Handling Handles: Non-Planar AdS/CFT Integrability

TILL BARGHEER

Leibniz Universität Hannover

1711.05326: TB, J. Caetano, T. Fleury, S. Komatsu, P. Vieira
18xx.xxxxx: TB, J. Caetano, T. Fleury, S. Komatsu, P. Vieira
18xx.xxxxx: TB, F. Coronado, P. Vieira
+ further work in progress

DESY STRING THEORY SEMINAR
HAMBURG, JUNE 2018
String amplitudes in AdS$_5$ can be cut into basic patches (rectangles, pentagons, or hexagons), which can be bootstrapped using integrability at any value of the 't Hooft coupling.

- Amplitudes are given as infinite sums and integrals over intermediate states from gluing together these integrable patches.
- This holds at the planar level as well as for non-planar processes suppressed by $1/N_c$.
\(\mathcal{N} = 4 \) SYM & The Planar Limit

\(\mathcal{N} = 4 \) super Yang–Mills: Gauge field \(A_\mu \), scalars \(\Phi_I \), fermions \(\psi_{\alpha A} \).

Gauge group: \(\text{U}(N_c) / \text{SU}(N_c) \).

Adjoint representation: All fields are \(N_c \times N_c \) matrices.

Double-line notation:

Propagators:
\[
\langle \Phi^i_I \Phi^k_J \rangle \sim g_{\text{YM}}^2 \delta^i_I \delta^k_J = \begin{array}{c}
 \begin{array}{c}
 i
 \end{array}
 \begin{array}{c}
 \rightarrow
 \end{array}
 \begin{array}{c}
 l
 \end{array}
 \begin{array}{c}
 j
 \end{array}
 \begin{array}{c}
 \rightarrow
 \end{array}
 \begin{array}{c}
 k
 \end{array}
\end{array}
\]

Vertices:
\[
\text{Tr}(\Phi \Phi \Phi \Phi) \sim \frac{1}{g_{\text{YM}}^2}
\]

- Diagrams consist of color index loops \(\sim \) oriented disks \(\sim \delta^i_i = N_c \)
- Disks are glued along propagators \(\rightarrow \) oriented compact surfaces

Local operators:

\[
\mathcal{O}_i = \text{Tr}(\Phi \ldots) \sim \begin{array}{c}
 \begin{array}{c}
 \bullet
 \end{array}
 \begin{array}{c}
 \bullet
 \end{array}
 \begin{array}{c}
 \bullet
 \end{array}
 \begin{array}{c}
 \bullet
 \end{array}
 \begin{array}{c}
 \bullet
 \end{array}
\end{array}
\]

- One fewer color loop \(\rightarrow \) factor \(1/N_c \)
- Surface: Hole \(\sim \) boundary component
Planar Limit & Genus Expansion

Every diagram is associated to an oriented compact surface.

Genus Expansion:
Absorb one factor of N_c in the 't Hooft coupling $\lambda = g_{\text{YM}}^2 N_c$
Use Euler formula $V - E + F = 2 - 2g$

\Rightarrow **Correlators** of single trace operators $\mathcal{O}_i = \text{Tr}(\Phi_1 \Phi_2 \ldots)$:
't Hooft genus expansion

$$\langle \mathcal{O}_1 \ldots \mathcal{O}_n \rangle = \frac{1}{N_c^{n-2}} \sum_{g=0}^{\infty} \frac{1}{N_c^{2g}} G_g(\lambda)$$

$$\sim \frac{1}{N_c^2} \begin{array}{c} \times \times \times \\ \times \times \times \end{array} + \frac{1}{N_c^4} \begin{array}{c} \times \times \times \\ \times \times \times \\ \times \times \times \end{array} + \frac{1}{N_c^6} \begin{array}{c} \times \times \times \\ \times \times \times \\ \times \times \times \\ \times \times \times \end{array} + \ldots$$
Planar Spectrum: Features of Integrability

Simplest observables: Planar two-point functions \sim scaling dimensions

$O_1 \leftrightarrow O_2 \quad O_i = \text{Tr}(\Phi \ldots)$

single-trace

Perturbatively: Degeneracies in the spectrum \rightarrow Higher charges

Spin chain picture: Organize operators around vacuum operators

$$\text{Tr} \ Z^L, \quad Z = \alpha^I \Phi_I, \quad \alpha^I \alpha_I = 0 \quad \text{(half-BPS, protected)}.$$

Other operators: Insert impurities $\{\Phi_I, \psi_{\alpha A}, D_\mu\}$ into $\text{Tr} \ Z^L$.

