Recent work on (supersymmetric) defects

Pedro Liendo

April 122022

DESY Journal Club

The supersymmetric Wilson line

\mathcal{O}_{1} •

The supersymmetric Wilson line

Half-BPS defect in $\mathcal{N}=4$ SYM

$$
\begin{aligned}
S O(4,2) & \rightarrow S O(2,1) \times S O(3) \\
S O(6) & \rightarrow S O(5) \\
P S U(2,2 \mid 4) & \rightarrow O S P(4 \mid 4)
\end{aligned}
$$

$\widehat{\mathcal{O}}_{1}$
\mathcal{O}_{2}
$\hat{\mathcal{O}}_{2}$
$\widehat{\mathcal{O}}_{3}$

The supersymmetric Wilson line

Half-BPS defect in $\mathcal{N}=4$ SYM

$$
\begin{aligned}
S O(4,2) & \rightarrow S O(2,1) \times S O(3) \\
S O(6) & \rightarrow S O(5) \\
\operatorname{PSU}(2,2 \mid 4) & \rightarrow O S P(4 \mid 4)
\end{aligned}
$$

- Local operators can be outside and inside the line

The supersymmetric Wilson line

Half-BPS defect in $\mathcal{N}=4$ SYM

$$
\begin{aligned}
S O(4,2) & \rightarrow S O(2,1) \times S O(3) \\
S O(6) & \rightarrow S O(5) \\
P S U(2,2 \mid 4) & \rightarrow O S P(4 \mid 4)
\end{aligned}
$$

- Local operators can be outside and inside the line
- We have two parameters λ and N

The supersymmetric Wilson line

Half-BPS defect in $\mathcal{N}=4$ SYM

$$
\begin{aligned}
S O(4,2) & \rightarrow S O(2,1) \times S O(3) \\
S O(6) & \rightarrow S O(5) \\
P S U(2,2 \mid 4) & \rightarrow O S P(4 \mid 4)
\end{aligned}
$$

- Local operators can be outside and inside the line
- We have two parameters λ and N

Perturbation theory, holography, localization, integrability, bootstrap

The main characters

The main characters

Wilson loop

$$
\mathcal{W}=P e^{\int d \tau\left(i A_{\tau}+\phi^{6}\right)}
$$

$$
\mathcal{O}_{p}=\operatorname{Tr} \phi^{\left\{i_{1}\right.} \ldots \phi^{\left.i_{p}\right\}}
$$

$$
\langle\mathcal{W}\rangle=\frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda})
$$

$$
\left\langle\mathcal{W} \mathcal{O}_{p_{1}} \ldots \mathcal{O}_{p_{n}}\right\rangle
$$

Defect chiral fields
$\left\langle\mathcal{W} \widehat{\mathcal{O}}_{k_{1}} \ldots \widehat{\mathcal{O}}_{k_{n}}\right\rangle$

The main characters

$$
\begin{array}{ccc}
\text { Wilson loop } & \text { Chiral fields } & \text { Defect chiral fields } \\
\mathcal{W}=P e^{\int d \tau\left(i A_{\tau}+\phi^{6}\right)} & \mathcal{O}_{p}=\operatorname{Tr} \phi^{\left\{i_{1}\right.} \ldots \phi^{\left.i_{p}\right\}} & \widehat{\mathcal{O}}_{k}=\operatorname{Tr} \widehat{\phi}^{\left\{a_{1}\right.} \ldots \widehat{\phi}^{\left.a_{k}\right\}} \\
\langle\mathcal{W}\rangle=\frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda}) & \left\langle\mathcal{W} \mathcal{O}_{p_{1}} \ldots \mathcal{O}_{p_{n}}\right\rangle & \left\langle\mathcal{W} \widehat{\mathcal{O}}_{k_{1}} \ldots \widehat{\mathcal{O}}_{k_{n}}\right\rangle
\end{array}
$$

- Bulk chiral field transform in the $S O(6)$ of R-symmetry.
- Defect chiral field transform in the $S O(5)$ of R-symmetry.

The main characters

$$
\begin{array}{ccc}
\text { Wilson loop } & \text { Chiral fields } & \text { Defect chiral fields } \\
\mathcal{W}=\operatorname{Pe} \int d \tau\left(i A_{\tau}+\phi^{6}\right) & \mathcal{O}_{p}=\operatorname{Tr} \phi^{\left\{i_{1}\right.} \ldots \phi^{\left.i_{p}\right\}} & \widehat{\mathcal{O}}_{k}=\operatorname{Tr} \widehat{\phi}^{\left\{a_{1}\right.} \ldots \widehat{\phi}^{\left.a_{k}\right\}} \\
\langle\mathcal{W}\rangle=\frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda}) & \left\langle\mathcal{W} \mathcal{O}_{p_{1}} \ldots \mathcal{O}_{p_{n}}\right\rangle & \left\langle\mathcal{W} \widehat{\mathcal{O}}_{k_{1}} \ldots \widehat{\mathcal{O}}_{k_{n}}\right\rangle
\end{array}
$$

- Bulk chiral field transform in the $S O(6)$ of R-symmetry.
- Defect chiral field transform in the $S O(5)$ of R-symmetry.

