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Abstract

The Minimal Supersymmetric Standard Model (MSSM) is one of the most common models
of physics beyond the Standard Model. One of its distinct features is the possibility to predict
the mass of the lightest C’P-even Higgs boson in terms of only a few relevant model parameters.
These calculations fall into two categories: calculations at a fixed-order in perturbation theory
and effective field theories (EFT) calculations. Fixed-order calculations capture all effects at a
given order in perturbation theory. In case of a large hierarchy between the electroweak scale
and the scale of the non-standard particles they, however, become unreliable because large
logarithms spoil the perturbative expansion. These logarithms can be resummed with the help
of EFT methods. EFTs are therefore reliable for largely separated scales. If the scales are,
however, close to each other, terms which would be suppressed in case of a large separation are
missed. These are included in fixed-order calculations.

To profit from the advantages of both approaches, we combine both methods building upon
the existing fixed-order calculation implemented into the publicly available program FeynHiggs.
In this process, aspects like double-counting and the involved renormalization schemes have to
be taken into account. Extending previous work, we use full two-loop renormalization group
equations (RGEs) and full one-loop threshold corrections to include electroweak contributions
at the leading and next-to-leading logarithmic level of accuracy into this hybrid approach.
Furthermore, we implement the resummation of next-to-next-to-leading logarithms in the ap-
proximation of vanishing electroweak gauge couplings employing three-loop RGEs and two-loop
threshold corrections. In most cases, these improvements lead to a down shift of about 1 GeV
for the standard-like Higgs boson mass. In addition, we investigate the effect of separate
thresholds for the superpartners of the gauge and Higgs bosons. These thresholds only yield
sizeable contributions for very large scale separations.

After these improvements, which bring the hybrid approach to the same logarithmic level
of accuracy as state-of-the-art pure EFT calculations, we perform a detailed comparison of
the hybrid approach to these pure EFT calculations. In the course of this comparison, we
reveal several differences between both approaches: Firstly, we show how a conversion of the
renormalization scheme can spoil the resummation of large logarithms. Secondly, we address
terms induced by the Higgs pole mass determination in the fixed order approach. Taken these
effects into account, we find good agreement between both approaches for high scales. We are
able to explain the remaining numerical differences for large SUSY scales of about 1 GeV by
the different parametrization of non-logarithmic terms.

These studies are conducted mainly with a high-scale or split scenario in mind. If the mass of
non-standard Higgs bosons is, however, comparable to the electroweak scale, the corresponding
EFT is better described by a Two-Higgs-Doublet-Model. To handle such cases accurately, we
implement such a low-energy Two-Higgs-Doublet-Model into our hybrid framework. For the
combination of the EFT calculation with the fixed-order calculation, we find the normalization
of the Higgs doublets to play a crucial role. In our numerical investigation, we find large effects
of up to 8 GeV in scenarios with light non-standard Higgs bosons.

All of these results have been implemented into the Fortran code FeynHiggs.
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Zusammenfassung

Das minimale supersymmetrische Standard Modell (MSSM) ist eines der weitverbreitesten
Modelle fiir Physik jenseits des Standard Modells. Die Moglichkeit, die Masse des leichtesten CP-
geraden Higgs-Bosons in Abhéngigkeit einiger weniger relevanten Parametern vorherzusagen,
ist ein charakteristisches Merkmal des MSSM. Es gibt zwei Arten von Rechnungen: Rechnungen
in fester Ordnung der Storungstheorie und Rechnungen basierend auf effektiven Feldtheorien
(EFT). Rechnungen in fester Ordnung erfassen alle Effekte bis zu einer gewissen Ordnung der
Storungstheorie. Wenn die elektroschwache Skala und die Skala der Nichtstandardteilchen weit
separiert sind, werden sie aber aufgrund von grofien logarithmischen Beitrigen, die die Kon-
vergenz der Storungsreihe verschlechtern, unzuverléssig. Diese Logarithmen kénnen allerdings
mithilfe von effektiven Feldtheorien resummiert werden. Diese sind deswegen prézise fiir weit
separierte Skalen. Wenn die Skalen allerdings von vergleichbarer Gréflienordnung sind, kénnen
vernachlissigte Terme, die fiir weit separierte Skalen unterdriickt sind, numerisch relevant wer-
den. Diese sind wiederum in Rechnungen in fester Ordnung enthalten.

Um von den Vorteilen beider Zugéinge zu profitieren, werden beide Methoden auf der
Basis der bereits existierenden Rechnung in fester Ordnung, die im offentlich verfiigbaren
Programm FeynHiggs implementiert ist, kombiniert. Zunéchst wird dieser hybride Zugang
mit den elektroschwachen Beitrdgen auf fiihrendem und néchst-fithrendem logarithmischen
Niveau durch Beriicksichtigung der vollen Zwei-Schleifen-Renormierungsgruppengleichungen
und der vollen Ein-Schleifen-Schwellenkorrekturen erweitert. Auflerdem wird die Resummie-
rung von iibernéchst-fithrenden Logarithmen unter der Vernachléssigung von elektroschwachen
Eichkopplungen unter Benutzung von Drei-Schleifen-Renormierungsgruppengleichungen und
Zwei-Schleifen-Schwellenkorrekturen implementiert. Diese Erweiterungen fiithren in den meis-
ten Féllen zu einer Absenkung der standardartigen Higgsmasse von etwa 1 GeV. Zudem wird
der Einfluss von unabhéngigen Schwellen fiir die Superpartner der Eich- und Higgsbosonen un-
tersucht. Diese Schwellen liefern nur fiir sehr grofle Separationen der relevanten Massen einen
nicht vernachléssigbaren Beitrag.

