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Amplitudes from geometry

Map from regions to

Map from graphs to Rational functions

Rational functions




Topics I'd like to present

» The canonical form: a map between geometries and rational
differential forms.

> The superamplitude as a differential form

> The supercorreleator as a differential form and the
correlator/amplitude duality

» The amplituhedron, the squared amplituhedron and the
correlahedron



When is it possible?

> N=4SYM:
Amplituhedron [N. Arkani-Hamed, J. Trnka] (2013)
Loop amplituhedron canonical form [G.D., P. Heslop, A. Stewart](2022)
Momentum amplituhedron [D. Damgaard, L. Ferro, T. Lukowski, M. Parisi](2019)
Loop momentum amplituhedron [ L. Ferro, T. Lukowski, M. Parisi](2022)
Correlahedron, Squared Amplituhedron [B. Eden, P. Heslop, L. Mason] (2017)
Amplituhedron-like geometries [G. D., P. Heslop] (2021)

» Bi-adjoint ®*, Associahedron/Halohedron/Cluster polytopes

[N. Arkani-Hamed, Y. Bai, S. He, G. Yan (2017)]

» Scalars in FRW background, Cosmological Polytope

[N. Arkani-Hamed, P. Benincasa, A. Postnikov] (2017)

> SYM and ABJM, momentum amplituhedron
[S. He, C.-K Kuo,Y.-Q Zhanga] (2021)

[Y.-T. Huang, R. Kojima, C. Wen, and S.-Q. Zhang] (2021)



Why is it interesting?

> Completely different perspective — new questions.
> Generator of new elegant formulas.
> Manifest hidden symmetries/properties, i.e. Yangian.

> Relations between amplitudes of different theories.



The positive geometry program



Planar color ordered amplitudes

Color decomposition in the adjoint rep

Mg?l,...,an :gn+2(l—1) (NI Z Tr(Tao-(l) . Tﬂa(n))MnJ + 0O (L)) ,

JESn/Zn

The color ordered amplitude M, is obtained by summing over
planar diagrams

M, is a rational function of the kinematic.



General Philosophy

In the examples where this construction is possible:

> There exists a region in the domain where the amplitude is
finite and whose boundaries coincides with all the
singularities of the function.

The pentagon is defined as the
points to the right of the lines.

Special
Region!

» The amplitude is characterized as the canonical form of the
region.

Geometry < inequalities




Multivariate residues
We are interested in the so-called Leary residues . Leray] (1959)
[F. Cachazo, D. Kosower, K. J. Larse, S. Abreu, R. Britto, C. Duhr ]

Consider a d-dimensional space X and a subspace C of X, defined
by the equation f(x1,--- ,x4) = 0 where fis an irreducible
polynomial. If w is a differential k-form defined on the
complement X — C, then we say that Q has a simple pole on Cif

o,
=7

where w and 6 are regular and non-vanishing on C.

+0,



Multivariate residues
We are interested in the so-called Leary residues . Leray] (1959)
[F. Cachazo, D. Kosower, K. J. Larse, S. Abreu, R. Britto, C. Duhr ]

Consider a d-dimensional space X and a subspace C of X, defined
by the equation f(x1,--- ,x4) = 0 where fis an irreducible
polynomial. If w is a differential k-form defined on the
complement X — C, then we say that Q has a simple pole on Cif

df
Q=—Zw+b,
f
where w and 6 are regular and non-vanishing on C.
Example
Res,_o dxdy _ diy
Xy y
Res,—o dxdy  dx

Xy X



Induced orientation

An orientation form O is a non-vanishing top differential form
defined up to positive rescaling

0" ~ \O, A>0
Orientation in RY
O =0(xq,- -+ ,Xg)dxy ---dxq,

Let the boundary be defined by f(x) = 0 with f(x) > 0 inside and
f(x) < 0 outside the region. Then O, is defined simply as

df AN Oy = Ol -
Example f(x) =x; =0

dx; A Oy = Olp—¢0(0, X2, - -+ ,Xgq)dXy - - - dXg
Op = 0(0,%2, - ,Xd)dXQ - dxy



The canonical form

The canonical form of an oriented region X is a differential top
form recursively defined by the following property

> Simple poles on and only on codimension 1 boundary

> its residue on a boundary of X~ is the canonical form of the
boundary

» the canonical form of a point is +1 depending on the
orientation.