Dilatation operator acts locally in color space (neighboring fields)
\rightarrow Impurities are magnons, with rapidity (momentum) u and $\mathfrak{su}(2|2)^2 \subset \mathfrak{psu}(2, 2|4)$ flavor index.
Planar Spectrum: Features of Integrability

Perturbatively: Degeneracies in the spectrum \rightarrow Higher charges

Spin chain picture: Organize operators around vacuum operators

$$\text{Tr } Z^L, \quad Z = \alpha^I \Phi_I, \quad \alpha^I \alpha_I = 0$$ \hspace{1cm} (half-BPS, protected).

Other operators: Insert impurities $\{\Phi_I, \psi_{\alpha A}, D_{\mu}\}$ into $\text{Tr } Z^L$.

Dilatation operator acts *locally* in color space (neighboring fields)
\rightarrow Impurities are *magnons*, with *rapidity* (momentum) u
and $\mathfrak{su}(2|2)^2 \subset \mathfrak{psu}(2,2|4)$ *flavor index*.

Dynamics of magnons: Integrability:
\rightarrow No particle production
\rightarrow Individual momenta preserved
\rightarrow Factorized scattering

Two-body **S-matrix** completely fixed *to all loops* [Beisert 2005, Janik 2006, Beisert, Hernandez Lopez 2006]

Planar spectrum (asymptotic) solved exactly by *Bethe ansatz*.
Non-Planar Corrections: (Past) Status

Degeneracies are lifted at subleading orders in $1/N_c$.

Interactions are long-ranged, non-local from the start:

→ Hilbert space much bigger
→ Spin chain picture?
→ Fate of local S-matrix? Definition?
→ No integrable spin chain!

No dual superconformal symmetry

Classical integrability of σ model (strong coupling) not clear

⇒ “Integrability is lost”.
Three-Point Functions: Hexagons

Differences: Topology: Pair of pants instead of cylinder
Non-vanishing for three generic operators (two-point: diagonal)
⇒ Previous techniques not directly applicable

Observation:

The green parts are similar to two-point functions:
Two segments of physical operators joined by parallel propagators (“bridges”, \(\ell_{ij} = (L_i + L_j - L_k)/2 \)).

The red part is new: “Worldsheet splitting”,
“three-point vertex” (open strings)

Take this serious → cut worldsheet along “bridges”:

[Basso, Komatsu Vieira ’15]
Hexagons & Gluing

Glue hexagons along three mirror channels:

- Sum over complete state basis (magnons) in the mirror theory
- Mirror magnons: Boltzmann weight $\exp(-\tilde{E}_{ij} \ell_{ij})$, $\tilde{E}_{ij} = \mathcal{O}(g^2)$ → mirror excitations are strongly suppressed.

Hexagonal worldsheet patches (form factors):

- Function of rapidities u and $\mathfrak{su}(2|2)$ labels (A, \dot{A}) of all magnons.
- Conjectured exact expression, based on diagonal $\mathfrak{su}(2|2)$ symmetry, form factor axioms, and integrability assumptions.

Hexagon proposal supported by very non-trivial matches.
The Hexagon Form Factor

All excitations on the same physical edge (canonical frame):

\[\mathcal{H}(\chi^{A_1} \chi^{\dot{A}_1} \chi^{A_2} \chi^{\dot{A}_2} \ldots \chi^{A_n} \chi^{\dot{A}_n}) = (-1)^{\delta} \left(\prod_{i<j} h_{ij} \right) \langle \chi^{A_1} \chi^{A_2} \ldots \chi^{A_n} | S | \chi^{\dot{A}_n} \ldots \chi^{\dot{A}_2} \chi^{\dot{A}_1} \rangle \]

- \(\chi^{A} = \phi^a | \psi^{\alpha} \): Left \(su(2|2) \) fundamental magnon
- \(\chi^{\dot{A}} = \phi^{\dot{a}} | \psi^{\dot{\alpha}} \): Right \(su(2|2) \) fundamental magnon
- \(\delta \): Fermion number operator
- \(S \): Beisert S-matrix

\[h_{ij} = \frac{x_i^- - x_j^- x_j^+ - 1/x_i^-}{x_i^- - x_j^+ x_j^+ - 1/x_j^+} \frac{1}{\sigma_{ij}} \]

\(x^\pm(u) = x(u \pm \frac{i}{2}) \), \(\frac{u}{g} = x + \frac{1}{x} \)

Example:

Two magnons (○■, ○□)
Mirror Map

Double Wick rotation: \((\sigma, \tau) \rightarrow (i\tilde{\tau}, i\tilde{\sigma})\) — exchanges space and time

![Diagram](image)

Magnon states: Energy and momentum interchange:

\[
p\sigma \rightarrow p^\gamma i\tilde{\tau} \equiv \tilde{E}\tilde{\tau}, \quad E\tau \rightarrow E^\gamma i\tilde{\sigma} \equiv \tilde{\rho}\tilde{\sigma} \quad \Rightarrow \quad (\tilde{E}, \tilde{\rho}) = (ip^\gamma, iE^\gamma).
\]

Continuations: \(u \rightarrow u^\gamma\). All quantities given in terms of \(x^\pm(u)\).