Durch diese Erweiterungen ist die Hybridmethode von derselben logarithmischen Prézision
wie die besten verfiigharen reinen EFT Rechnungen. Durch einen Vergleich dieser beiden Metho-
den werden mehrere Unterschiede herausgearbeitet: Zunéchst wird gezeigt, wie eine Umrech-
nung zwischen verschiedenen Renomierungsschemata die Resummierung grofler Logarithmen
stort, und zweitens detailliert untersucht, wie durch die Bestimmung der Higgspolmassen Ter-
me hohere Ordnung erzeugt werden. Unter Beriicksichtigung dieser Effekte sind beide Methode
fiir groBe Skalen in sehr guter Ubereinstimmungen. Die verbleibenden Unterschiede von unter
1 GeV konnen durch verschiedene Parametrisierungen der nicht-logarithmischen Terme erklért
werden.

Bei den obigen Untersuchungen werden hauptséchlich Szenarien mit nur einer hohen Skala
oder Split-Szenarien betrachtet. Wenn die Massen der nicht standardartigen Higgsbosonen al-
lerdings in der N#he der elektroschwachen Skala liegt, ldsst sich die entsprechende EFT besser
durch ein Two-Higgs-Doublet-Model beschreiben. Um solche Félle korrekt beriicksichtigen zu
konnen, wird ein solches Two-Higgs-Doublet-Model in den oben beschriebenen hybriden Ansatz
implementiert. Bei der Kombination von EFT-Rechnung und der Rechnung in fester Ordnung
spielt die Normierung der Higgs-Dubletts eine wichtige Rolle. Numerisch verursacht diese Imple-
mentierung grofe Effekte von bis zu 8 GeV im Falle von leichten Nichtstandard-Higgsbosonen.
Alle Resultate dieser Arbeit wurden in den Fortran Code FeynHiggs implementiert.
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Chapter

Introduction

By now, nearly all sectors of the Standard Model (SM) of particle physics have been tested
extensively against experimental results. The Higgs sector, however, has become experimentally
accessible only a few years ago. In this respect, the landmark discovery of a Higgs boson by
ATLAS [1] and CMS [2] at the Large Hadron Collider (LHC) at the European Organization
for Nuclear Research (CERN) is of foremost interest. Its mass was measured to be [3]

M7 =125.08 4+ 0.21(stat.) + 0.11(sys.) GeV. 1.1
h

This measurement fixes the last free parameter of the SM. All measurements related to the
Higgs sector are in agreement with SM predictions so far [4]. There is, however, still ample
room left for beyond the SM (BSM) physics.

This is especially relevant in view of the fact that despite the success of the SM in making
physical predictions, it is clear that BSM physics is needed. Several observations are not
explainable within the SM framework: neutrino oscillations, the baryon asymmetry of the
universe, dark matter and dark energy. From a theoretical point of view, the SM lacks an
explanation for the smallness of the Higgs mass and for the C’P-violating 6-term of QCD.

Several concepts have been proposed to face these problems. One of the most common ones
is Supersymmetry (SUSY). SUSY explains the smallness of the Higgs mass and provides a dark
matter candidate in many phenomenological realizations. In addition, it might help to explain
the baryon asymmetry of the universe. Its fundamental idea is to extend the Lorentz spacetime
symmetry in the only possible non-trivial way by relating fermions to bosons. The simplest
phenomenological model incorporating this concept is the Minimal Supersymmetric Standard
Model (MSSM), which extends in the SM in a minimal way to allow for SUSY. As an immediate
consequence of this requirement each SM degree of freedom is accompanied by a superpartner,
whose spin is shifted by one half with respect to the spin of the corresponding SM particle.

The requirement of SUSY, however, not only enforces the presence of superpartners but also
implies the need to introduce a second complex Higgs doublet in order to avoid the appearance
of gauge anomalies and to ensure the holomorphicity of the superpotential. This leads to five
physical Higgs bosons. In the case of only real parameters (real MSSM), these are the neutral
CP-even h and H bosons, the CP-odd A boson and the charged H* bosons. One of the CP-
even Higgs bosons has to play the role of the SM-like scalar boson discovered at the LHC. As a
consequence of SUSY, the Higgs sector depends at the tree-level only on the electroweak gauge
couplings and two additional parameters, often chosen to be the mass of the A boson M4 and
the ratio of the vacuum expectation values (vevs) of the two doublets, tan 5 = vy /v;.

So far no direct experimental evidence for supersymmetric particles has been found. This
sets limit on their masses. In addition to these direct searches, the impact of supersymmetric
particles on precision observables can be used to constrain the parameter space indirectly. Clas-
sical precision observables are for example the mass of the W boson, the effective electroweak
mixing angle or the width of the Z boson. As mentioned already, it is a distinct feature of the
MSSM that the mass of the SM-like boson discovered at the LHC is not a free parameter, as in
the SM, but can be predicted in terms of a few relevant parameters. Therefore, it can be used
as an additional precision observable complementing the classical ones.



1. Introduction

The tree-level Higgs boson masses are heavily affected by quantum effects. Therefore, to
fully exploit the precision reached in the experimental measurement much work has been dedic-
ated to the calculation of higher-order contributions. So far, the full one-loop corrections [5-8],
dominant two-loop corrections [9-32] and partial three-loop corrections [33-35] for the light
MSSM Higgs boson mass have been calculated by the method of Feynman diagrams. These
diagrammatic calculations have the advantage of capturing all terms at a given order in per-
turbation theory and are therefore expected to be precise for low SUSY scales where logarithmic
contributions involving the SUSY scale, contained in the result, are small.