A region possessing a canonical form is called a positive
geometry. [N. Arkani-Hamed, Y. Bai, T. Lam](2017)



Examples

Consider an oriented segment X> = a < x < b, with orientation dx.
It's canonical form is given by




Examples

Consider an oriented segment X> = a < x < b, with orientation dx.
It's canonical form is given by
ax ax
QX>) = - —
) Xx—a x-—b

The boundary of X> =g <x <barex=awithOly.g =1andx=5b
with O‘x:b = —1.

Then we check the definition

Resy—¢Q(X>) = Olx=¢ =1
>

Res,_pQ(X>) = Olx=p = —1



The canonical form of a segmenta < x < b is

1 1
X—a Xx-—b

dx( )

For two variables we have a1 < x1 < b1 and a2(x1) < x2 < ba(x1)




The canonical form of a segmenta < x < b is

1 1

d _
X(X—G X—b

)

For two variables we have a1 < x1 < b1 and a2(x1) < x2 < ba(x1)

1 1 1 1

If a positive geometry is given by the oriented union of positive geometries then
the canonical form of the union is the sum of the canonical forms.

VC3
Q

>
o




(10(2 + 3x))dxady
(—14+Xx=Y) (A +4X—y) (-1 +x+y) (1 +4x+Y)
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Superamplitudes



N = 4 Super Yang Mills

The field content of the theory correspond to:
> 1gluong=(g",g7), helicity h=1
> 4 fermions A = (A9, A% h =1/2
> 6 scalars S9!, with a,b = 1,2,3,4



N = 4 Super Yang Mills

The field content of the theory correspond to:

> 1gluong=(g",g7), helicity h=1

> 4 fermions A = (A9, A% h =1/2

> 6 scalars S9!, with a,b = 1,2,3,4
The NMHV amplitude — k + 2 negative helicity gluon.
The NKMHV superamplitude is 4k polynomial in the n¢, ..., n¢,
whose coefficient are ordinary amplitudes.

A = Aslgmg g g ()" (n3)+
+Adg NN () (oamaams) (n3a) + -+,



Momentum Twistors

After dividing by the tree level MHV superamplitudes, N=4 SYM
amplitudes has conformal and dual conformal symmetry.

New variables: momentum twistors

Z=(2',2%,23,2%),

Z= M\thatisZ € P3.

Dual conformal symmetry acts on complex momentum twistors
as SL(4). The only invariant of SL(4) is

(ijkl) = Det(ZiZjZ,Zy)
Nice expressions for planar propagators

(i + 1+ 1) ~ (pj+ -+ pj_1)?



Supermomentum Twistors

Momentum twistor can be generalized to supermomentum
twistors

Z = (Z") ect,  i=1,.n

Xi

The 5 point NMHV superamplitude A5 ; has the form

TT2_, (x%(2345) + cyclic)

(1234) (2345) (3451) (4512) (5123)

As1(2) =



Bosonized Supermomentum Twistors

We attach 4 additional Grassmann odd variables ¢4,A=1,..,4 to
each x, thus obtain commuting variables x?¢, [Hodges(2009)]

For example

4

/d4¢<12345>4 = [ J((1234)x4 + cyclic)

I=A



It's possible to promote the 4-brackets to (k + 4)-brackets though
the identity

oz 7y Z
(ijkly = (Yoijkl) = det
Y
dXi ¢Xj bxk Px

= O o

The amplitude A5 ; will read

A 7/d4¢ (12345)4
>t (Yo1234) (Y02345) (Y03451) (Y04512) (Yo5123)’




It's possible to promote the 4-brackets to (k + 4)-brackets though
the identity

oz 7y Z
(ijkly = (Yoijkl) = det
Y
dXi ¢Xj bxk Px

= O o

The amplitude A5 ; will read

A 7/d4¢ (12345)4
>t (Yo1234) (Y02345) (Y03451) (Y04512) (Yo5123)’

(12345)4(Yd*Y)

A5 = TV1234)(V2345) (Y3451) (VA512) (V5123)

4

——
where (vd'v) := (vdy-..dY)/a!