![Diagram](image)
Move on to planar four-point functions:
One way to cut (now that three-point is understood): **OPE cut**

Problem: Sum over physical states!
- No loop suppression, all states contrib.
- Double-trace operators.

Instead: Cut along propagator bridges

Benefits:
- Mirror states highly suppressed in g.
- No double traces.
Hexagonalization: Formula

\[\langle O_1 O_2 O_3 \rangle = \left[\prod_{c \in \{1,2,3\}} d_c^\ell \sum_{\psi_c} \mu(\psi_c) \right] H_1(\psi_1, \psi_2, \psi_3) H_2(\psi_1, \psi_2, \psi_3) \]

\[\langle O_1 O_2 O_3 O_4 \rangle = \sum_{\text{planar prop. graphs}} \left[\prod_{c \in \{1,\ldots,6\}} d_c^\ell \sum_{\psi_c} \mu(\psi_c) \right] H_1 H_2 H_3 H_4 \]

New Features:

- Bridge lengths vary, may go to zero \(\Rightarrow \) Mirror corrections at one loop
- Hexagons are in different “frames” \(\Rightarrow \) Weight factors
Hexagon depends on positions x_i and polarizations α_i of the three half-BPS “vacuum” operators $O_i = \text{Tr}[(\alpha_i \cdot \Phi(x_i))^k]$.

Any three x_i and α_i preserve a diagonal $su(2|2)$ that defines the state basis and S-matrix of excitations on the hexagon.

Three-point function: Both hexagons connect to the same three operators, so their frames ($su(2|2)$ and state basis) are identical.

Higher-point function: Two neighboring hexagons always share two operators, but the third/fourth operator may not be identical. \Rightarrow The two hexagon frames are misaligned.

In order to consistently sum over mirror states, need to align the two frames by a $PSU(2,2|4)$ transformation that maps O_3 onto O_2.
Hexagonalization: Weight Factors

By conformal and R-symmetry transformation, bring O_1, O_2, and O_4 to canonical configuration:

\[
\begin{align*}
&\text{Transformation that maps } O_3 \text{ to } O_2: \quad g = e^{-D \log |z|} e^{i\phi L} e^{J \log |\alpha|} e^{i\theta R}, \\
&\text{where } e^{2i\phi} = z/\bar{z}, \ e^{2i\theta} = \alpha/\bar{\alpha}, \text{ and } (\alpha, \bar{\alpha}) \text{ is the R-coordinate of } O_3.
\end{align*}
\]

Hexagon $\mathcal{H}_1 = \hat{\mathcal{H}}$ is canonical, and $\mathcal{H}_2 = g^{-1} \hat{\mathcal{H}} g$.

Sum over states in mirror channel:

\[
\sum_{\psi} \mu(\psi) \langle \mathcal{H}_2 | \psi \rangle \langle \psi | \mathcal{H}_1 \rangle = \sum_{\psi} \mu(\psi) \langle g^{-1} \hat{\mathcal{H}} | \psi \rangle \langle \psi | g | \psi \rangle \langle \psi | \hat{\mathcal{H}} \rangle
\]

Weight factor:

\[
\langle \psi | g | \psi \rangle = e^{-2i\tilde{\rho}_\psi \log |z|} e^{J \psi \varphi} e^{i\phi L \psi} e^{i\theta R \psi}, \quad i\tilde{\rho} = (D - J)/2.
\]

→ Contains all non-trivial dependence on cross ratios z, \bar{z} and $\alpha, \bar{\alpha}$.