In light of the increasing direct bounds on supersymmetric particles a complementary ap-
proach has become increasingly popular: Effective field theory (EFT) calculations allow to
resum the logarithmic contributions by means of renormalization group equations (RGEs).
These logarithms become large in case of a large mass hierarchy between the electroweak and
the SUSY scale [36—40] and can spoil the convergence of the perturbative expansion of fixed-
order calculations. EFT calculations, however, are less accurate for relatively low SUSY mass
scales owing to the omission of terms which are suppressed only for high SUSY scales. These
terms would be generated by higher-dimensional operators in the EFT framework. In most
EFT calculations the effect of higher-dimensional operators has been neglected (see [41] for
work in this direction).

In order to profit from the advantages of both methods — high accuracy for low SUSY
scales in the case of the fixed-order approach versus high accuracy for high SUSY scales in
the case of the EFT approach — both approaches have been combined [42] (see [43, 44] for
hybrid approaches using a different method). For this combination several subtleties have
to be taken into account: The double-counting of terms obtained in both approaches has to
be avoided and a conversion between the different employed renormalization schemes has to
be performed. This hybrid approach has been implemented into the publicly available code
FeynHiggs (8, 14, 42, 45-49] supplementing the existing fixed-order calculation with higher-
order resummed logarithmic contributions. The advanced development of the hybrid approach
is the main content of this thesis.

The original implementation, presented in [42], was restricted to the resummation of lead-
ing (LL) and next-to-leading (NLL) logarithms in the limit of vanishing electroweak gauge
couplings. In pure EFT calculations however, already a higher level of logarithmic accuracy
is available. Therefore, as the first main achievement of this thesis, we advance the hybrid
approach introduced in [42] and implemented in FeynHiggs the same logarithmic accuracy:
We include the missing electroweak contributions at the LL and NLL level as well as next-
to-next-to-leading logarithm (NNLL) resummation in the limit of vanishing electroweak gauge
couplings. In addition, separate thresholds for the supersymmetric partners of the gauge and
Higgs bosons — called gauginos and Higgsinos — are implemented. This improves the result for
scenarios in which these gauginos and Higgsinos are lighter than the other SUSY particles.

Having the same logarithmic accuracy, we would expect pure EFT calculations and our
hybrid approach to yield very similar results for high SUSY scales. Comparisons between
FeynHiggs and pure EFT codes in the literature [40, 43, 44] have, however, revealed non-
negligible differences between the predicted values for Mj, for large SUSY scales. Therefore, we
compare our hybrid approach in detail to the pure EFT approach finding three main sources
for the observed discrepancy: In a first step, we investigate how the use of different renormali-
zation schemes affects the comparison. FeynHiggs by default employs a mixed DR/OS scheme,
whereas the EFT codes employ a pure DR scheme for the input parameters. We show that
the in such cases usually used renormalization scheme conversion of input parameters is not
suitable for the comparison of results containing a series of higher-order logarithms. Such a
scheme conversion can lead to large shifts corresponding to formally uncontrolled higher-order
terms. Secondly, we analytically identify specific terms arising through the determination of
the Higgs propagator pole which cancel with subloop renormalization contributions in the ir-
reducible self-energies of the diagrammatic approach for a large SUSY scale. We develop an
improved treatment where unwanted effects from incomplete cancellations are avoided. Thirdly,
we show how different parametrizations of non-logarithmic terms can explain remaining differ-
ences between the results of FeynHiggs and pure EFT codes for high scales. This reconciliation
of our hybrid approach with the pure EFT approach is the second main achievement of this
thesis.

The discussion is so far mainly restricted to scenarios in which the EFT below the SUSY



scale is well described by an effective SM or a SM with added gauginos and Higgsinos. This
assumes that the non-SM Higgs boson scale is close to the SUSY scale. In the presence of
light non-SM Higgs bosons, the EFT below the SUSY scale is better described by an effective
Two-Higgs-Doublet-Model (THDM) or a THDM with added gauginos and Higgsinos. These
scenarios are especially interesting in the light of the increasingly tight constrains on colored
SUSY particles from experimental searches. A previous pure EFT study [39] found large effects
originating in the resummation of logarithms of the SUSY scale over the non-SM Higgs scale
M. As third main achievement, we clarify this situation and implement such an effective
THDM into our hybrid approach describing in detail the steps needed to combine the EFT
calculation with the fixed-order calculation in this scenario.