Several combinations are possible

$$
\left\langle\mathcal{W} \mathcal{O}_{p_{1}} \mathcal{O}_{p_{2}} \ldots\right\rangle \quad\left\langle\mathcal{W} \widehat{\mathcal{O}}_{k_{1}} \widehat{\mathcal{O}}_{k_{2}} \ldots\right\rangle \quad\left\langle\mathcal{W} \mathcal{O}_{p_{1}} \widehat{\mathcal{O}}_{k_{1}} \ldots\right\rangle
$$

The $1 d$ defect CFT

The displacement operator

The displacement operator (gauge theory)

$$
\mathcal{D}=F_{t i}+D_{i} \phi^{6}, \quad \Delta_{\mathcal{D}}=2
$$

The displacement operator

The displacement operator (gauge theory)

$$
\mathcal{D}=F_{t i}+D_{i} \phi^{6}, \quad \Delta_{\mathcal{D}}=2
$$

It sits in a half-BPS multiplet with superconformal primary ϕ^{a}

$$
\mathcal{D} \sim \mathcal{Q} \overline{\mathcal{Q}} \phi^{a}, \quad \Delta_{\phi}=1 \quad \text { and } \quad a=1, \ldots, 5
$$

The displacement operator

The displacement operator (gauge theory)

$$
\mathcal{D}=F_{t i}+D_{i} \phi^{6}, \quad \Delta_{\mathcal{D}}=2
$$

It sits in a half-BPS multiplet with superconformal primary ϕ^{a}

$$
\mathcal{D} \sim \mathcal{Q} \overline{\mathcal{Q}} \phi^{a}, \quad \Delta_{\phi}=1 \quad \text { and } \quad a=1, \ldots, 5
$$

We want to study

$$
\left\langle\phi^{a} \phi^{b} \phi^{c} \phi^{d}\right\rangle
$$

The displacement operator

The displacement operator (gauge theory)

$$
\mathcal{D}=F_{t i}+D_{i} \phi^{6}, \quad \Delta_{\mathcal{D}}=2
$$

It sits in a half-BPS multiplet with superconformal primary ϕ^{a}

$$
\mathcal{D} \sim \mathcal{Q} \overline{\mathcal{Q}} \phi^{a}, \quad \Delta_{\phi}=1 \quad \text { and } \quad a=1, \ldots, 5
$$

We want to study

$$
\left\langle\phi^{a} \phi^{b} \phi^{c} \phi^{d}\right\rangle
$$

Setup: half-BPS correlators in 1d $\operatorname{OSP}(4 \mid 4)$ SCFT.

Superconformal kinematics

In 1d we have one cross-ratio

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}=\chi^{2}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}=(1-\chi)^{2}
$$

Superconformal kinematics

In 1d we have one cross-ratio

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}=\chi^{2}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}=(1-\chi)^{2}
$$

We also have R-symmetry indices

$$
\begin{aligned}
\left\langle\phi^{a} \phi^{b} \phi^{c} \phi^{d}\right\rangle & =\delta^{a b} \delta^{c d} G_{S}(\chi) \\
& +\left(\delta^{a c} \delta^{b d}-\delta^{b c} \delta^{a d}\right) G_{A}(\chi) \\
& +\left(\delta^{a c} \delta^{b d}+\delta^{b c} \delta^{a d}-\frac{5}{2} \delta^{a b} \delta^{c d}\right) \frac{1}{2} G_{T}(\chi)
\end{aligned}
$$

Holographic calculation

The results is

Separating out the singlet (S), symmetric traceless (T) and antisymmetric (A) channels as in (4.3),(4.4)

$$
\begin{align*}
G_{(1)}^{a_{1} a_{2} a_{3} a_{4}} \tag{4.18}
\end{align*}(\chi)=\frac{1}{\sqrt{\lambda}}\left[G_{S}^{(1)}(\chi) \delta^{a_{1} a_{2}} \delta^{a_{3} a_{4}}+G_{T}^{(1)}(\chi)\left(\delta^{a_{1} a_{3}} \delta^{a_{2} a_{4}}+\delta^{a_{2} a_{3}} \delta^{a_{1} a_{4}}-\frac{2}{5} \delta^{a_{1} a_{2}} \delta^{a_{3} a_{4}}\right) ~ 子, ~ G_{A}^{(1)}(\chi)\left(\delta^{a_{1} a_{3}} \delta^{a_{2} a_{4}}-\delta^{a_{2} a_{3}} \delta^{a_{1} a_{4}}\right)\right],
$$

we find

$$
\begin{align*}
& G_{S}^{(1)}(\chi)=-\frac{2\left(\chi^{4}-4 \chi^{3}+9 \chi^{2}-10 \chi+5\right)}{5(\chi-1)^{2}}+\frac{\chi^{2}\left(2 \chi^{4}-11 \chi^{3}+21 \chi^{2}-20 \chi+10\right)}{5(\chi-1)^{3}} \log |\chi| \\
& \quad-\frac{2 \chi^{4}-5 \chi^{3}-5 \chi+10}{5 \chi} \log |1-\chi| \\
& G_{T}^{(1)}(\chi)=-\frac{\chi^{2}\left(2 \chi^{2}-3 \chi+3\right)}{2(\chi-1)^{2}}+\frac{\chi^{4}\left(\chi^{2}-3 \chi+3\right)}{(\chi-1)^{3}} \log |\chi|-\chi^{3} \log |1-\chi| \tag{4.19}\\
& G_{A}^{(1)}(\chi)=\frac{\chi\left(-2 \chi^{3}+5 \chi^{2}-3 \chi+2\right)}{2(\chi-1)^{2}}+\frac{\chi^{3}\left(\chi^{3}-4 \chi^{2}+6 \chi-4\right)}{(\chi-1)^{3}} \log |\chi|-\left(\chi^{3}-\chi^{2}-1\right) \log |1-\chi|
\end{align*}
$$