Non-Planar Processes: Idea

Hexagonalization: Works for planar (4,5)-point functions

Extend to non-planar processes?
- Fix worldsheet topology
- Dissect into planar hexagons
- Glue hexagons (mirror states)

Simple Proposal:
\[
\langle O_1 \ldots O_n \rangle_{\text{full}} = \frac{1}{N_c^{n-2}} \sum_g \frac{1}{N_c^{2g}} \sum_{\text{graphs}} \prod_c d_c^\ell_c \sum_{\text{mirror states}} H_1 H_2 H_3 \ldots H_F
\]
The Data: Kinematics

Half-BPS operators:

\[Q^k_i \equiv \text{Tr}\left[(\alpha_i \cdot \Phi(x_i))^k \right], \quad \Phi = (\phi_1, \ldots, \phi_6), \quad \alpha^2_i = 0. \]

For equal weights \((k, k, k, k)\): Expand in \(X, Y, Z\):

\[
X \equiv \frac{\alpha_1 \cdot \alpha_2 \alpha_3 \cdot \alpha_4}{x_{12}^2 x_{34}^2}, \quad Y \equiv \begin{array}{c} 1 \hline 2 \end{array}, \quad Z \equiv \begin{array}{c} 1 \hline 2 \\ \hline 3 \hline 4 \end{array}.
\]

Focus on \(Z = 0\) (polarizations):

\[G_k \equiv \langle Q^k_1 Q^k_2 Q^k_3 Q^k_4 \rangle^{\text{loops}} = R \sum_{m=0}^{k-2} F_{k,m} X^m Y^{k-2-m} \]

Supersymmetry factor: \(R = z\bar{z}X^2 - (z + \bar{z})XY + Y^2\)

Main data: Coefficients \(F_{k,m} = F_{k,m}(g; z, \bar{z})\)

Cross ratios: \(z\bar{z} = s = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \quad (1 - z)(1 - \bar{z}) = t = \frac{x_{23}^2 x_{14}^2}{x_{13}^2 x_{24}^2}. \)
The Data: Quantum Coefficients

Data Functions: Correlator coefficients:

\[F_{k,m} = \sum_{\ell=1}^{\infty} g^{2\ell} F^{(\ell)}_{k,m}(z, \bar{z}) , \quad \text{'t Hooft coupling: } g^2 = \frac{g_{YM}^2 N_c}{16\pi^2} . \]

One and two loops: Two ingredients: Box integrals

\[F^{(1)}(z, \bar{z}) = \frac{x_{13}^2 x_{24}^2}{\pi^2} \int \frac{d^4 x_5}{x_{15}^2 x_{25}^2 x_{35}^2 x_{45}^2} = \]

\[F^{(2)}(z, \bar{z}) = \frac{x_{13}^2 x_{24}^2}{(\pi^2)^2} \int \frac{d^4 x_5 d^4 x_6}{x_{15}^2 x_{25}^2 x_{35}^2 x_{45}^2 x_{56}^2 x_{16}^2 x_{36}^2 x_{46}^2} = \]

& Color factors: \[C_{k,m}^i \in \{ \]

\[\mathcal{1} = \text{Tr}(T^{a_1} \ldots T^{a_k}) , \quad \bullet = f_{ab}^c \]
To obtain non-planar corrections: Need to expand color factors.

\[C_{k,m}^i = N_c^{2k} k^4 \left(\cdot C_{k,m}^i + \circ C_{k,m}^i N_c^{-2} + \mathcal{O}(N_c^{-4}) \right), \quad i \in \{a, b, c, d\}, \]

Compute by brute force:

<table>
<thead>
<tr>
<th>(k)</th>
<th>(m)</th>
<th>(\frac{1}{2} C_{k,m}^{1,U})</th>
<th>(\frac{1}{2} C_{k,m}^{1,SU})</th>
<th>(C_{k,m}^{a,U})</th>
<th>(C_{k,m}^{b,U})</th>
<th>(\frac{1}{2} C_{k,m}^{c,U})</th>
<th>(C_{k,m}^{d,U})</th>
<th>(\frac{1}{2} C_{k,m}^{a,SU})</th>
<th>(C_{k,m}^{b,SU})</th>
<th>(\frac{1}{2} C_{k,m}^{c,SU})</th>
<th>(C_{k,m}^{d,SU})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>-5</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-9</td>
<td>-18</td>
<td>-9</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-5</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-5</td>
<td>13</td>
<td>-7</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>-25</td>
<td>-26</td>
<td>-13</td>
<td>-13</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-12</td>
<td>24</td>
<td>4</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>-23</td>
<td>-21</td>
<td>-23</td>
<td>-22</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-5</td>
<td>13</td>
<td>0</td>
<td>21</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>-13</td>
<td>-13</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-23</td>
<td>9</td>
<td>-1</td>
<td>46</td>
<td>23</td>
<td>23</td>
<td>-33</td>
<td>-18</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-51</td>
<td>13</td>
<td>31</td>
<td>47</td>
<td>55</td>
<td>59</td>
<td>-33</td>
<td>-17</td>
<td>-9</td>
<td>-5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-51</td>
<td>13</td>
<td>39</td>
<td>76</td>
<td>55</td>
<td>59</td>
<td>-9</td>
<td>12</td>
<td>-9</td>
<td>-5</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-23</td>
<td>9</td>
<td>0</td>
<td>63</td>
<td>23</td>
<td>23</td>
<td>0</td>
<td>31</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>-61</td>
<td>-11</td>
<td>20</td>
<td>122</td>
<td>61</td>
<td>61</td>
<td>-30</td>
<td>22</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-126</td>
<td>-26</td>
<td>92</td>
<td>107</td>
<td>135</td>
<td>144</td>
<td>-8</td>
<td>7</td>
<td>35</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>-159</td>
<td>-59</td>
<td>139</td>
<td>187</td>
<td>175</td>
<td>191</td>
<td>39</td>
<td>87</td>
<td>75</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>-126</td>
<td>-26</td>
<td>110</td>
<td>201</td>
<td>135</td>
<td>144</td>
<td>35</td>
<td>101</td>
<td>35</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>-61</td>
<td>-11</td>
<td>0</td>
<td>139</td>
<td>61</td>
<td>61</td>
<td>0</td>
<td>89</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