This thesis is structured as follows. In the beginning, introductory chapters give a short
address to the SM (Chapter 2), Supersymmetry (Chapter 3) and the MSSM (Chapter 4) with
a particular focus on the MSSM Higgs sector. Afterwards, we briefly review in Chapter 5 how
higher-order corrections are calculated, how these are renormalized and how EFT methods can
be used to resum large logarithms. We apply the renormalization procedure to the MSSM Higgs
sector in Chapter 6. Afterwards, we come to the main subject of the thesis: In Chapter 7, we
describe how the Higgs masses are calculated in the fixed-order and the EFT approach and
subsequently explain in detail our hybrid approach. After having clarified all methods used
in this thesis, we turn to the actually achieved advances of the hybrid approach. We present
the various improvements of the involved EFT calculation in Chapter 8. All issues related to
the use of different renormalization schemes are disscussed in Chapter 9. Based upon these
achievements, we compare our hybrid approach to the pure EFT approach in Chapter 10 focus-
ing on how the physical mass is obtained as pole of the Higgs propagator. In Chapter 11, we
extend our hybrid framework to scenarios with light non-SM Higgs bosons. After comparing
FeynHiggs to other public codes for the calculation of the MSSM Higgs masses (Chapter 12),
we present numerical results in Chapter 13. In this Chapter, we also briefly discuss the re-
maining theoretical uncertainties. Afterwards, conclusion are presented in Chapter 14. In the
Appendix, we provide additional material related to the shifts induced by a renormalization
scheme conversion of the input parameters (App. A), logarithms arising through the determina-
tion of the Higgs propagator poles (App. B), the used matching conditions between the various
EFTs (App. C), the normalization of the Higgs doublets (App. D), the conversion of relevant
parameters between the DR and the OS scheme (App. E), as well as the used, before only
partly known, renormalization group equations (App. F).






Chapter

The Standard Model

2.1 General structure and particle content

The Standard Model (SM) of particle physics is a gauge theory based on the gauge group
SU@B)c x SU(2), x U(l)y. The SU(3)¢ subgroup leads to the strong interaction [50-53],
whereas the SU(2)r x U(1)y subgroup is responsible for the electroweak interactions [54-56].
The corresponding gauge bosons are

e the gluons GY, for SU(3)c (a = 1,...,8) with the gauge coupling g3,
e the W bosons W for SU(2) (a = 1,2,3) with the gauge coupling g, and
e the B boson B, for U(1)y with the gauge coupling ¢'.

In this thesis, oy = g2 /4 is sometimes used instead of g3. The W- and B-Bosons are related
to the physical mass eigenstates Wjﬂ Z,, and the photon A,, which can be obtained through
rotation of the original states with the electroweak mixing angle.

The matter fields of the SM are grouped into three generations. In addition to this overlaying
structure, the fermion fields can be categorized according to their behaviour under the SM
gauge-group transformations:

left-handed quark doublets (3,2)
right-handed u-type quarks (3,1)
right-handed d-type quarks : (3,1)_9/3
left-handed lepton doublets (1,2)
right-handed lepton singlets (1,1)

Table 2.1: List of SM fermions and their behaviour under gauge-group transformations.

The first number in the round brackets corresponds to SU(3)c (triplet or singlet), the
second one to SU(2)r (doublet or singlet) and the subscript to the U(1)y quantum number
(hypercharge).

In addition to the particles listed above, also so-called Faddeev-Popov ghosts are present in
the theory. They are unphysical and appear only as virtual particles in Feynman amplitudes.
Their introduction is necessary to cancel the effects of the unphysical timelike and longitudinal
polarizations of the gauge bosons in a non-Abelian theory and thus to conserve unitarity.

Furthermore, a scalar sector, the Higgs sector, is needed for the generation of gauge boson
and fermion masses.

2.2 Higgs sector

Most of the SM particles are massive. This is an apparent problem for the theory, since a mass
term in the SM-Lagrangian violates the gauge symmetry. The Higgs mechanism [57-59] solves
this problem by breaking the SU(2) x U(1l)y symmetry of the SM spontaneously down to

5



2. The Standard Model

the U(1)em symmetry of quantum electodynamics (QED) with the elementary electromagnetic
charge e as gauge coupling. Spontaneous symmetry breaking occurs if the vacuum state of the
theory is less symmetric than the Lagrangian.

The Higgs mechanism is incorporated by introducing a scalar isospin-doublet ® with a
hypercharge of 1. The Higgs field is coupled to the gauge bosons through the covariant derivative

1
LHiggs kin. = 5(D¢I>)*D“<I>, (2.1)
!
with D, =, — igl, W2 + i%BM (2.2)

with I, being the weak isospin of the field on which the covariant derivative acts. The Higgs
scalar potential can be parametrized as follows,

A
Liggs pot. = —p°®T® + 5(@@)2' (2.3)

To ensure spontaneous symmetry breaking, both p? and A must be positive. The corresponding
non-zero vacuum expectation value (vev) of ® can be written as follows,

By = (0> (2.4)
with v = ﬁ ~ 174 GeV [60]. (2.5)

The Higgs field has to be expanded around the vev to examine the physical content of the
theory in the phase of the spontaneously broken symmetry,

_ o (@)
*0)= (o L (H () + ) 20

The newly introduced fields H, x and ¢+ are defined to have a zero vev. The fields x and
¢T can be eliminated by choosing a specific gauge, signaling that they are unphysical. The
corresponding degrees of freedom are absorbed into the now massive vector boson fields W and
Z as longitudinal polarization modes.

For higher-order calculations it is, however, advantageous to work in general gauge. In this
case the additional degrees of freedom enter the calculation in the form of non-physical fields
named “would-be Goldstone bosons”.

In either case, the W and Z boson masses are given by

2

My = 5%, (2.7)
MZ_ﬁ 2 12 28
7= 2(9 +97). (2.8)

The associated weak mixing angle 0y is related to the masses via
cos Oy = My /My (2.9)
and to the elementary electromagnetic charge via
e = g cosOy = gsin Oy . (2.10)
Also the physical Higgs field itself describes particles with mass

M7? = 220 (2.11)

2.3 Fermion masses

Fermion masses are obtained by introducing Yukawa-interaction terms in the Lagrangian which
couple the Higgs field to the fermions, i.e.