Here and in what follows $\log |\chi| \equiv \frac{1}{2} \log \left(\chi^{2}\right)$ and $\log |1-\chi| \equiv \frac{1}{2} \log \left[(1-\chi)^{2}\right]$ where $\chi \in(-\infty, \infty)$. Alternatively, we may assume that $\chi \in(0,1)$ (which, in particular, is sufficient for considerations of
[Giombi, Roiban, Tseytlin (2017)]

Ward identities

The functions $G(\chi)$ are not independent

Ward identities

The functions $G(\chi)$ are not independent

$$
\begin{aligned}
& G_{S}(\chi)=-\frac{((\chi-5) \chi+5) \chi f^{\prime}(\chi)+5(\chi-2) f(\chi)+c \chi^{3}}{5 \chi} \\
& G_{A}(\chi)=-\frac{1}{2} \chi\left((\chi-2) f^{\prime}(\chi)+c \chi\right)-f(\chi) \\
& G_{T}(\chi)=-\frac{1}{2} \chi^{2}\left(f^{\prime}(\chi)+c\right)
\end{aligned}
$$

Ward identities

The functions $G(\chi)$ are not independent

$$
\begin{aligned}
& G_{S}(\chi)=-\frac{((\chi-5) \chi+5) \chi f^{\prime}(\chi)+5(\chi-2) f(\chi)+c \chi^{3}}{5 \chi} \\
& G_{A}(\chi)=-\frac{1}{2} \chi\left((\chi-2) f^{\prime}(\chi)+c \chi\right)-f(\chi) \\
& G_{T}(\chi)=-\frac{1}{2} \chi^{2}\left(f^{\prime}(\chi)+c\right)
\end{aligned}
$$

Everything is fixed in terms of c and $f(\chi)$, and $f(\chi)$ can be bootstrapped
[PL, Meneghelli, Mitev (2018)]

Enter integrability

Enter integrability

Consider the OPE

$$
\phi \times \phi \sim 1+\mathcal{K}+\ldots
$$

Enter integrability

Consider the OPE

$$
\phi \times \phi \sim 1+\mathcal{K}+\ldots
$$

\mathcal{K} is the $1 d$ "Konishi", interpolates between $\Delta_{\mathcal{K}}=1$ and $\Delta_{\mathcal{K}}=2$.

Enter integrability

Consider the OPE

$$
\phi \times \phi \sim 1+\mathcal{K}+\ldots
$$

\mathcal{K} is the $1 d$ "Konishi", interpolates between $\Delta_{\mathcal{K}}=1$ and $\Delta_{\mathcal{K}}=2$.
Using the Quantum Spectral Curve [Grabner, Gromov, Julius (2020)]

$$
\begin{aligned}
& \Delta_{\mathcal{K}}=1+\frac{\lambda}{4 \pi^{2}}-\frac{\lambda^{2}}{16 \pi^{4}}+\left(\frac{56}{45} \pi^{4}+128\right) \frac{\lambda^{3}}{4096 \pi^{6}}+\ldots \\
& \Delta_{\mathcal{K}}=2-\frac{5}{\sqrt{\lambda}}+\frac{295}{24} \frac{1}{\lambda}-\frac{305}{16} \frac{1}{\sqrt{\lambda}^{3}}-19.6254\left(10^{-7}\right) \frac{1}{\lambda^{2}}
\end{aligned}
$$

Enter integrability

Consider the OPE

$$
\phi \times \phi \sim 1+\mathcal{K}+\ldots
$$

\mathcal{K} is the $1 d$ "Konishi", interpolates between $\Delta_{\mathcal{K}}=1$ and $\Delta_{\mathcal{K}}=2$.
Using the Quantum Spectral Curve [Grabner, Gromov, Julius (2020)]

$$
\begin{aligned}
& \Delta_{\mathcal{K}}=1+\frac{\lambda}{4 \pi^{2}}-\frac{\lambda^{2}}{16 \pi^{4}}+\left(\frac{56}{45} \pi^{4}+128\right) \frac{\lambda^{3}}{4096 \pi^{6}}+\ldots \\
& \Delta_{\mathcal{K}}=2-\frac{5}{\sqrt{\lambda}}+\frac{295}{24} \frac{1}{\lambda}-\frac{305}{16} \frac{1}{\sqrt{\lambda}^{3}}-19.6254\left(10^{-7}\right) \frac{1}{\lambda^{2}}
\end{aligned}
$$

Using bootstrap [Ferrero, Meneghelli (2021)]

