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50(4,2) — SO(2,1) x SO(3) Ore ¢ O
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@ Local operators can be outside and inside the line

@ We have two parameters A and N

Perturbation theory, holography, localization, integrability, bootstrap
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@ Bulk chiral field transform in the SO(6) of R-symmetry.

o Defect chiral field transform in the SO(5) of R-symmetry.

Several combinations are possible

W00, .. WO Os,...) (WO, Oy ...)
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The displacement operator

The displacement operator (gauge theory)

D=Fi+Di¢°, Ap=2
It sits in a half-BPS multiplet with superconformal primary ¢?

D~ QQ¢?, Ay=1 and a=1,...,5

We want to study

($*¢P¢ )

Setup: half-BPS correlators in 1d OSP(4|4) SCFT.
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Superconformal kinematics

In 1d we have one cross-ratio
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We also have R-symmetry indices
(¢?p°0°¢7) = 67°6% Gs(x)
+ (6ac5bd _ 5bc6ad)GA(X)
+ (5ac5bd + 6bc5ad . %6ab6Cd)%GT(X)



Holographic calculation

The results is
Separating out the singlet (), symmetric traceless (T') and antisymmetric (A) channels as in (4.3).(4.4)

1
G (x) = ﬁ[(;_(?l)(x) guaagasas | Gg})(x} (§1maguana 4 geansgmins _ Zgoea gazes)

(4.18)
+ G (y) (pusgems _ 52203,;01@4)] ‘
we find
2(x' =43+ 9x% — 10y +5) X7 (2¢' — 11x* + 2132 — 20 + 10
Dy = 2 = ) X —X ) 1og x|
5(x — 1) 5(x —1)
2! = 5x? —5x + 10
_ % log|l — x|,
X
2 2 4 2
M.\ _ X (2x?-3x+3) ¥ (2-3x+3) 3 B
Grl(x) = 3 =) PR log [x| — x"log |1 — x| , (4.19)
23+ -3 +2) P -0 +ox—4)
P = XL + log [x| — (x* = x> — 1) log |1 — |
A 2x - 1) (x-1°

Here and in what follows log [x| = $log(x?) and log|1 — x| = %log [(1 = x)? where x € (—cc,0).
Alternatively, we may assume that x € (0,1) (which, in particular, is sufficient for considerations of

12

[Giombi, Roiban, Tseytlin (2017)]
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Woard identities

The functions G(x) are not independent

(¢ = 5)x +5)xf'(x) +5(x — 2)f(x) + e
5x
1

Galx) = —5x (x =2)F' () + ex) — F(x)

Gr(x) = —%xz (F'(x) + ¢

Gs(x) = —

Everything is fixed in terms of ¢ and f(x), and f(x) can be bootstrapped

[PL, Meneghelli, Mitev (2018)]
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Enter integrability
Consider the OPE

dXPp~14+K+ ...
K is the 1d "Konishi”, interpolates between Ax =1 and A = 2.

Using the Quantum Spectral Curve [Grabner, Gromov, Julius (2020)]

A 22 56 A3
A =1+ Dt 1 128) o
K=t 2 T e T (45” * ) 200675

5 2061 305 1 1
A =2— > +52° 22~ 196254(1077)—
. \f)\+24)\ 16 /3> 9.6254(1077) 15

Using bootstrap [Ferrero, Meneghelli (2021)]
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More recent developments

There is a protected sector

(0105 . Myew = h(\, N)

It can be understood from localization or the chiral algebra
[Komatsu, Giombi (2018)]

More results include
@ Multipoint correlators at weak coupling [Barrat, PL, Peveri,
Plefka (2021)] (see also [Kiryu, Komatsu (2018)])
@ Line defects in N = 2 theories [Gimenez-Grau, PL (2019)]

o Line defects in ABJM [Bianchi, Bliard, Forini, Griguolo, Seminara
(2020)]

@ RG flows [Polchinski, Sully (2011)]
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Woard identities

Recall
W O2(x1)02(x2)) ~ F(z,Z,w)
The channels are not independent [PL, Meneghelli (2016)]

((92 + ;5@) F(z,z,w) =0,

Z=w

1
(82 + 2&,) F(z,z,w) =0.

Z=w

Similar to the ¢ and f(x) parameterization.