L3N = —(y)ijli,r® Li L — ()i di r®'Qj.1 — (v.,)ij0i r(—i®702)QjL + hec. . (2.12)
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where o9 is the second Pauli matrix. Ly, is the SU(2), lepton doublet; @y, the corresponding
SU(2) 1, quark doublet. The associated right-handed fields, SU(2), singlets, are denoted by lg,
dr and ug. The indices 7 and j run over the three fermion generations. y,;, y, and y, are the
Yukawa-coupling matrices for the leptons, down-type quarks and up-type quarks, respectively.
They are in general not diagonal leading to fermion mixing, but can be diagonalized by bi-
unitary transformations of the fermion fields.

In this thesis we neglect effects from flavour mixing and assume diagonal Yukawa-coupling
matrices,

Ye 0 0 ya 0 0 Yu 0 0
vi=[0 9y Of, y4=10 9y 0], y,={0 w 0], (2.13)
0 0 yr 0 0 w 0 0 wu

we obtain the fermion masses by expanding the Higgs field ® around its vev (see Eq. (2.6)),
my = Yso. (2.14)

Instead of the Yukawa coupling 3¢, we also make use of oy = yj% /4.






Chapter

Supersymmetry

As mentioned in the introduction, supersymmetry can provide solutions for some of the SM’s
issues. By relating fermions to bosons quadratic divergences in the corrections to the Higgs
boson mass are cancelled between SM-particles and their associated superpartners in a system-
atic way. In this way the electroweak scale is stabilized. Moreover, supersymmetric theories
provide a candidate for dark matter in the form of the lightest supersymmetric particle (at least
if the theory is R-symmetric, see Section 3.2). Another benefit of supersymmetry is related to
Grand Unified Theories (GUTs). In GUTs, all gauge groups of the SM are unified into one
single bigger gauge group containing the SM groups as subgroups. For this to happen, all gauge
couplings have to unify at a single scale above which the single gauge group becomes valid. In
the SM this is not achievable, whereas in supersymmetric theories the renormalization group
equations are altered such that the couplings unify.

3.1 General structure

Following the No-Go-theorem of Mandula [61], the Poincaré-symmetry can only be extended
truly — meaning that the extension does not factorize out as a subgroup in form of a gauge
group — by a fermionic symmetry. Here, the term “fermionic” indicates that the corresponding
symmetry generators obey anticommutation relations. The authors of [62] showed that the
maximal extension is given by a set of fermionic operators Q¢, (0 < i < N) with the algebra
(here for N =1)

{Q. Qa} = 20" P (3.1a)
{Qanﬁ} = {de@ﬁ'} = Oa (31b)
[Qow P,u] = [depu] =0, (3.1(‘,)

where o are the Pauli-matrices and P, is the Poincaré-generator of translations. «, 5 € {1,2},
the dotted components transform as right-handed Weyl-spinors, the undotted ones as left-
handed Weyl-spinors. Eq. (3.1a) expresses that the application of SUSY-operators can lead
to a translation in normal spacetime. This shows the interweavement of SUSY and normal
spacetime-symmetry.

The action of the supersymmetry generators @ can be interpreted geometrically by introdu-
cing the concept of superspace parametrized by the normal spacetime coordinates x,, as well as
the additional variables 6, and 8. The action of Qq, Q4 corresponds to a translation in the 6,
6 directions in superspace. It follows from Eq. (3.1) that 6, and 6, have to be anticommuting
Grassmann-numbers.

Correspondingly, superfields can be defined, which are an extension of the normal fields in
Minkowski space to the superspace. They depend not only on the spacetime coordinates x,, but
also on the supervariables 6, 5. The anticommuting character of the 6., 84 allows to write a
general superfield S(z,,0q,04) in the following form (sums over spinor indices are suppressed
in the notation),

Sz, 0, 0s) =p(x) + 0(x) + Ox(x) + 00M (x) + 00N (x) + (90”§)Vﬂ(x)
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+ (00)0X () + (00)0p(x) + (00)(00)D(x). (3.2)
Using a generalized covariant derivative
Dy = 04 — iagﬁ.éﬁ'a#, (3.3)
D% = 9% —iziPoz0", (3.4)
commuting with Qu, Qq, special types ®, ®f, V of superfields can be defined,

left chiral superfield — D%® =0, (3.5)
right chiral superfield — D,®" =0,
vector superfield — Vi —V = 0.

From the vector superfields, super-field strengths with components

1 _ .
& =-,(DD)D.V" (3.8)

can be built.

For the construction of a general supersymmetric Lagrangian, the following observation is
crucial: Only the terms proportional to the maximal possible number of Grassmann variables
(e.g. D(x) in Eq. (3.2)) transform under a global supersymmetric transformation such that
the corresponding action remains unchanged (see [63], Section 4.6). An integration over the
superspace variables 6, can be used to project on these components due to the integration rules
for Grassmann-numbers (see [63], Section 4.1).