Enter integrability

Consider the OPE

$$
\phi \times \phi \sim 1+\mathcal{K}+\ldots
$$

\mathcal{K} is the $1 d$ "Konishi", interpolates between $\Delta_{\mathcal{K}}=1$ and $\Delta_{\mathcal{K}}=2$.
Using the Quantum Spectral Curve [Grabner, Gromov, Julius (2020)]

$$
\begin{aligned}
& \Delta_{\mathcal{K}}=1+\frac{\lambda}{4 \pi^{2}}-\frac{\lambda^{2}}{16 \pi^{4}}+\left(\frac{56}{45} \pi^{4}+128\right) \frac{\lambda^{3}}{4096 \pi^{6}}+\ldots \\
& \Delta_{\mathcal{K}}=2-\frac{5}{\sqrt{\lambda}}+\frac{295}{24} \frac{1}{\lambda}-\frac{305}{16} \frac{1}{\sqrt{\lambda}^{3}}-19.6254\left(10^{-7}\right) \frac{1}{\lambda^{2}}
\end{aligned}
$$

Using bootstrap [Ferrero, Meneghelli (2021)]

$$
\frac{351845}{13824}-\frac{75}{2} \zeta(3)
$$

More recent developments

More recent developments

There is a protected sector

$$
\left.\left\langle\widehat{O}_{1} \widehat{O}_{2} \ldots\right\rangle\right|_{z=w}=h(\lambda, N)
$$

More recent developments

There is a protected sector

$$
\left.\left\langle\widehat{O}_{1} \widehat{O}_{2} \ldots\right\rangle\right|_{z=w}=h(\lambda, N)
$$

It can be understood from localization or the chiral algebra [Komatsu, Giombi (2018)]

More recent developments

There is a protected sector

$$
\left.\left\langle\widehat{O}_{1} \widehat{O}_{2} \ldots\right\rangle\right|_{z=w}=h(\lambda, N)
$$

It can be understood from localization or the chiral algebra [Komatsu, Giombi (2018)]

More results include

More recent developments

There is a protected sector

$$
\left.\left\langle\widehat{O}_{1} \widehat{O}_{2} \ldots\right\rangle\right|_{z=w}=h(\lambda, N)
$$

It can be understood from localization or the chiral algebra [Komatsu, Giombi (2018)]

More results include

- Multipoint correlators at weak coupling [Barrat, PL, Peveri, Plefka (2021)] (see also [Kiryu, Komatsu (2018)])

More recent developments

There is a protected sector

$$
\left.\left\langle\widehat{O}_{1} \widehat{O}_{2} \ldots\right\rangle\right|_{z=w}=h(\lambda, N)
$$

It can be understood from localization or the chiral algebra [Komatsu, Giombi (2018)]

More results include

- Multipoint correlators at weak coupling [Barrat, PL, Peveri, Plefka (2021)] (see also [Kiryu, Komatsu (2018)])
- Line defects in $\mathcal{N}=2$ theories [Gimenez-Grau, PL (2019)]

More recent developments

There is a protected sector

$$
\left.\left\langle\widehat{O}_{1} \widehat{O}_{2} \ldots\right\rangle\right|_{z=w}=h(\lambda, N)
$$

It can be understood from localization or the chiral algebra [Komatsu, Giombi (2018)]

More results include

- Multipoint correlators at weak coupling [Barrat, PL, Peveri, Plefka (2021)] (see also [Kiryu, Komatsu (2018)])
- Line defects in $\mathcal{N}=2$ theories [Gimenez-Grau, PL (2019)]
- Line defects in ABJM [Bianchi, Bliard, Forini, Griguolo, Seminara (2020)]

More recent developments

There is a protected sector

$$
\left.\left\langle\widehat{O}_{1} \widehat{O}_{2} \ldots\right\rangle\right|_{z=w}=h(\lambda, N)
$$

It can be understood from localization or the chiral algebra [Komatsu, Giombi (2018)]

More results include

- Multipoint correlators at weak coupling [Barrat, PL, Peveri, Plefka (2021)] (see also [Kiryu, Komatsu (2018)])
- Line defects in $\mathcal{N}=2$ theories [Gimenez-Grau, PL (2019)]
- Line defects in ABJM [Bianchi, Bliard, Forini, Griguolo, Seminara (2020)]
- RG flows [Polchinski, Sully (2011)]

Bulk excitations

Ward identities

Recall

$$
\left\langle\mathcal{W} \mathcal{O}_{2}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right)\right\rangle \sim \mathcal{F}(z, \bar{z}, \omega)
$$

Ward identities

Recall

$$
\left\langle\mathcal{W} \mathcal{O}_{2}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right)\right\rangle \sim \mathcal{F}(z, \bar{z}, \omega)
$$

The channels are not independent [PL, Meneghelli (2016)]

$$
\begin{aligned}
& \left.\left(\partial_{z}+\frac{1}{2} \partial_{\omega}\right) \mathcal{F}(z, \bar{z}, \omega)\right|_{z=\omega}=0 \\
& \left.\left(\partial_{\bar{z}}+\frac{1}{2} \partial_{\omega}\right) \mathcal{F}(z, \bar{z}, \omega)\right|_{\bar{z}=\omega}=0
\end{aligned}
$$

