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The supersymmetric Wilson line

Half-BPS defect in N = 4 SYM

SO(4, 2)→ SO(2, 1)× SO(3)

SO(6)→ SO(5)

PSU(2, 2|4)→ OSP(4|4)

O1

O2

Ô1

Ô2

Ô3

Local operators can be outside and inside the line

We have two parameters λ and N

Perturbation theory, holography, localization, integrability, bootstrap
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The main characters

Wilson loop

W = Pe
∫
dτ(iAτ+φ6)

〈W〉 =
2√
λ
I1(
√
λ)

Chiral fields

Op = Trφ{i1 . . . φip}

〈WOp1 . . .Opn〉

Defect chiral fields

Ôk = Tr φ̂{a1 . . . φ̂ak}

〈WÔk1 . . . Ôkn〉

Bulk chiral field transform in the SO(6) of R-symmetry.

Defect chiral field transform in the SO(5) of R-symmetry.

Several combinations are possible

〈WOp1Op2 . . .〉 〈WÔk1Ôk2 . . .〉 〈WOp1Ôk1 . . .〉
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Ôk = Tr φ̂{a1 . . . φ̂ak}
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The 1d defect CFT
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The displacement operator

The displacement operator (gauge theory)

D = Fti + Diφ
6 , ∆D = 2

It sits in a half-BPS multiplet with superconformal primary φa

D ∼ QQ̄φa , ∆φ = 1 and a = 1, . . . , 5

We want to study
〈φaφbφcφd〉

Setup: half-BPS correlators in 1d OSP(4|4) SCFT.
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Superconformal kinematics

In 1d we have one cross-ratio

u =
x2

12x
2
34

x2
13x

2
24

= χ2 , v =
x2

14x
2
23

x2
13x

2
24

= (1− χ)2

We also have R-symmetry indices

〈φaφbφcφd〉 = δabδcdGS(χ)

+ (δacδbd − δbcδad)GA(χ)

+ (δacδbd + δbcδad − 5
2δ

abδcd) 1
2GT (χ)

6 / 22



Superconformal kinematics

In 1d we have one cross-ratio

u =
x2

12x
2
34

x2
13x

2
24

= χ2 , v =
x2

14x
2
23

x2
13x

2
24

= (1− χ)2

We also have R-symmetry indices

〈φaφbφcφd〉 = δabδcdGS(χ)

+ (δacδbd − δbcδad)GA(χ)

+ (δacδbd + δbcδad − 5
2δ

abδcd) 1
2GT (χ)

6 / 22



Holographic calculation
The results is

[Giombi, Roiban, Tseytlin (2017)]
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Ward identities

The functions G (χ) are not independent

GS(χ) = −((χ− 5)χ+ 5)χf ′(χ) + 5(χ− 2)f (χ) + cχ3

5χ

GA(χ) = −1

2
χ
(
(χ− 2)f ′(χ) + cχ

)
− f (χ)

GT (χ) = −1

2
χ2
(
f ′(χ) + c

)
Everything is fixed in terms of c and f (χ), and f (χ) can be bootstrapped

[PL, Meneghelli, Mitev (2018)]
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Enter integrability

Consider the OPE

φ× φ ∼ 1 +K + ...

K is the 1d “Konishi”, interpolates between ∆K = 1 and ∆K = 2.

Using the Quantum Spectral Curve [Grabner, Gromov, Julius (2020)]

∆K = 1 +
λ

4π2
− λ2

16π4
+

(
56

45
π4 + 128

)
λ3

4096π6
+ . . .

∆K = 2− 5√
λ

+
295

24

1

λ
− 305

16

1
√
λ

3
− 19.6254(10−7)

1

λ2

Using bootstrap [Ferrero, Meneghelli (2021)]

351845

13824
− 75

2
ζ(3)
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More recent developments

There is a protected sector

〈Ô1Ô2 . . .〉|z=w = h(λ,N)

It can be understood from localization or the chiral algebra
[Komatsu, Giombi (2018)]

More results include

Multipoint correlators at weak coupling [Barrat, PL, Peveri,

Plefka (2021)] (see also [Kiryu, Komatsu (2018)])

Line defects in N = 2 theories [Gimenez-Grau, PL (2019)]

Line defects in ABJM [Bianchi, Bliard, Forini, Griguolo, Seminara

(2020)]

RG flows [Polchinski, Sully (2011)]
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Bulk excitations

11 / 22



Ward identities

Recall

〈W O2(x1)O2(x2)〉 ∼ F(z , z̄ , ω)

The channels are not independent [PL, Meneghelli (2016)](
∂z +

1

2
∂ω

)
F(z , z̄ , ω)

∣∣∣∣
z=ω

= 0 ,(
∂z̄ +

1

2
∂ω

)
F(z , z̄ , ω)

∣∣∣∣
z̄=ω

= 0 .