So the most general, supersymmetric and renormalizable Lagrangian containing chiral su-
perfields @, and vector superfields V¢ with a gauge symmetry (generators T%) is given by

1 aya
Lsusy = U d*0 (4Wavang +W(<I>i)) —&—h.c} +/d49<1>je2gaT Vi, (3.9)
with the holomorphic superpotential

1 1
W(®;) = ¢; P + §mij(1)iq>j + Eyijkq)iq)jq)k- (3.10)

3.2 R-parity

In principle, SUSY-theories allow for baryon- and lepton-number violation. Experimental con-
straints, e.g. the lifetime of the proton, require the respective couplings to be very small.
Introducing a discrete Zo-symmetry called R-parity forbids the respective terms. It is defined
as

R = (—1)3B- 12, (3.11)

where B is the baryon number, L is the lepton number and s is the spin quantum number.
For SM particles, R = 1; for SUSY particles, R = —1. As an immediate consequence, a single
sparticle can not decay exclusively into SM particles. Therefore, the lightest supersymmetric
particle (LSP) is stable. If the LSP is not charged under SU(3)¢ and U(1)em, it provides a
suitable dark matter candidate.

3.3 Breaking of supersymmetry

If nature realized SUSY as an exact symmetry, the superpartners and their corresponding SM
particles would have the same mass. Since no superpartners has been discovered so far, SUSY
has to be broken. The breaking mechanism is not known so far. Many models of spontaneous
SUSY breaking have been proposed, e.g. gravity-mediated breaking [64] or gauge-mediated
breaking [65].

For phenomenological studies it is convenient to simply parametrize our ignorance of SUSY
breaking by introducing terms into the Lagrangian which explicitly break SUSY. These terms

10
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are required to have positive mass dimension in order not to give rise to quadratically divergent
corrections to the Higgs boson mass and to maintain renormalizability. Due to this property,
they are called soft-breaking terms. They are thought of to be generated by an unknown
breaking mechanism.

The possible soft-breaking terms in the Lagrangian of a general supersymmetric theory
respecting gauge invariance as well as renormalizability are [66]

1 1 1
Lsoft-breaking = — (2 aA" A+ 6aijk¢i¢j¢k + ibijd)i(bj +cigi + h-C-) —mpie;, (3.12)

with ¢; being scalars and A being left-chiral Weyl spinors (see for example [63]).
An immediate consequence of the soft-breaking terms is that the sparticles have a higher
mass than their SM-partners.

11






Chapter

The Minimal Supersymmetric Standard

Model

From the ingredients described in the previous Chapter phenomenological supersymmetric mod-
els can be built. The simplest physically viable model is a N = 1 supersymmetric extension
of the SM called Minimal Supersymmetric Standard Model (MSSM) [64, 67], in which the SM
fermions are described by Weyl spinors contained in chiral superfields and SM gauge bosons
by vector fields contained in vector superfields. The additional components of the superfields
describe superpartners and ensure that the number of fermionic and bosonic degrees of freedom
are equal.

4.1 Particle content

In the MSSM each particles of the SM gets a superpartner (a tilde is used to denote the
superpartner a of a SM particle a). Particle and superpartner are grouped in superfields.

superfield particle superparticle gauge group

Vy B, B U(l)y
Vw VV/L V[{/L SU(2)L
V. Gy G SUG)c

Table 4.1: Gauge sector of the MSSM.

The gauge fields of the SM (spin 1) get fermionic superpartners called gauginos (spin 1/2)
(see Table 4.1). The specific gauginos are named bino, wino and gluino.

Similary, each chiral SM fermion fr r (f = e, u,7,u,d,c,s,t,b) gets a scalar superpartner
f .1 (spin 0) called like the SM-fermion with a ’s’ in front. E.g., the superpartner of a top-quark
is a stop.

The Higgs sector of the MSSM differs from the SM Higgs sector. It consists of two Higgs
doublets (H; with Y = —1 and Hs with Y = +1). Two doublets are needed to implement
Yukawa couplings for up- (Hz) and down-type quarks (#H;) into the holomorpic superpotential
(the holomorphicity of the superpotential ensures that the action is invariant under SUSY-
transformations). In addition, in the MSSM gauge anomalies oc Tr{Y3} exists (see Fig. 4.1).

Figure 4.1: Gauge anomaly in the MSSM oc Tr{Y3}.

13
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Without the introduction of a second Higgs doublet with opposite hypercharge these anomalies
would not cancel. The two Higgs doublets are accompanied by two fermionic SU(2), doublets,
the Higgsinos ﬁbﬁz (with the neutral components ﬁ%Q and the charged components ﬁliz)
Higgs and Higgsino doublets are grouped together into the superfields H; and Hy. The matter
content of the MSSM is summarized in Table 4.2 (see text below Table 2.1 for a explanation of
the quantum number notation; the index ¢ denotes the generation):

superfield components quantum numbers

Qi qi,L> i, L (3,2)1/3
Ui Ui, R Ui,R (3,1)ay3
D; di,r,di,r (3,1)_2s3
L, L, i (1,2)_4
E; €i.R,€iR (1,1)
H, 7‘[1,7;11 (172)71
Ho Ha, Ho (1,2);

Table 4.2: Matter content of the MSSM.

The superfield content and the gauge group determine most of the structure of the MSSM.
Missing pieces like the Yukawa coupling are incorporated in the superpotential. Suppressing
generation indices, it is given by

Wussm = p(Hy - Ha) — hy(Hy - L)EC — hy(H; - Q) DY — h,(Q - Ho)UC, (4.1)

where hy 4, are the Yukawa-coupling matrices, which, as in the SM, can be diagonalized in terms
of bi-unitary transformations of the fermion superfields. u is the Higgsino mass parameter (since
the corresponding term in the superpotential is necessary to give mass to the Higgsinos). The
product of two superfield doublets is defined by (e is the Levi-Civita-tensor with ¢;o = —1)

Dy - Dy = ;0D (4.2)

The superscript C denotes the superfield with charge-conjugated scalar and spinor components.