Ward identities

Recall

$$
\left\langle\mathcal{W} \mathcal{O}_{2}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right)\right\rangle \sim \mathcal{F}(z, \bar{z}, \omega)
$$

The channels are not independent [PL, Meneghelli (2016)]

$$
\begin{aligned}
& \left.\left(\partial_{z}+\frac{1}{2} \partial_{\omega}\right) \mathcal{F}(z, \bar{z}, \omega)\right|_{z=\omega}=0 \\
& \left.\left(\partial_{\bar{z}}+\frac{1}{2} \partial_{\omega}\right) \mathcal{F}(z, \bar{z}, \omega)\right|_{\bar{z}=\omega}=0
\end{aligned}
$$

Similar to the c and $f(\chi)$ parameterization.

Two-point function configuration

Figure: Configuration of the system in the plane orthogonal to the defect.

Strong coupling

$\square \sim \frac{1}{N^{2}}$

Strong coupling

The natural parameters are λ / N^{2} and $1 / \sqrt{\lambda}$:

$$
\langle\mathcal{O O}\rangle\rangle=\langle\langle\mathcal{O O}\rangle\rangle^{(0)}+\frac{\lambda}{N^{2}}\left(\langle\langle\mathcal{O O}\rangle\rangle^{(1)}+\frac{1}{\sqrt{\lambda}}\langle\langle\mathcal{O O}\rangle\rangle^{(2)}\right) \ldots
$$

Strong coupling

The natural parameters are λ / N^{2} and $1 / \sqrt{\lambda}$:

$$
\langle\langle\mathcal{O O}\rangle\rangle=\langle\langle\mathcal{O} \mathcal{O}\rangle\rangle^{(0)}+\frac{\lambda}{N^{2}}\left(\langle\langle\mathcal{O} \mathcal{O}\rangle\rangle^{(1)}+\frac{1}{\sqrt{\lambda}}\langle\langle\mathcal{O} \mathcal{O}\rangle\rangle^{(2)}\right) \ldots
$$

For the holographic setup see [Giombi, Pestun (2012)].

Strong coupling

The natural parameters are λ / N^{2} and $1 / \sqrt{\lambda}$:

$$
\langle\langle\mathcal{O O}\rangle\rangle=\langle\langle\mathcal{O} \mathcal{O}\rangle\rangle^{(0)}+\frac{\lambda}{N^{2}}\left(\langle\langle\mathcal{O} \mathcal{O}\rangle\rangle^{(1)}+\frac{1}{\sqrt{\lambda}}\langle\langle\mathcal{O} \mathcal{O}\rangle\rangle^{(2)}\right) \ldots
$$

For the holographic setup see [Giombi, Pestun (2012)].

Inversion formula

Inversion formula

Following [Caron-Huot (2017)],

$$
b\left(\widehat{\Delta}^{\prime}, s\right) \sim \int d z d \bar{z} J(z, \bar{z}) \operatorname{Disc} \mathcal{F}(z, \bar{z})
$$

Inversion formula

Following [Caron-Huot (2017)],

$$
b\left(\widehat{\Delta}^{\prime}, s\right) \sim \int d z d \bar{z} J(z, \bar{z}) \operatorname{Disc} \mathcal{F}(z, \bar{z})
$$

where

$$
b_{\mathcal{O} \hat{O}}^{2}=-\operatorname{Res}_{\widehat{\Delta}^{\prime}=\widehat{\Delta}} b\left(\widehat{\Delta}^{\prime}, s\right)
$$

Inversion formula

Following [Caron-Huot (2017)],

$$
b\left(\widehat{\Delta}^{\prime}, s\right) \sim \int d z d \bar{z} J(z, \bar{z}) \operatorname{Disc} \mathcal{F}(z, \bar{z})
$$

where

$$
b_{\mathcal{O} \hat{O}}^{2}=-\operatorname{Res}_{\widehat{\Delta}^{\prime}=\widehat{\Delta}} b\left(\widehat{\Delta}^{\prime}, s\right)
$$

The defect expansion

$$
\mathcal{F}(z, \bar{z}, \omega)=\sum_{\hat{\Delta}, s} b_{\mathcal{O} \hat{\Delta}}^{2} \hat{\mathcal{G}}_{\hat{\Delta}}(z, \bar{z}, \omega)
$$

Inversion formula

Following [Caron-Huot (2017)],

$$
b\left(\widehat{\Delta}^{\prime}, s\right) \sim \int d z d \bar{z} J(z, \bar{z}) \operatorname{Disc} \mathcal{F}(z, \bar{z})
$$

where

$$
b_{\mathcal{O} \hat{O}}^{2}=-\operatorname{Res}_{\widehat{\Delta}^{\prime}=\widehat{\Delta}} b\left(\widehat{\Delta}^{\prime}, s\right)
$$

The defect expansion

$$
\mathcal{F}(z, \bar{z}, \omega)=\sum_{\hat{\Delta}, s} b_{\mathcal{O} \hat{\Delta}}^{2} \hat{\mathcal{G}}_{\hat{\Delta}}(z, \bar{z}, \omega)
$$