also: \(k = 7, 8, 9 \). All color factors are quartic polynomials in \(m \) and \(k \).
\[F_{k,m}(z, \bar{z}) = \]
\[-\frac{2k^2}{N_c^2} \left\{ 1 + \frac{1}{N_c^2} \left[\frac{17}{6} r^4 - \frac{7}{4} r^2 + \frac{11}{32} \right] k^4 + \frac{9}{2} r^2 - \frac{13}{8} \right] k^3 + \frac{1}{6} r^2 + \frac{15}{8} k^2 - \frac{1}{2} k \right\} F^{(1)}, \]
\[F_{k,m}^{(2)}(z, \bar{z}) = \]
\[\frac{4k^2}{N_c^2} \left\{ 1 + \frac{1}{N_c^2} \left[\frac{17}{6} r^4 - \frac{7}{4} r^2 + \frac{11}{32} \right] k^4 + \frac{9}{2} r^2 - \frac{13}{8} \right] k^3 + \frac{1}{6} r^2 + \frac{15}{8} k^2 - \frac{1}{2} k \right\} F^{(2)} \]
\[+ \left\{ t + \frac{1}{N_c^2} \left[\left(\frac{7}{2} r^2 - \frac{1}{8} \right] k^2 + \frac{5}{8} k - \frac{1}{4} \right] s_+ - r \left(\frac{17}{6} r^2 - \frac{7}{8} \right] k^3 + 3k^2 - \frac{13}{12} k \right) s_- \]
\[+ \left(\left[\frac{29}{24} r^4 - \frac{11}{16} r^2 + \frac{15}{128} \right] k^4 + \frac{17}{8} r^2 - \frac{21}{32} \right] k^3 - \left[\frac{23}{24} r^2 + \frac{39}{32} \right] k^2 - \frac{9}{8} k + \frac{1}{2} \right] t \right\} \left(F^{(1)} \right)^2 \]
\[- \frac{1}{N_c^2} \left[r \left\{ \frac{1}{8} \right] k^3 + \frac{3}{2} k^2 + \frac{10}{3} k \right\} F^{(2)}_{C,-} \]
\[+ \left\{ \left[\frac{5}{4} r^2 - \frac{19}{48} \right] k^3 + \left[\frac{3}{2} r^2 + \frac{7}{8} \right] k^2 + \frac{1}{3} k \right\} F^{(2)}_{C,+} \]
\[+ \frac{1}{4} \left\{ 1 + \frac{(k-1)(k^3 + 3k^2 - 46k + 36)}{12N_c^2} \right\} \left(s_{m,0} + \delta_{m,k-2} \right) \left(\frac{F^{(1)}}{F^{(1)}} \right)^2 \]
\[+ \left\{ \frac{1}{2} \left(\frac{(k-2)}{12N_c^2} \right) \right\} \left(\delta_{m,0} F^{(2)}_{z=1} + \delta_{m,k-2} F^{(2)}_{1-z} \right), \]

where \(r = (m+1)/k - 1/2 \). \(F_{k,m} \): Coefficient of \(X^m Y^{k-2-m} \).
Sum over Graphs: Cutting the Torus

Sum over propagator graphs: Split into
- Sum over “skeleton graphs” with non-parallel edges (≡ “bridges”)
- Sum over distributions of parallel propagators on bridges

Torus with four punctures: How many hexagons/bridges?

Euler: \(F + V - E = 2 - 2g \).

Our case: \(g = 1, \ V = 4, \ E = \frac{3}{2}F \quad \Rightarrow \quad F = 8, \ E = 12. \)

→ Construct all genus-one graphs with 4 punctures and up to 12 edges.