Parametrization

Y =71+ XoZ5 + X373 + X424 + X575

(Y1234) = x5(51234) = —x5(12345)
(vd'Y) = (vd,, Yd,, Ydy, Ydy, V) = (12345)dx,dxsdx,dx;

S0 As; can we written as

(12345)4(Yd*Y) _ dxpdxsdx,dx;

Asi = -
B1 T (y1234) (¥2345) (Y3451) (Y4512) (Y5123) X2X3X4X5



Bosonized super amplitudes

The MHV reads

(12 m)* TI(vd"Y))
Y1234)(Y2345) - - - (Yn123)’

An,n74 = <

where Yis a k-plane Y = ¥ ... Yk thatis a k x (k + 4) matrix
mod GL(k).

Then NKMHV bosonized amplitude is a top dimensional form on
the space of k planes in k + 4 dimensions Gr(k, k + 4)



A generic n-point dual-conformal invariant can be written as

() (l2) {I3) (I1) ,

where here and in the following we will use a short-hand notation
1,] etc to represent an ordered set of particle numbers. We define

[n] := {1,2,...,n} and then ([Z]) to be the set of all ordered sets of
k elements in [n].



Supercorrelator superamplitude duality



The supercorrelator

Simplest half BPS operators
OQBCD = Tr(¢AB¢CD) . %EABCDTI’(qﬁEFd)EF) ,

This operator can be embedded the so called stress-energy tensor
supermultiplet 778 (x, 6, §).



Lightlike limit (x4, — x)2 =0

Wilson loop

/ in the adjoint \

Wilson loop in the
Correlator P

fundamental squared
\ Amplltude

squared



Pi = Xiy1 — Xi, q=Xi—X
1
SRR
X15X25X35X15

external momentum conservation is trivialized

n n
Zp" =in+1 —Xi=—X{ +Xn4y1=0.

DA™ 2745



The potential G is implicitly defined by the relation

Gn(x,y,0) = (H D4> Gn(x,0) ,

i=1
Hidden permutation symmetry of the correlator

o 2NZ=1)
n,n—4 — Wznf( 3

Q

where Z, is the unique maximal n-point superconformal invariant.



Twistors

Twistors lines are lines in P3
X = XX,
1 0 a b
X= (O 1 c d>
The conformal group acts linearly on twistors.
Xi ~ (XiX;)

Super-twistors
xi= (J20) e v 6Ly,

S,

x) = x,x e, a) e GL(2),

IJ=1,..8.



Lightlike limit in twistor space

X —Xip1)> =0 = XXip1)
Two lines on P2 always intersects
Zi = XiNXip1
Same relation in superspace
Zi=XNX
Correlator/ amplitude duality

k
I|m G (/950 = (AP)n = > Ak Ank—i

u+1 k'=0

[Adamo, Bullimore, Mason, Skinner](2011)
[Eden, Heslop, Korchemsky, Sokatchev](2011)



Bosonized supertwistors

Bosonized supertwistors
X
. Xi - 91
Xs,i=<X’) - Xsj= I. ,

Xs,i

Xs,i* ¢k7
The unique maximal superconformal invariant can be written as
I, = 64><(2n—4)<xL . X) ,

and then as

2n—4

Tn :/ IT d*sitx---Xa)* .
i=1



Bosonized correlator

2n—4
Gn’n74 == H <Yd Y 4f(n 4
a=1
6oy — KXo XsXaXs) TIO_ (Yd?Y,)
7 Hpermutations<YXfo>