At strong coupling only one bulk block contributes to Disc

The leading order result

The leading order result

After resummation

$$
F_{0}(z, \bar{z})=-\frac{\sqrt{\lambda}}{N^{2}} \frac{2 z \bar{z}}{(1-z)(1-\bar{z})}\left[\frac{1+z \bar{z}}{(1-z \bar{z})^{2}}+\frac{2 z \bar{z} \log z \bar{z}}{(1-z \bar{z})^{3}}\right]
$$

[Barrat, Gimenez-Grau, PL (2021)]

The leading order result

After resummation

$$
F_{0}(z, \bar{z})=-\frac{\sqrt{\lambda}}{N^{2}} \frac{2 z \bar{z}}{(1-z)(1-\bar{z})}\left[\frac{1+z \bar{z}}{(1-z \bar{z})^{2}}+\frac{2 z \bar{z} \log z \bar{z}}{(1-z \bar{z})^{3}}\right]
$$

[Barrat, Gimenez-Grau, PL (2021)]
Recall

$$
\infty \sim \frac{\lambda^{1 / 2}}{N^{2}}
$$

The leading order result

After resummation

$$
F_{0}(z, \bar{z})=-\frac{\sqrt{\lambda}}{N^{2}} \frac{2 z \bar{z}}{(1-z)(1-\bar{z})}\left[\frac{1+z \bar{z}}{(1-z \bar{z})^{2}}+\frac{2 z \bar{z} \log z \bar{z}}{(1-z \bar{z})^{3}}\right]
$$

[Barrat, Gimenez-Grau, PL (2021)]
Recall

There is also a protected point

$$
\left.\mathcal{F}(z, \bar{z}, w)\right|_{z=\bar{z}=w}=h(\lambda, N)
$$

See [Beccaria, Tseytlin (2020)]

More results, future directions

More results, future directions

A classic result

$$
\left\langle\mathcal{W} \mathcal{O}_{p}\right\rangle \sim h(\lambda, N)
$$

See [Semenov, Okuyama (2006)]

More results, future directions

A classic result

$$
\left\langle\mathcal{W} \mathcal{O}_{p}\right\rangle \sim h(\lambda, N)
$$

See [Semenov, Okuyama (2006)]
More recently

$$
\left\langle\mathcal{W} \mathcal{O}_{p} \widehat{\mathcal{O}}_{k}\right\rangle \sim h(\lambda, N)
$$

See [Giombi, Komatsu (2018)]

More results, future directions

A classic result

$$
\left\langle\mathcal{W} \mathcal{O}_{p}\right\rangle \sim h(\lambda, N)
$$

See [Semenov, Okuyama (2006)]
More recently

$$
\left\langle\mathcal{W} \mathcal{O}_{p} \widehat{\mathcal{O}}_{k}\right\rangle \sim h(\lambda, N)
$$

See [Giombi, Komatsu (2018)]
What about

$$
\left\langle\mathcal{W} \mathcal{O}_{p_{1}} \widehat{\mathcal{O}}_{k_{1}} \widehat{\mathcal{O}}_{k_{2}}\right\rangle \quad\left\langle\mathcal{W} \mathcal{O}_{p_{1}} \mathcal{O}_{p_{2}} \widehat{O}_{k_{1}}\right\rangle
$$

More results, future directions

A classic result

$$
\left\langle\mathcal{W} \mathcal{O}_{p}\right\rangle \sim h(\lambda, N)
$$

See [Semenov, Okuyama (2006)]
More recently

$$
\left\langle\mathcal{W} \mathcal{O}_{p} \widehat{\mathcal{O}}_{k}\right\rangle \sim h(\lambda, N)
$$

See [Giombi, Komatsu (2018)]
What about

$$
\left\langle\mathcal{W} \mathcal{O}_{p_{1}} \widehat{\mathcal{O}}_{k_{1}} \widehat{\mathcal{O}}_{k_{2}}\right\rangle \quad\left\langle\mathcal{W} \mathcal{O}_{p_{1}} \mathcal{O}_{p_{2}} \widehat{O}_{k_{1}}\right\rangle
$$

Also for 't Hoof lines, boundaries, interfaces, surface defects.

More general theories

Defects in $(2,0)$ theories

Defects in $(2,0)$ theories

What about $\left\langle\left\langle\mathcal{O}, \mathcal{O}_{j}\right\rangle\right\rangle$ in $6 d(2,0)$ theories?

Defects in $(2,0)$ theories

What about $\left\langle\left\langle\mathcal{O}, \mathcal{O}_{J}\right\rangle\right\rangle$ in $6 d(2,0)$ theories?
In [Drukker, Giombi, Tseytlin, Zhou (2020)] they studied

$$
\begin{equation*}
\left.\left(-\frac{1}{2} \chi \partial_{\chi}+\alpha \partial_{\alpha}\right) \mathcal{G}(\chi, \bar{\chi} ; \alpha, \bar{\alpha})\right|_{\alpha=1 / \chi}=0,\left.\quad\left(-\frac{1}{2} \bar{\chi} \partial_{\bar{\chi}}+\bar{\alpha} \partial_{\bar{\alpha}}\right) \mathcal{G}(\chi, \bar{\chi} ; \alpha, \bar{\alpha})\right|_{\bar{\alpha}=1 / \bar{\chi}}=0 . \tag{4.18}
\end{equation*}
$$

for operators on the defect.