Specifying the gauge group, the superfield content as well as the superpotential, the Lag-
rangian is fixed. Most of the mass matrices appearing in the non-SM part of the Lagrangian
are not diagonal. Diagonalizing them transforms the gauge eigenstates into mass eigenstates.
The corresponding symbols used for the mass eigenstates are listed in Table 4.3.

name spin gauge eigenstate mass eigenstate
Higgs bosons 0 Hio h, H, A, H*
Goldstone bosons 0 Hio G, G*
squarks 0 qr.r Q1,2
sleptons 0 [L,R, Uiy g [1)2, Uy,
neutralinos 1/2 B, 7-7(1)72, wo X3 234
charginos 1/2 ﬁfQ, w Xis
gluino 1/2 7 q

Table 4.3: Gauge and mass eigenstates of the MSSM.

4.2 Soft-breaking in the MSSM

As discussed in Section 3.3, soft-breaking terms are introduced with general coefficients to
parametrize the ignorance of the SUSY breaking mechanism. Specifying Eq. (3.12) for the
MSSM yields (i, are generation indices)

1 . .
‘Ci\g?t?a/ieaking = 75 (M3§§ + MQWW + MlBB + hC)
—m2HIH, — mEHIH — (by, 2, H1 - Ho + hoc))

- {(huAu)ij(QL,z‘ “Ha)up ; + (haAa)ij(Hi - QL,i)dﬁ,j
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4.3. Squark/slepton sector

+(hlAl)ij (7‘[1 . lNLJ')lNE,j + h.c.
—(m2)i3d5 1G5 — (M3)ijUk gy — (M2)idp dr,

—(m2 )igly il — (m? )iglh il (4.3)

?j jai, . are matrices in generation space leading in general to generation mixing.
YUV L R
In this thesis we, however, assume them to be diagonal in order to avoid introducing flavour
violating terms.

After specifying the soft-breaking terms in the MSSM, the particular sectors are examined

more closely following the notations of [8].

Ay g, and m

4.3 Squark/slepton sector
For each SM fermion f two sfermions fy, fr exist. Their mass matrix is given by

M2 — m?L + mfc + M2 cos 26([;{ — Qfs%/v) , ) mf)gf ), (4.4)
q myXy mfR+mf+MZCOSQBQfsW

where I?’j is the isospin, @ the electric charge and m; the mass of the corresponding quark.
Note that due to the SU(2) gauge symmetry, the soft-breaking masses for the left handed
sfermions are equal within one generation of squarks or sleptons (e.g. m;, =m; ).

The off-diagonal mixing parameter X is given in terms of the soft-breaking trilinear coupling
parameter Ay, the Higgsino mass parameter ;1 and the ratio of the vacuum expectation values
of the two Higgs doublets tan 8 = vy /vy (see Section 4.6) by

Xs = Ay — p{cot 5, tan 8}, (4.5)

where cot 3 applies for up-type squarks and tan 8 for down-type squarks and sleptons, respect-
ively. For stop squarks this matrix reads explicitly

2
M: =
i 2 2, 2 2 72
me Xy mi. + myi + 5 cos 2Bsiy, Mz

[ (et o o) O

with X; = Ay — pcot 8.
These mass matrices are diagonalized by unitary matrices U 7 (U fU} = 1). The eigenvalues

are the squared masses of the sfermion mass eigenstates fl, fg. They are given by

1

2 02 2 2 e

mfl,zmf+2[me+mfR+I3MZCOSQﬂ (4.7)
+ \/[m}L — m?R + M2 cos28(I] — 2Qys%,)]2 + 4m3X3|. (4.8)

4.4 Chargino sector

The charginos X1i,2 are the mass eigenstates resulting from the charged Higgsinos and elec-
troweak gauginos. Their masses can be obtained from of the mass matrix

X = (ﬁcosﬂMW L

The mass eigenstates are determined by diagonalizing the matrix X using two unitary 2 x 2
matrices U and V. The matrices U and V rotate the original wino and Higgsino states to the

mass eigenstates
~+ i+ ~— rr—
(’51) =V m~/+ : (’51_) —u(V). (4.10)
X2 Hs X2 Hy

15



4. The Minimal Supersymmetric Standard Model

The rotation is chosen in a way such that the resulting mass matrix

mo+ 0
( X ) = U*XV! (4.11)
0 mo+

X2
is diagonal. Mathematically, this corresponds to a singular-value decomposition with the masses

being the singular values.

4.5 Neutralino sector

The neutralino sector is similar to the chargino sector accommodating the neutral bino, winos
and Higgsinos. In the neutralino sector the matrix

M1 0 —Mzswcﬁ Mzswsﬁ
Y = 0 Mz MZCWCB *MZCWSB (412)
_MZSWCB MZchg 0 -l
Mzswsg —Mzcwsg —u 0
has to be diagonalized to obtain the mass eigenstates. The abbreviations
s, =sinvy, Cy = COS7, t, =tanvy (4.13)

are introduced for a generic angle v to keep the expressions short. The electroweak mixing
angle Oy is abbreviated with the subscript W, i.e.

sw = sin Oy, cw = cos Oy . (4.14)

To obtain positive eigenvalues, the diagonalization is performed by using a Takagi transforma-
tion [68]. We denote the resulting mass matrix of the rotated states

i o
Xz =N V~V 4.15
X4 HY
by
myg 0 0 0
0 mgp O 0
X — N\* T
0 0 me 0 =N"YN'. (4.16)
0 0 0 my