The light-like residue of the correlator can be written as the
projection of a multiresidue

T(Yi,...,Yn) A -A%,n—4 = Resyxx,,)=0 (Gnn—1)

n—4

=2z [T YD (V22141 22141))

where ¥; = Yiinand Z; = X; N Xigq



Amplituhedron and Amplituhedron-like Geometries



The Amplituhedron

The amplituhedron must be a region that has the planar
amplitude singularities as boundaries. A natural guess could be

(pi---pjsa)* ~ (Vi + 1 +1) > 0



The Amplituhedron intrinsic definition

Unwinding the Amplituhedron in Binary [N. Arkani-Hamed, H. Thomas,
J. Trnka] (2017)

The 47, s is defined as the set of planes Y € Gr(k, k + 4) st
(Yii + 1j + 1) > 0, (=1)(Y1nii+ 1) > 0,
The string
Sy:= {(Y1234),---, (=1)"(Y123n)},

must have exactly fy = k sign flips.

Moreover Z must be an element of Gr- (k + 4, n).



Computing NMHV 6-point with the amplituhedron

Let's consider the geometry of the NMHV 6-point amplitude. The
condition (Yii + 1jj+ 1) > 0 reads

(Y1234), (Y1245), (Y1256) > 0
(Y2345), (Y2356) > 0,

(Y3456) > 0,

(Y1623), (Y1634), (Y1645) <0



Computing NMHV 6-point with the amplituhedron

Let's consider the geometry of the NMHV 6-point amplitude. The
condition (Yii + 1jj+ 1) > 0 reads

(Y1234), (Y1245), (Y1256) > 0
(Y2345), (Y2356) > 0,

(Y3456) > 0,

(Y1623), (Y1634), (Y1645) <0

The sign flip condition instead reads

{(1234), (1235), (1236)} = {+,—, —} or {+,+,—}



Computing NMHV 6-point with the amplituhedron

Let's consider the geometry of the NMHV 6-point amplitude. The
condition (Yii + 1jj+ 1) > 0 reads

(Y1234), (Y1245), (Y1256) > 0
(Y2345), (Y2356) > 0,

(Y3456) > 0,

(Y1623), (Y1634), (Y1645) <0

The sign flip condition instead reads
{(1234), (1235), (1236) } = {+, -, =} or {+,+, -}
The sign flip condition for n = 7 reads

{(1234), (1235), (1236), (1237)} = {+,—,—, =} or {+,+, —, =} or {+,+,+, —



We fix Z as an element in Gr-0(k + 4, n)

10 0 0 0 1
0 1.0 0 0 -1
Z=10 0 1 0 0 1
0 0 01 0 -1
0 0001 1

and parametrize Y as a point in P*
V=(1,¢1,C2,C3,€a)

For example (Y1235) = c3. The amplituhedron is described by



We fix Z as an element in Gr-0(k + 4, n)

10 0 0 0 1
0 1.0 0 0 -1
Z=10 0 1 0 0 1
0 0 01 0 -1
0 0001 1

and parametrize Y as a point in P*
Y= (1, C1,C2,Cs, C4)
For example (Y1235) = c3. The amplituhedron is described by

C>0NC>0NCG+G>0ACG+1>0ACG+G>0ACG+1>0
N1+ Cs>0NC+C>0A(c3 >0V —c3 >0)



If we decompose these inequalities using cylindrical decomposition we
obtain

€1 >0AC >1AC3>0ACc >0

Q>0ACQ>1AC >—-GA—-1<c3AC3 <0

€1 >0AC3>0AC >0N0< A <1

g >1AC3>C Ay >—CA—-1<cp A <O

€ >0AC > —C3AN0<CgA—Cyg<C3ACp<1AC3<O

g >1AC0g >—3AN—-1<p AN-1<c3ACcp <O0ACg <

3> A0 >—QA-1<QA—C <A <O0AC<I1

g > —C3A—-1<c AN—C <AL <O0A—-Cp <C3AC<1AC3 <]