Two-point function configuration
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Figure: Configuration of the system in the plane orthogonal to the defect.
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Inversion formula

Following [Caron-Huot (2017)],
b(D',s) ~ / dzdz J(z, Z) Disc F(z,%)

where

b2 » = — Re
A/

00 = b(A',s)

S
=A
The defect expansion

F(z,z,w) Zb QA (z,Zz,w)

At strong coupling only one bulk block contributes to Disc
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The leading order result

After resummation

_ vV 2z7 1+2zZ 2zZlog zZ
FO(Z7Z) =

TN (1—2)1-2) |0-z22  Q-z2

[Barrat, Gimenez-Grau, PL (2021)]

)\1/2
~ N

There is also a protected point

Recall

F(z,Z,w)|z=z=w = h(\, N)

See [Beccaria, Tseytlin (2020)]



More results, future directions



More results, future directions

A classic result
(WOp) ~ h(A, N)

See [Semenov, Okuyama (2006)]



More results, future directions

A classic result
(WOp) ~ h(A, N)

See [Semenov, Okuyama (2006)]

More recently R
WO,0k) ~ h(\, N)

See [Giombi, Komatsu (2018)]



More results, future directions

A classic result
(WO,) ~ h(\, N)

See [Semenov, Okuyama (2006)]

More recently R
WO,0k) ~ h(\, N)

See [Giombi, Komatsu (2018)]
What about

<WOP1 @k1 @/Q > <WOP1 OP2 5k1 >



More results, future directions

A classic result
(WOp) ~ h(A, N)

See [Semenov, Okuyama (2006)]

More recently R
WO,0k) ~ h(\, N)

See [Giombi, Komatsu (2018)]
What about

<WOP1 @kl 6k2> <WOP1 OP2 5k1 >

Also for 't Hoof lines, boundaries, interfaces, surface defects.



More general theories



Defects in (2, 0) theories



Defects in (2, 0) theories

What about (O;0,)) in 6d (2,0) theories?



Defects in (2, 0) theories

What about (O;0,)) in 6d (2,0) theories?

In [Drukker, Giombi, Tseytlin, Zhou (2020)] they studied

1 o _ 1_ _ I
(—Exﬂx + m'?n)g(x. X.(}IQ)L::I,’)‘ =0, (_Exﬂi + n('),—,)g()(.x.a.(‘z) i/

for operators on the defect.

=0.

(4.18)



Defects in (2, 0) theories

What about (O;0,)) in 6d (2,0) theories?

In [Drukker, Giombi, Tseytlin, Zhou (2020)] they studied

(—%xﬂx +n(}n)g()(.)t:(t.d)| =0, (—%iﬂ\- +(’k()5)g()(.)t:(.t.d)‘ =0.

a=1/x a=1/x

for operators on the defect.

We have a bootstrap problem

(4.18)



Defects in (2, 0) theories

What about (O;0,)) in 6d (2,0) theories?

In [Drukker, Giombi, Tseytlin, Zhou (2020)] they studied

(—%xﬂx +m'?n)g(‘(.)t:(t.d)| =0, (—%\70\- +(’k()ﬁ)g(‘(.)t:(.t.d)‘ =0.

a=1/x a=1/x

for operators on the defect.

We have a bootstrap problem

o Obtain the Ward identities for ({ 0,0, ))

(4.18)



Defects in (2, 0) theories

What about (O;0,)) in 6d (2,0) theories?

In [Drukker, Giombi, Tseytlin, Zhou (2020)] they studied

(—%xﬂx +(1(},\)Q(‘(.f:(t.d)| =0, (—%\70\- +(’k(){-\)g(‘(.f:(t.d)‘ =0.

a=1/x a=1/x

for operators on the defect.

We have a bootstrap problem

o Obtain the Ward identities for ({ 0,0, ))

o Calculate superconformal blocks

(4.18)



Defects in (2, 0) theories

What about (O;0,)) in 6d (2,0) theories?

In [Drukker, Giombi, Tseytlin, Zhou (2020)] they studied

(—%xﬂx +m'?,\)g(‘(.)?:(t.ri)| =0, (—%\70\- +(10r-\)g'(~(.f:a.a)‘ =0.

a=1/x a=1/x

for operators on the defect.

We have a bootstrap problem

o Obtain the Ward identities for ({ 0,0, ))
o Calculate superconformal blocks

@ Obtain Disc from a single block

(4.18)
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Defects in condensed matter
Consider the Wilson-Fisher fixed point

_ Ll A

D = exp ( / dqub)

Relevant if a localized magnetic field is present [Cuomo, Komargodski,
Mezei (2021)]

Order defects:

Disorder defects:

(;5([’,9—'—271‘,_)7) = —¢(r,0,)7)
This is a monodromy defect, see [Gaiotto, Mazac, Paulos (2013)]

Can be compared with Montecarlo and experiment
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Bulk constraints on the defect

Consider a free bulk
Op(x) =0

Using the OPE

@ZZb(p@@ —

2.

b A~

b Do

D(bgp) =0

5(360) =0
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Bulk constraints on the defect

Consider a free bulk
Op(x) =0 D{dgp) =0
Using the OPE
=Y b0 = > biris ($O) =0
Not anything goes!

Constraints on defects [Lauria, PL, van Rees, Zhao (2020)]
Constraints on boundaries [Behan, DiPietro, Lauria, van Rees (202x)]

In SUSY theories we have

D*®d = ¢?



Thank you!