Propagators may populate < 12 bridges and still form a genus-one graph. Such graphs will contain higher polygons besides hexagons.

→ Subdivide into hexagons by inserting zero-length bridges (ZLBs)
Maximal Graphs

Focus on Maximal Graphs: Graphs with a maximal number of edges.
- Adding any further edge would increase the genus
- Maximal graphs ⇔ triangulations of the torus.

Construction:
- Manually: Add one operator at a time, in all possible ways.
- Computer algorithm: Start with the empty graph, add one bridge in all possible ways, iterate. → Systematic.

Complete list of maximal graphs:
Submaximal Graphs

Submaximal graphs: Graphs with a non-maximal number of edges.

- Obtained from maximal graphs by deleting bridges.
- Number of genus-one graphs by number of bridges:

<table>
<thead>
<tr>
<th>#bridges:</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>≤4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#graphs:</td>
<td>7</td>
<td>28</td>
<td>117</td>
<td>254</td>
<td>323</td>
<td>222</td>
<td>79</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Hexagonalization:
Submaximal graphs contain higher polygons (octagons, decagons, ...).

- Must be subdivided into hexagons by zero-length bridges.
- Subdivision is not physical: Can pick any (flip invariance):
Focus on leading order in large $k \to$ several simplifications:

Data:

\[
\mathcal{F}_{k,m}^{(1),U}(z, \bar{z}) = -\frac{2k^2}{N_c^2} \left\{ 1 + \frac{1}{N_c^2} \left[\left[\frac{17}{6} r^4 - \frac{7}{4} r^2 + \frac{11}{32} \right] k^4 + \mathcal{O}(k^3) \right] \right\} F^{(1)},
\]

\[
\mathcal{F}_{k,m}^{(2),U}(z, \bar{z}) = \frac{4k^2}{N_c^2} \left\{ 1 + \frac{1}{N_c^2} \left[\left[\frac{17}{6} r^4 - \frac{7}{4} r^2 + \frac{11}{32} \right] k^4 + \mathcal{O}(k^3) \right] \right\} F^{(2)}
\] + \left\{ 1 + \frac{1}{N_c^2} \left[\left[\frac{29}{6} r^4 - \frac{11}{4} r^2 + \frac{15}{32} \right] k^4 + \mathcal{O}(k^3) \right] \right\} \frac{t}{4} \left(F^{(1)} \right)^2.
\]

Combinatorics of distributing propagators on bridges:
Sum over distributions of m propagators on $j + 1$ bridges $\to m^j / j!$

- Only graphs with maximum bridge number contribute.
- All bridges carry a large number of propagators.
First Test: Large k: Graphs and Labelings

Graphs:

<table>
<thead>
<tr>
<th>Graph</th>
<th>Labelings</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>(1, 2, 4, 3), (2, 1, 3, 4), (3, 4, 2, 1), (4, 3, 1, 2)</td>
</tr>
<tr>
<td>B</td>
<td>(1, 3, 4, 2), (3, 1, 2, 4), (2, 4, 3, 1), (4, 2, 1, 3)</td>
</tr>
<tr>
<td>G</td>
<td>(1, 2, 4, 3), (3, 4, 2, 1)</td>
</tr>
<tr>
<td>G</td>
<td>(1, 3, 4, 2), (2, 4, 3, 1)</td>
</tr>
<tr>
<td>L</td>
<td>(1, 2, 4, 3), (3, 4, 2, 1), (2, 1, 3, 4), (4, 3, 1, 2)</td>
</tr>
<tr>
<td>M</td>
<td>(1, 2, 4, 3), (2, 1, 3, 4), (1, 3, 4, 2), (3, 1, 2, 4)</td>
</tr>
<tr>
<td>P</td>
<td>(1, 2, 4, 3)</td>
</tr>
<tr>
<td>Q</td>
<td>(1, 2, 4, 3)</td>
</tr>
</tbody>
</table>

Sum over labelings:

<table>
<thead>
<tr>
<th>Case</th>
<th>Inequivalent Labelings (clockwise)</th>
<th>Combinatorial Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>$(1, 2, 4, 3), (2, 1, 3, 4), (3, 4, 2, 1), (4, 3, 1, 2)$</td>
<td>$m^3(k - m)/6$</td>
</tr>
<tr>
<td>B</td>
<td>$(1, 3, 4, 2), (3, 1, 2, 4), (2, 4, 3, 1), (4, 2, 1, 3)$</td>
<td>$m(k - m)^3/6$</td>
</tr>
<tr>
<td>G</td>
<td>$(1, 2, 4, 3), (3, 4, 2, 1)$</td>
<td>$m^4/24$</td>
</tr>
<tr>
<td>G</td>
<td>$(1, 3, 4, 2), (2, 4, 3, 1)$</td>
<td>$(k - m)^4/24$</td>
</tr>
<tr>
<td>L</td>
<td>$(1, 2, 4, 3), (3, 4, 2, 1), (2, 1, 3, 4), (4, 3, 1, 2)$</td>
<td>$m^2/2 \cdot (k - m)^2/2$</td>
</tr>
<tr>
<td>M</td>
<td>$(1, 2, 4, 3), (2, 1, 3, 4), (1, 3, 4, 2), (3, 1, 2, 4)$</td>
<td>$m^2(k - m)^2/2$</td>
</tr>
<tr>
<td>P</td>
<td>$(1, 2, 4, 3)$</td>
<td>$m^2(k - m)^2/2$</td>
</tr>
<tr>
<td>Q</td>
<td>$(1, 2, 4, 3)$</td>
<td>$m^2(k - m)^2$</td>
</tr>
</tbody>
</table>
First Test: Large k: Octagons

All graphs consist of only **octagons**!
Split each octagon into two **hexagons** with a zero-length bridge.

Example:
First Test: Large k: Mirror Particles

Loop Counting:
Expand mirror propagation $\mu(u) e^{-\ell \tilde{E}(u)}$ and hexagons \mathcal{H} in coupling g.

\rightarrow n particles on bridge of size ℓ: $\mathcal{O}(g^2(n\ell+n^2))$

All graphs consist of octagons framed by parametrically large bridges.

\rightarrow Only excitations on zero-length bridges inside octagons survive.

Excited Octagons:

n particles on a zero-length bridge $\rightarrow \mathcal{O}(g^{2n^2})$

\rightarrow Octagons with $1/2/3/4$ particles start at $1/4/9/16$ loops.

Octagon 1–2–4–3 with 1 particle:

$$
\mathcal{M}(z, \alpha) = \left[z + \bar{z} - (\alpha + \bar{\alpha}) \frac{\alpha \bar{\alpha} + z \bar{z}}{2\alpha \bar{\alpha}} \right] \\
\cdot \left(g^2 F^{(1)}(z) - 2g^4 F^{(2)}(z) + 3g^6 F^{(3)}(z) + \ldots \right)
$$

For $Z = 0$: R-charge cross ratios

$$
\alpha = z\bar{z} \frac{X}{Y} \text{ and } \bar{\alpha} = 1.
$$
First Test: Large k: Match and Prediction

We are Done:
Sum over graph topologies and labelings (with bridge sum factors),
Sum over one-particle excitations of all octagons.
⇒ Result matches data and produces prediction for higher loops!

Summing all octagons gives:

\[
\mathcal{F}_{k,m}^U(z, \bar{z})\bigg|_{\text{torus}} = -\frac{2k^6}{N_c^4} \left\{ \begin{array}{l}
g^2 \left[\frac{17}{6} r^4 - \frac{7}{4} r^2 + \frac{11}{32} \right] F^{(1)} \checkmark \text{ match} \\
- 2g^4 \left[\left[\frac{17}{6} r^4 - \frac{7}{4} r^2 + \frac{11}{32} \right] F^{(2)} + \left[\frac{29}{6} r^4 - \frac{11}{4} r^2 + \frac{15}{32} \right] \frac{t}{4} (F^{(1)})^2 \right] \checkmark \text{ match} \\
+ g^6 \left[\ldots \right] F^{(3)} + \left[\ldots \right] (F^{(2)}) (F^{(1)}) + \left[\ldots \right] (F^{(1)})^3 \right. \text{ prediction!} \\
\left. + \mathcal{O}(g^8) + \mathcal{O}(1/k) \right\} .
\]
More Tests: \(k = 2, 3, 4, 5, \ldots \)

Small and finite \(k \):
Few propagators \(\rightarrow \) Fewer bridges \(\rightarrow \) Graphs with fewer edges
\(\Rightarrow \) Graphs composed of not only octagons, but bigger polygons

Example: Graphs for \(k = 3 \):

Hexagonalization:
Each \(2n \)-gon: Split into \(n - 2 \) hexagons by \(n - 3 \) zero-length bridges.

Loop Expansion: Much more complicated!
All kinds of excitation patterns already at low loop orders
- Single particles on several adjacent zero-length (or \(\ell = 1 \)) bridges
- Strings of excitations wrapping around operators
Finite k: One Loop: Sum over ZLB-Strings

Restrict to one loop: Only single particles on one or more adjacent zero-length bridges contribute.
⇒ Excitations confined to single polygons bounded by propagators.