Using iteratively the canonical form of the segment we obtain

dey degdesdey ! !
C C C: C, — —_
1T q(aqa+1)(c2—1)(g —cp)(cq1+cq) cp(cp+1)1—cg)(cq+c2)(cg—cq) (g +cy)
1 1
- € (cp +1) (g — 1) (cq —c3) (g3 + 1) (3 +cq) - ¢ (e —1)cg (c3 + 1) (c3 +cq)
1 1

- +
(g +1) (1 —cg)(cp +c2)(cp —cg)(c2 +c3)(cg+cq) 1 (c2 —1)cgey
1 1

+ )
€1 (1 —cg)epcz (e +¢3) (63 +¢4) €1 (1 —c)cacgey



After simplifying a bit we get

1
dCldCQngdC4(

C1CaC3Ca  C3(C3+1) (3 — 1) (C2 4 C3) (—C3 — Ca)
1 1

_C1 (c1+1)(—c1 —c2)cs(—C1 —Ca) B (c1+1)(—c1 —c2)cs(cs —c1)(—¢c1 — C4))

and finally, by covariantizing the result, we obtain

NMHV(6) =

Ve (12345)* (13456)3(12345)

< y>(<1234><1235><1245><1345><23Aﬂ5>_ (1235)(1345)(1346) (1456) (3456)
N (12356)* N (12356) (13456)* )

(1235)(1236) (1256) (1356) (2356) ' (1235)(1346)(1356) (1456)(3456)

[R. Kojima, C. Langer] (2020)



Amplituhedron-Like Geometries

The %fk) amplituhedron-like geometry is defined as the plane Y
satisfying

(Yii + 1jj+1) > 0, (=1y"(Y1nii+1) > 0,
Moreover the string

Sy = {(Y1234),--- , (=1)"(Y123n)},

where Sy have [y flips.



| geometry bosonised superspace superspace
Amplituhedron A k Ank An i
Amplituhedron-like %;,0,? H,S’?k H,(,{)k

We proved that

Hr()f,)nle = An,f * An,nff74

Y

where x represent the product in bosonized space.

Thus amplituhedron-like geometries with general winding

number give products of amplitudes.



Correlators without Feynman diagrams

The Correlahedron [B. Eden, P. Heslop, L. Mason] (2017)

The Correlahedron ¢, ,_, is defined as the set of planes
YeGr(in+k,n—+k+4)st

VXX >0 Vi



Correlators without Feynman diagrams

The Correlahedron [B. Eden, P. Heslop, L. Mason] (2017)

The Correlahedron ¢, ,_, is defined as the set of planes
YeGr(in+k,n—+k+4)st

(XX) >0 Vi
In the light like limit (YXiXi;1) — 0 and X; — ZiZ;; 1 so

(YXiXj) >0 — £(Vii+1jj+1) >0



The squared amplituhedron

The geometrical light like limit of the Correlahedron is called the squared
amplituhedron

(Yii + 1jj+ 1) > 0, (Y1nii 4+ 1) > 0,
or
(Yii + 1jj+1) > 0, —(Y1nii +1) > 0

but this region can be written as the union over all possible flipping
number!

(@72)”,”_4 == U %7(;7)74
f

which imply the relation between the oriented canonical forms

n—4 n—4
(AQ)NYN*4 = Z Hr(ij?n—4 = ZAn,f*An,nf4ff
f f=0



The positive geometry program

Superamplitudes

Supercorrelator superamplitude duality
Amplituhedron and Amplituhedron-like Geometries

Conclusions
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Conclusions

We generalized (for k = n — 4) the amplituhedron correspondence
to

Amplituhedron-like geometries “ product of amplitudes

k) _
Hn,n—4 = An7k1 *An,n_k/_4
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to
Amplituhedron-like geometries “ product of amplitudes
kl
Hf(7,ﬂ)—4 = An7k/ *An,n_k/_4
Outlooks

> Extend to non-maximal amplitudes, i.e. k <n—m

> Bootstrap correlators from the geometry (work in progress
with A. Stewart and P. Heslop)

» Understand the geometry of the correlator



Conclusions

We generalized (for k = n — 4) the amplituhedron correspondence

to
Amplituhedron-like geometries “ product of amplitudes
kl
Hf(7,ﬂ)—4 = An7k/ *An,n_k/_4
Outlooks

> Extend to non-maximal amplitudes, i.e. k <n—m

> Bootstrap correlators from the geometry (work in progress
with A. Stewart and P. Heslop)

» Understand the geometry of the correlator

Thanks!