Defects in $(2,0)$ theories

What about $\left\langle\left\langle\mathcal{O}, \mathcal{O}_{j}\right\rangle\right\rangle$ in $6 d(2,0)$ theories?
In [Drukker, Giombi, Tseytlin, Zhou (2020)] they studied

$$
\begin{equation*}
\left.\left(-\frac{1}{2} \chi \partial_{\chi}+\alpha \partial_{\alpha}\right) \mathcal{G}(\chi, \bar{\chi} ; \alpha, \bar{\alpha})\right|_{\alpha=1 / \chi}=0,\left.\quad\left(-\frac{1}{2} \bar{\chi} \partial_{\bar{\chi}}+\bar{\alpha} \partial_{\bar{\alpha}}\right) \mathcal{G}(\chi, \bar{\chi} ; \alpha, \bar{\alpha})\right|_{\bar{\alpha}=1 / \bar{\chi}}=0 . \tag{4.18}
\end{equation*}
$$

for operators on the defect.
We have a bootstrap problem

Defects in $(2,0)$ theories

What about $\left\langle\left\langle\mathcal{O}, \mathcal{O}_{j}\right\rangle\right\rangle$ in $6 d(2,0)$ theories?
In [Drukker, Giombi, Tseytlin, Zhou (2020)] they studied

$$
\begin{equation*}
\left.\left(-\frac{1}{2} \chi \partial_{\chi}+\alpha \partial_{\alpha}\right) \mathcal{G}(\chi, \bar{\chi} ; \alpha, \bar{\alpha})\right|_{\alpha=1 / \chi}=0,\left.\quad\left(-\frac{1}{2} \bar{\chi} \partial_{\bar{\chi}}+\bar{\alpha} \partial_{\bar{\alpha}}\right) \mathcal{G}(\chi, \bar{\chi} ; \alpha, \bar{\alpha})\right|_{\bar{\alpha}=1 / \bar{\chi}}=0 . \tag{4.18}
\end{equation*}
$$

for operators on the defect.
We have a bootstrap problem

- Obtain the Ward identities for $\left\langle\left\langle\mathcal{O}_{J} \mathcal{O}_{J}\right\rangle\right\rangle$

Defects in $(2,0)$ theories

What about $\left\langle\left\langle\mathcal{O}, \mathcal{O}_{j}\right\rangle\right\rangle$ in $6 d(2,0)$ theories?
In [Drukker, Giombi, Tseytlin, Zhou (2020)] they studied

$$
\begin{equation*}
\left.\left(-\frac{1}{2} \chi \partial_{\chi}+\alpha \partial_{\alpha}\right) \mathcal{G}(\chi, \bar{\chi} ; \alpha, \bar{\alpha})\right|_{\alpha=1 / \chi}=0,\left.\quad\left(-\frac{1}{2} \bar{\chi} \partial_{\bar{\chi}}+\bar{\alpha} \partial_{\bar{\alpha}}\right) \mathcal{G}(\chi, \bar{\chi} ; \alpha, \bar{\alpha})\right|_{\bar{\alpha}=1 / \bar{\chi}}=0 . \tag{4.18}
\end{equation*}
$$

for operators on the defect.
We have a bootstrap problem

- Obtain the Ward identities for $\left\langle\left\langle\mathcal{O}_{J} \mathcal{O}_{J}\right\rangle\right\rangle$
- Calculate superconformal blocks

Defects in $(2,0)$ theories

What about $\left\langle\left\langle\mathcal{O}_{j} \mathcal{O}_{J}\right\rangle\right\rangle$ in $6 d(2,0)$ theories?
In [Drukker, Giombi, Tseytlin, Zhou (2020)] they studied

$$
\begin{equation*}
\left.\left(-\frac{1}{2} \chi \partial_{\chi}+\alpha \partial_{\alpha}\right) \mathcal{G}(\chi, \bar{\chi} ; \alpha, \bar{\alpha})\right|_{\alpha=1 / \chi}=0,\left.\quad\left(-\frac{1}{2} \bar{\chi} \partial_{\bar{\chi}}+\bar{\alpha} \partial_{\bar{\alpha}}\right) \mathcal{G}(\chi, \bar{\chi} ; \alpha, \bar{\alpha})\right|_{\bar{\alpha}=1 / \bar{\chi}}=0 . \tag{4.18}
\end{equation*}
$$

for operators on the defect.
We have a bootstrap problem

- Obtain the Ward identities for $\left\langle\left\langle\mathcal{O}_{J} \mathcal{O}_{J}\right\rangle\right\rangle$
- Calculate superconformal blocks
- Obtain Disc from a single block

Defects in condensed matter

Defects in condensed matter

Consider the Wilson-Fisher fixed point

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}+\frac{\lambda}{4!} \phi^{4}
$$

Defects in condensed matter

Consider the Wilson-Fisher fixed point

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}+\frac{\lambda}{4!} \phi^{4}
$$