Similar to the c and f (χ) parameterization.
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Two-point function configuration

b

b

⊗

z
=
0

z
=
1

z̄
=
1

z̄
=
0

z, z̄ = 0
O(1, 1)

O(z, z̄)

defect

Figure: Configuration of the system in the plane orthogonal to the defect.
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Strong coupling

∼ N0

∼ λ1/2

N

∼ 1
N2

∼ λ1/2

N2

The natural parameters are λ/N2 and 1/
√
λ:

〈〈OO 〉〉 = 〈〈OO 〉〉(0) +
λ

N2

(
〈〈OO 〉〉(1) +

1√
λ
〈〈OO 〉〉(2)

)
. . .

For the holographic setup see [Giombi, Pestun (2012)].
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Inversion formula

Following [Caron-Huot (2017)],

b(∆̂′, s) ∼
∫

dzdz̄ J(z , z̄) Disc F(z , z̄)

where
b2
OÔ = − Res

∆̂′=∆̂
b(∆̂′, s)

The defect expansion

F(z , z̄ , ω) =
∑
∆̂,s

b2
O∆̂
Ĝ∆̂(z , z̄ , ω)

At strong coupling only one bulk block contributes to Disc
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The leading order result

After resummation

F0(z , z̄) = −
√
λ

N2

2zz̄

(1− z)(1− z̄)

[
1 + zz̄

(1− zz̄)2
+

2zz̄ log zz̄

(1− zz̄)3

]
[Barrat, Gimenez-Grau, PL (2021)]

Recall

∼ λ1/2

N2

There is also a protected point

F(z , z̄ ,w)|z=z̄=w = h(λ,N)

See [Beccaria, Tseytlin (2020)]
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More results, future directions

A classic result
〈WOp〉 ∼ h(λ,N)

See [Semenov, Okuyama (2006)]

More recently
〈WOpÔk〉 ∼ h(λ,N)

See [Giombi, Komatsu (2018)]

What about

〈WOp1Ôk1Ôk2〉 〈WOp1Op2Ôk1〉

Also for ’t Hoof lines, boundaries, interfaces, surface defects.
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More general theories
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Defects in (2, 0) theories

What about 〈〈OJOJ 〉〉 in 6d (2, 0) theories?

In [Drukker, Giombi, Tseytlin, Zhou (2020)] they studied

for operators on the defect.

We have a bootstrap problem

Obtain the Ward identities for 〈〈OJOJ 〉〉
Calculate superconformal blocks

Obtain Disc from a single block
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Defects in condensed matter

Consider the Wilson-Fisher fixed point

L =
1

2
(∂φ)2 +

λ

4!
φ4

Order defects:

D = exp

(∫
dτζφ

)
Relevant if a localized magnetic field is present [Cuomo, Komargodski,

Mezei (2021)]

Disorder defects:

φ(r , θ + 2π, ~y) = −φ(r , θ, ~y)

This is a monodromy defect, see [Gaiotto, Mazac, Paulos (2013)]

Can be compared with Montecarlo and experiment
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Bulk constraints on the defect

Consider a free bulk

2ϕ(x) = 0 2〈φ̂φ̂ϕ〉 = 0

Using the OPE

ϕ =
∑

b
ϕÔÔ →

∑
b
φφ̂
λ
φ̂φ̂Ô〈φ̂φ̂Ô〉 = 0

Not anything goes!

Constraints on defects [Lauria, PL, van Rees, Zhao (2020)]

Constraints on boundaries [Behan, DiPietro, Lauria, van Rees (202x)]

In SUSY theories we have

D2Φ = Φ2
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Not anything goes!

Constraints on defects [Lauria, PL, van Rees, Zhao (2020)]

Constraints on boundaries [Behan, DiPietro, Lauria, van Rees (202x)]

In SUSY theories we have

D2Φ = Φ2

21 / 22



Bulk constraints on the defect

Consider a free bulk

2ϕ(x) = 0 2〈φ̂φ̂ϕ〉 = 0

Using the OPE

ϕ =
∑

b
ϕÔÔ →
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Thank you!
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