)



Full result

k.0 /
Hn,n—4,l = (/’ ) An,k’,/’ * An,nfk’74,l—l’

The loop amplituhedron like geometry

vex®

P (Y(AB)jii+1) > 0, V), Vi=1,.,n-1

Ay =V (AB)1, - (AB) | (y(AB)n) (1Y >0V
{(Y(AB);1i)} has f; flipsasi = 2,..,n,Vj
(Y(AB)i(AB);) > 0 Vi#j

forZ e Grs(k+4,n).

The loop flipping number can only assume the values f, f + 2. So we define
) 4 1=1
Al - U o2, f+2.f,)

nn—4, " n,n—4,/
o €S/ (S XS;_1)



On-shell diagrams and bosonized amplitudes



On shell diagrams are trivalent planar diagrams with white and black vertices.
To each on-shell diagram in N = 4 you can associate a C matrix

0 = / doa1 M&(C(a) -2)60 (C(a).x),
[e5] Ok
where,
4k

§HC-x) HH CaaXe-

Solving for [ §(C(a) - z) simply corresponds to a map from the a to momentum
twistors determinants (ijk/).

1 2

6 3 |:> C matrix |:> Su!oermomer?tum
twistor function



From on shell diagrams we can get the bosonized expression directly by imposing
Y=C-Z

(1 co+oa+0g+0g (Cp+Qp+06) Q7 (Oa+04)0s GOz O
2] 1 oz as az oy

dajdagdagdaydagdagdardag

ajasagagagagarag
((1267) (134567) — (1367)(124567))% (vatyy ) (vatvy)

(1237)(1267) (1367) (1467) (1567) ((1235) (1467) — (1234) (1567))((1567)(2346) — (1467)(2356))(4567)



Consider two on shell diagramsﬁkl) and fékz) which are associated to
matrices C; («) and C2(8) . Their product is given by

d d
f(lk1)f<2k2) — / day  doyg dfy M(g(clg(a’ﬁ) -2)5(C1.2(er, B) - X).
ai Qg 1 Baky)

where Cq 2 = (g)



Consider two on shell diagramsﬁkl) and fékz) which are associated to
matrices C; («) and C2(8) . Their product is given by

d d
f(lk1)f<2k2) — / day  doyg dfy M(g(clg(a’ﬁ) -2)5(C1.2(er, B) - X).
ai Qg 1 Baky)

where Cq 2 = (g)

Does Y= (2 - Zfor a, 8 > 0 belong to the amplituhedron like geometry

(k1) 5
Kk 1y



Positroids

It exists a C special parametrization such that for «; > 0 all minors of C are
positive, that is C C Grx (k, n).

C(a) for o; > 0 identifies a region in the oriented Grassmannian Gr(k, n) and taking
mod GL(1) also a region in Gr(k, n). These regions are called a positroids.



Positroids

It exists a C special parametrization such that for «; > 0 all minors of C are
positive, that is C C Grx (k, n).

C(a) for o; > 0 identifies a region in the oriented Grassmannian Gr(k, n) and taking
mod GL(1) also a region in Gr(k, n). These regions are called a positroids.

Y(a) = C(a) - Zfor o; > 0 identifies a point in the amplituhedron A, 4.



