from the M-theory 3-form

C3 reduced on a curve:

• A generic T 2

• Curves in a generic K3/T 4 fiber

• Curves in degenerate fibers at finite distance in the fiber

moduli space
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Limits of type T 2

In a T 2-fibered Calabi-Yau threefold π : X3 → B2, the

Shioda-Tate-Wazir-theorem states:

h1,1(X3) = h1,1(B2) + 1 + n − 1

pullback of base divisors zero-N-section

additional

sections

+ kodaira

resolution

divisors
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Limits of type T 2

In a T 2-fibered Calabi-Yau threefold π : X3 → B2, the

Shioda-Tate-Wazir-theorem states:

Role in six-dimensional F-theory dual:

h1,1(X3) = h1,1(B2) + 1 + n − 1

tensor multiplet U(1)s
Kaluza-Klein

U(1)KK

abelian U(1)s

+ Cartan U(1)s
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Limits of type T 2

A basis for effective curves in X3

is {Ca, C i
f }, where:

• {Ca}a=1,...,h1,1(B2):

base curves

• {C i
f }i=1,...,n:

fibral curves

The generic T 2-fiber is a linear

combination

T 2 =
n∑

i=1

ciC
i
f .
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Limits of type T 2

• We proved that the only ray charge direction that allows for a

weakly coupled limit Λ2
WGC(U(1))/Λ2

QG → 0 is

U(1)KK =
n∑

i=1

ciU(1)i with T 2 =
n∑

i=1

ciC i
f .

• Such a limit corresponds to a decompactification limit into

the six-dimensional F-theory dual counterpart.

• Charge lattice ΛQ in tWGC populated by non-trivial BPS

states counted by genus zero Gopakumar-Vafa invariants

n0kT 2 = −χ(X3) , with k ∈ N ,

which contribute ot the base degree zero coefficient of the

top. string partition function, which transforms as a Jacobi

form of weight k = −2.

[Huang,Katz,Klemm’15][CFC,Klemm,Schimannek’19][Oehlmann,Schimannek’19][Kashani-Poor’19]
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Limits of type K3

One can take a similar approach to separate base and curves in the

fiber of ρ : X3 → P1.

However: K3 fibrations can have degenerations over points in P1

that occur at finite/infinite distance in the K3 fiber moduli space:

Semi-stable degeneration classification of K3 surfaces

=⇒

Type I Kulikov models (at finite distance)

Type II/III Kulikov models (at infinite distance)
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Limits of type K3

Consider the restriction of the K3 fibration to a disk D centered

around a point p ∈ P1

ρD : XD → D ,

where the fiber Su over a generic point 0 ̸= u ∈ D is smooth, while

the central fiber S0 degenerates into a union

S0 =
N⋃

M=1

SM .

Here SM has at worst normal crossing singularities.

Type I Kulikov models −→ N = 1 and S0 is smooth.

Type II/III Kulikov models −→ N > 1 .
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Limits of type K3

Semi-stable degeneration of K3 surfaces

Picture: [Lee,Lerche,Weigand’21]

30



Limits of type K3

A basis for effective curves in ρ : X3 → P1 is {P1, Cι, Cm, Cµ},
where:

• Cι : curve generators located in the generic K3 fiber

• Cm : curve generators localized in special fibers of Kulikov Type I

• Cµ : curve generators localized in special fibers of Kulikov Type II/III

We proved that allowed U(1) charges with weakly coupled limit

Λ2
WGC(U(1))/Λ2

QG → 0 are of the form

U(1)C =
∑
µ

cµU(1)µ + UCrest ,

where C =
∑

µ cµCµ + Crest lies inside the generic K3 fiber.
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Counting towers over limits of type K3

• Emergent string conjecture: The U(1)s arise from the

perturbative gauge sector of the heterotic string.

• Heterotic strings in five-dimensional M-theory arise by

wrapping M5-branes along the K3 fiber.