For each polygon: Sum over all possible one-loop strings:

One-strings: understood ✓
Longer strings: need to compute!
Two-String: Result

One-String: Can be written as

\[M^{(1)}(z, \alpha) = m(z) + m(z^{-1}), \]

with building block

\[m(z) = m(z, \alpha) = g^2 \frac{(z + \bar{z}) - (\alpha + \bar{\alpha})}{2} F^{(1)}(z, \bar{z}) \]

Two-string: Despite complicated computation, simplifies to

\[M^{(2)}(z_1, z_2, \alpha_1, \alpha_2) = m \left(\frac{z_1 - 1}{z_1 z_2} \right) + m \left(\frac{1 - z_1 + z_1 z_2}{z_2} \right) + m(z_1(1 - z_2)) - m(z_1) - m(z_2^{-1}), \]

with the same building block \(m(z) \)!
Finite k: Larger Strings

Larger strings: Computation will be even more complicated!

But: Can in fact bootstrap all of them by using flip invariance!

Apply recursively:
- 3-string \sim
 - 1-strings & 2-strings
- ...iterate ...
- n-string \sim
 - 1-strings & 2-strings

⇒ Can write all polygons in terms of only 1-strings & 2-strings.

⇒ All n-strings can be written as linear combinations of one-string building blocks $m(z)$.
Finite k: Results

Done! Sum over all graphs, expand all polygons to their one-loop values.

<table>
<thead>
<tr>
<th>k</th>
<th>$g = 0$</th>
<th>$g = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>441</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>2760</td>
</tr>
</tbody>
</table>

Numbers of labeled graphs with assigned bridge sizes:

Result: For $k = 2, 3, 4, 5, \ldots$:
Matches the $U(N_c)$ data $F_{k,m}$, up to a copy of the planar term!

$$F_{k,m}: \text{Result} = \text{(torus data)} + \frac{1}{N_c^2} \text{(planar data)}$$

What does this mean?? ⇒ Puzzle.

Difference between $U(N_c)$ and $SU(N_c)$? → No
Operator normalizations? → No
Need to include planar graphs on the torus? If yes, how?
Finite k: Stratification

We are computing a worldsheet process.
The string amplitude involves integration over moduli space $\mathcal{M}_{g,n}$.

Sum over graphs: Reminiscent of moduli space integration.
This can be made more precise:
Moduli space \Leftrightarrow space of *metric ribbon graphs* $\text{RGB}^\text{met}_{g,n}$.

Metric Ribbon Graphs with labeled Boundary:
Regular graphs, but edges at each vertex have definite ordering.
Double-line notation defines n oriented boundary components (faces).
Faces define compact oriented surface of definite genus g.
Assign length $\ell_j \in \mathbb{R}_+$ to each edge.

Bijection: Via Strebel theory:

$$
\mathcal{M}_{g,n} \times \mathbb{R}^n_+ \leftrightarrow \text{RGB}^\text{met}_{g,n} = \bigsqcup_{\Gamma \in \text{RG}_{g,n}} \frac{\mathbb{R}_+^{e(\Gamma)}}{\text{Aut}_\partial(\Gamma)}
$$
Finite k: Stratification

Discretization: Need to be careful at the boundaries of the space. Do not overcount/undercount. Boundary of torus moduli space: All bridges traversing a handle reduce to zero size \rightarrow handle gets pinched.

This problem has been considered before in the context of matrix models.

Resolution: In the sum over graphs, include planar graphs drawn on the torus. This leads to some overcounting. Compensate by subtracting planar graphs with two extra fictitious zero-size operators. *Stratification.*

\[
\Rightarrow + \quad \begin{array}{c}
\times \\
\times \\
\times \\
\times
\end{array}
-
\left(
\begin{array}{c}
\times \\
\times \\
\times \\
\times
\end{array}
\right)
=
\begin{array}{c}
\times \\
\times \\
\times \\
\times
\end{array}
\]

Including these contributions indeed accounts for the $(\text{planar})/N_c^2$ term!

⇒ Now have a complete match for $k = 2, 3, 4, 5$.

Deligne Mumford '69
Chekhov 1995
Summary & Outlook

Summary: Method to compute higher-genus terms in $1/N_c$ expansion.

- **Sum** over free graphs, **decompose** into planar hexagons, **integrate** over mirror states.
- Large k: Only octagons, match at two loops, three-loop prediction
- Match for various finite $k \rightarrow$ stratification

Outlook: There are many things to do that we currently explore:

- Study more examples: Higher loops / genus, more general operators
- Understand details/implications of stratification beyond one loop
- Evaluation of mirror particles at higher loops
- Connect to recent supergravity loop computations at strong coupling?
 - Promising: Large k at higher genus: Only octagons.