On-shell diagram triangulates the maximal amplituhedron

like geometry

Let's consider k = 1 n = 6. The amplitude is given by 3 on-shell diagrams with C

matrices

(1 ag az o

ay ag  as
0 ag ar

(
(

Is it true that

x4 a3
ag ar 0

e e e
o

@]

@l
@6
a2
@6

0
x5
1
a5

0 ),( 1
(NMHV)? will be given by on-shell diagrams with matrices

)(
)(

1
1
1
1

x4

@4
)
g
ag

«3

«3
ar
asg
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ap ), (1

@l
6
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s

o e e

g
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a4
@7

a3
ag

nnm_{Y ( )-Z|C1€Gr>(f,n)/\CgeGr>(nfmff,n)}?

Answer: No.
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. . . ) . G
But instead what is true is that the image of C = (alt(C2)>‘

1 ay ag ag ay 0 1 ay ag ag oy 0
-1 0 —ag ay -—ag oj -1 ag —ay 0 —ag as

1 0 oy asg ag aq 1 0 oy g ag aq
-1 ag —ay ag —as 0 -1 ag -—ar 0 —ag asp
1 ay asg 0 ag aq 1 ay asg 0 ag aq
-1 ag —ay ag —as 0 -1 0 —ag  ay —ag aj

In fact we proved that
HO 2 {r= (g) -Z|Ci € Grs(f,n) A Cy € alt(Gr)s (n—m —f,n)}

for reference, the equivalent statement for the amplituhedron is

Ank 2 {Y=C-Z| CeGra(kn)



* product explicit formula

Given I € (k [+m) andJ, € ( ) the * product of bosonized brackets

is given by the formula
m (71)(k1k2+k2)m m

<H k1+m> (H Ub k2+m> - om Z H <Y(/a mj(’v<a))>k1-‘-kz+m’
a=1 o€Sm a=1

where S, is the set of permutations of m elements and (/ NJ) represents
an intersection in k1 + k2 + m dimensions, explicitly:

(Yng)) = > (i) (i) sgn(i),

iem(

where M(/) = (), that is the set of ordered m tuples in /, and i is the
ordered complement of j in /, that is i=1—i



Feynman diagrams in twistor space

n M; n+k

Or = / IT1II md — )H(sm(g Zot G Koy 00 K

i=1m; 1 Tmi+1



Product of bosonized super amplitudes

We define an operation isomorphic to the product on super space on the
bosonized space

B(An,f-An,n—f—4) = An,f * An,n—f—4
Example:

(12345)*(Y1d*Y1) (12356)* (Yod*Vs) B

(Y11234)(Y12345) (Y13451)(Y14512) (Y1 5123) * (Y21235)(Y22356) (Y23561) (Y25612) (Y26123)

((12345) N (12356))*(Yd* Y1) (Yd* Vo) B

T (¥1234)(v2345)(V3451) (Y4512) (Y1235)2 (V2356) (Y3561) (Y5612) (Y6123)
(Y1235)2(123456)* (Yd*Y1 ) (Yd*Ys)

(Y1234) (Y2345) (Y3451) (Y4512) (Y2356) (Y3561) (Y5612) (Y6123)




Product of bosonized super amplitudes

We define an operation isomorphic to the product on super space on the
bosonized space

B(An,f-An,n—f—4) = An,f * An,n—f—4
Example:

(12345)*(Y1d*Y1) (12356)* (Yod*Vs) B

(Y11234)(Y12345) (Y13451)(Y14512) (Y1 5123) * (Y21235)(Y22356) (Y23561) (Y25612) (Y26123)

((12345) N (12356))*(Yd* Y1) (Yd* Vo) B

T (¥1234)(v2345)(V3451) (Y4512) (Y1235)2 (V2356) (Y3561) (Y5612) (Y6123)
(Y1235)2(123456)* (Yd*Y1 ) (Yd*Ys)

(Y1234) (Y2345) (Y3451) (Y4512) (Y2356) (Y3561) (Y5612) (Y6123)

General formula

m m (—1)kakatka)m m
(H k1+m) (H k2+m> = ST (e Vo @)k, +hy4m

a=1 o€Sm a=1
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