• The counting of heterotic strings excitations can be

determined via the modified elliptic genus of MSW strings:

[Maldacena,Strominger,Witten’97][Gaiotto,Strominger,Yin’06]

Z
(r)
S (τ, τ̄, z) = TrRRF

2
R(−1)FRqL0−

cL
24 q̄L̄0−

cR
24 e2πiz

iQi . (3)

Here S is the divisor wrapped by the M5-brane r times.

τ is the T 2 modulus in the MSW-CFT and q = exp(2πiτ).

z i are U(1)s worldsheet fugacity parameters and Qi ∈ Z.
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Counting towers over limits of type K3 — Kulikov Type I

Consider K3 fibrations ρ : X3 → P1 of Type I Kulikov.

⇒ the fibers admits a Λ-polarization with Λ ⊂ U3 ⊕ E8(−1)2.

This setup allows for a Noether-Lefschetz theory counting, which

counts intersection of special divisor loci in the moduli space of K3

surfaces MΛ with the base image in P1 ↪→ MΛ.

Modularity:

Noether-Lefschetz numbers determined by a vector-valued-modular

form Φ specified by the lattice information of Λ.

[Maulik,Pandharipande’07][Borcherds’99][Kudla-Millson’90]

Noether-Lefschetz Gromov-Witten

Donaldson − Thomas 33



Counting towers over limits of type K3 — Kulikov Type I

The elliptic genus for a heterotic MSW string decomposes as

Z
(r)
S (τ, τ̄, z) =

∑
µ∈Λ∗/rΛ

Zµ(τ)Θ
∗
µ,r (τ, τ̄, z) , (4)

where Λ∗ is the dual lattice of Λ, Θµ,r is a Siegel-Theta series, and

Zµ is a vector-valued-modular form encoding DT invariants that is

equivalent to Noether-Lefschetz vector-valued-modular form Φ.

[Bouchard,Creutzig,Diaconescu,Doran,Quigley,Sheshmani’16]

Moreover,

Zµ(τ) =
∞∑
n=0

Ω(γ)qn+
Q2

2r
−1 , (5)

where Ω(γ) is a BPS (DT invariant) with D4-D2-D0 brane charges

γ = (r ,Q, n) with r , n ∈ Z≥0 and Q ∈ Λ∗.
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Counting towers over limits of type K3 — Kulikov Type I

• The lattice Λ∗ decomposes as Λ∗ = Λ+ ⊕ Λ− with Λ± being

the self/anti-self dual part of Λ∗.

• Using Noether-Lefschetz constraints, we proved that there is a

non-trivial tower of states with charges γ such that

n = −Q2
−/2 with Q− ∈ Λ−.

• Moreover, we proved that such states correspond to

excitations of strings (non-BPS) in five dimensions at level

n = −Q2
−/2 that fulfill the tWGC.

• Using Noether-Lefschetz theory, and BPS states with charges

also in Λ+, we can populate the entire charge lattice Λ∗ with

superextremal states!
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Counting towers over limits of type K3 — Kulikov Type II/III

For Type II/III Kulikov models, Noether-Lefschetz theory needs to

be better understood.

For a general MSW string wrapped on a reducible divisor

D =
∑n≥2

i=1 Di , the MSW string elliptic genus is of the form

Z
(r)
D (τ, τ̄, z) =

∑
µ∈Λ∗/rΛ

Ẑµ(τ)Θ
∗
µ,r (τ, τ̄, z) , (6)

similar definitions as before, but now

Ẑ (τ, τ̄) = Zµ(τ)−
1

2
Rµ(τ, τ̄) (7)

is a vector-valued mock modular form of depth n − 1.

[Alexandrov,Banerjee,Manschot,Pioline’16]

Zµ : holomorphic part

Rµ(τ, τ̄) : non-holomorphic completion
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Example
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Outlook

• In five-dimensional theories realized by M-theory: We

proved the existence of towers of non-BPS objects & BPS

objects that satisfy the tWGC in the charge lattice directions

allowing for an asymptotic weakly coupled limit.

• A similar story holds for four-dimensional N = 1 theories

realized by F-theory compactifications. See [2208.00009].

• Work in progress: Type-T 4 limits

• A generalization for Noether-Lefschetz theory for Type II/III

Kulikov models is desirable to argue Type-K3 limits in full

generality.
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