Order defects:

$$
\mathcal{D}=\exp \left(\int d \tau \zeta \phi\right)
$$

Relevant if a localized magnetic field is present [Cuomo, Komargodski, Mezei (2021)]

Defects in condensed matter

Consider the Wilson-Fisher fixed point

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}+\frac{\lambda}{4!} \phi^{4}
$$

Order defects:

$$
\mathcal{D}=\exp \left(\int d \tau \zeta \phi\right)
$$

Relevant if a localized magnetic field is present [Cuomo, Komargodski, Mezei (2021)]

Disorder defects:

$$
\phi(r, \theta+2 \pi, \vec{y})=-\phi(r, \theta, \vec{y})
$$

This is a monodromy defect, see [Gaiotto, Mazac, Paulos (2013)]

Defects in condensed matter

Consider the Wilson-Fisher fixed point

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}+\frac{\lambda}{4!} \phi^{4}
$$

Order defects:

$$
\mathcal{D}=\exp \left(\int d \tau \zeta \phi\right)
$$

Relevant if a localized magnetic field is present [Cuomo, Komargodski, Mezei (2021)]

Disorder defects:

$$
\phi(r, \theta+2 \pi, \vec{y})=-\phi(r, \theta, \vec{y})
$$

This is a monodromy defect, see [Gaiotto, Mazac, Paulos (2013)]
Can be compared with Montecarlo and experiment

Bulk constraints on the defect

Bulk constraints on the defect

Consider a free bulk

$$
\square \varphi(x)=0 \quad \square\langle\widehat{\phi} \widehat{\phi} \varphi\rangle=0
$$

Bulk constraints on the defect

Consider a free bulk

$$
\square \varphi(x)=0 \quad \square\langle\widehat{\phi} \widehat{\phi} \varphi\rangle=0
$$

Using the OPE

$$
\varphi=\sum b_{\varphi \widehat{\mathcal{O}}} \widehat{\mathcal{O}} \quad \rightarrow \quad \sum b_{\phi \hat{\phi}} \lambda_{\widehat{\phi} \widehat{\boldsymbol{O}} \widehat{ }}\langle\widehat{\phi} \widehat{\phi} \widehat{\mathcal{O}}\rangle=0
$$

Bulk constraints on the defect

Consider a free bulk

$$
\square \varphi(x)=0 \quad \square\langle\widehat{\phi} \widehat{\phi} \varphi\rangle=0
$$

Using the OPE

$$
\varphi=\sum b_{\varphi \widehat{\mathcal{O}}} \widehat{\mathcal{O}} \quad \rightarrow \quad \sum b_{\phi \widehat{\phi}} \lambda_{\widehat{\phi} \widehat{\phi} \widehat{\mathcal{O}}}\langle\widehat{\phi} \widehat{\phi} \widehat{\mathcal{O}}\rangle=0
$$

Not anything goes!

Bulk constraints on the defect

Consider a free bulk

$$
\square \varphi(x)=0 \quad \square\langle\widehat{\phi} \widehat{\phi} \varphi\rangle=0
$$

Using the OPE

$$
\varphi=\sum b_{\varphi \widehat{\mathcal{O}}} \widehat{\mathcal{O}} \quad \rightarrow \quad \sum b_{\phi \hat{\phi}} \lambda_{\widehat{\phi} \widehat{\boldsymbol{O}} \widehat{ }}\langle\widehat{\phi} \widehat{\phi} \widehat{\mathcal{O}}\rangle=0
$$

Not anything goes!
Constraints on defects [Lauria, PL, van Rees, Zhao (2020)]

Bulk constraints on the defect

Consider a free bulk

$$
\square \varphi(x)=0 \quad \square\langle\widehat{\phi} \widehat{\phi} \varphi\rangle=0
$$

Using the OPE

$$
\varphi=\sum b_{\varphi \widehat{\mathcal{O}}} \widehat{\mathcal{O}} \quad \rightarrow \quad \sum b_{\phi \hat{\phi}} \lambda_{\widehat{\phi} \widehat{\mathcal{O}} \widehat{ }}\langle\widehat{\phi} \widehat{\phi} \widehat{\mathcal{O}}\rangle=0
$$

Not anything goes!
Constraints on defects [Lauria, PL, van Rees, Zhao (2020)]
Constraints on boundaries [Behan, DiPietro, Lauria, van Rees (202x)]

Bulk constraints on the defect

Consider a free bulk

$$
\square \varphi(x)=0 \quad \square\langle\widehat{\phi} \widehat{\phi} \varphi\rangle=0
$$

Using the OPE

$$
\varphi=\sum b_{\varphi \widehat{\mathcal{O}}} \widehat{\mathcal{O}} \quad \rightarrow \quad \sum b_{\phi \widehat{\phi}} \lambda_{\widehat{\phi} \widehat{\phi} \widehat{\mathcal{O}}}\langle\widehat{\phi} \widehat{\phi} \widehat{\mathcal{O}}\rangle=0
$$

Not anything goes!
Constraints on defects [Lauria, PL, van Rees, Zhao (2020)]
Constraints on boundaries [Behan, DiPietro, Lauria, van Rees (202x)]
In SUSY theories we have

$$
D^{2} \Phi=\Phi^{2}
$$

Thank you!