4.6 Higgs sector

This Section follows in large parts the discussion in [§].
Since the superpotential must be holomorphic, two Higgs doublets are needed. Convention-
ally they are decomposed as follows,

v+ = (¢1 — ix1) o3
M= ( \/ﬁ—gﬁl’ > ’ Ha = <02 + %(;2 + Z'Xz)) ’ (4.17)

where ¢;, x; and ¢T are real scalar fields and vy, v are the vacuum expectation values of the
doublets. The ratio vy /vy is called tan 8 (tan 8 = va/v1). Note that in the literature (and also
in later parts of this thesis) sometimes also a different notation for the Higgs doublets (and
the associated Higgsinos) is used based upon their coupling to up- and down-type quarks (see
Eq. (4.1)): H; is denoted as Hq, Ho as H,, (analogously for the Higgsinos).

In its general form the Higgs potential Vi is given as follows

Vi =m3HIH, + m3HIHo + m2y(Hy - Ho + hc)+
1 1
+ 507 + g% (MM — M) + S [HIHL, (4.18)

where mf 5 = 3 5 + |u|* and miy = by, (see Eq. (4.3)). The soft breaking terms mj, m3,
m?2, as well as the Higgsino mass parameter u are assumed to be real in this thesis.
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4.6. Higgs sector

Plugging in the expressions for H; and Hs yields the Higgs potential in terms of ¢;, x;
and ¢,

®1
1
Vi =const — Ty, p1 — Ty, 2 + By (M1, P2, X1, X2) Mpgxx X?
X2
¢+
+ (1, b3 ) My g+ <¢1_) + coupling terms. (4.19)
2
The coefficients Ty, , Ty, , also called tadpoles, are
1
Ty, = V2 (mdon = myea + 36 + 4202~ ) ) (4.20)
1
Ty, = —V2 <m§”2 — miyvr — 1(92 +9?) (0] - U%)W) ~ (4.21)
The mass matrices Mggyy and Mg+ 4+ are given by
M 0
M = ( ¢ > , (4.22)
dPXX 0 M,
mi+1(g° +g%)Bvf —03)  —mi, — 5(9% + g%
M., = 1 4 1 2 12 2 102 , 4.23
ol T S0 W i e (428)
m? + 1(g? + ¢%)(v? —v3) —m3 )
LY I 1 12 : 4.24
= i g+ g + 903~ 0d) .
m? + 1g2(v? —v3) + 1g%(v? + v3) —m2y — 15?0
Moo — (M T3 1—v3)+ g aCD T2 — 597 V102 495
o= —mi, — 3gPuivs md + 3g20F o) + Lg20f +03) ) (420

The mass eigenstates are obtained by a unitary transformation of the ¢, x basis,

h 1 . .

H| P2 H _ ®

al = U, wl (Gi) =U, (¢§—L> . (4.26)
G X2

The unitary matrices U,, and U, can be parametrized using the angles «, 3, and S, i.e.

—sina  cosa 0 0
| cosa  sina 0 0 _ [—sinfB. cospfe.
Un = 0 0 —sinfB, cosf, |’ Ue = ( cos 3, sin ﬁc> ’ (4.27)
0 0 cos B, sinf,

In this new basis the Higgs potential reads

Vg =const. — Ty, -h —Tyx - H

mi miy 0 0 h
1 miy  my 0 0 H
+§(h,H,A,G)- 0 0 @124 m%G At
0 0 m4ye mg G
2 2 +
_ -\ . M+ Mg . H
s (e ") (6)
+ coupling terms. (4.28)

Using the modified mass formulas for the massive gauge bosons (v? — v? + v3 in the MSSM),

1
M7 = (9" +9%) (v} +03), (4.29)
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4. The Minimal Supersymmetric Standard Model

1
M}, = 56263 +43), (4:30)
the Higgs tree-level masses can be expressed in terms of e, sy, cw, Mz, My, tanf, the
tadpoles Ty, ,, the angles «, 3., B, and either m4 or mpy= (here m, is chosen). The entries
for the CP-even Higgs bosons read

2
mi, = Mg sin® (o + B) + miy ccooss2 ((504— ﬂﬁn))
e cos(ar — B) sin® (o — )
+ 2Myswew cos2(B8 — Bn)
e sin(a — f8,,)

+ Myswow "2 cos?(B— Br) (cos(2a — B — Bn) + 3cos(B — Bn)), (4.31a)

m%H =- M% sin(a + B) cos(a + B) + m124 sin(a — ) cos(a — )

cos?(8 — Bn)
e T sin(a — B) sin? (o — f,,)
2Mzswew cos2(B — fn)
e cos(a — fB) cos?(a — 3,)
 2Mzswew cos2(f — Bn) ' (4.31b)
2
2 g2 ena? 5 sin“(a —f)
i = Mz oS (ot B) o 5= B
¢ COS(a _ ﬁn)
- 2Mzswew T 2cos2(B — B) (cos(2a — B — ) — 3cos(B — Bn))
¢ sin(a — ) cos®(a — Sn) (4.31c)

* QM yswew cos?(f — fn)

The requirement that v; and v, are indeed the vacuum expectation values of the Higgs potential
implies that the tadpoles have to vanish.
With vanishing tadpoles, the remaining entries of the mass matrices in Eq. (4.28) read

miq = —m% tan(B — B,), (4.32a)
me; = m% tan®(8 — B,), (4.32D)
mipe = my + My, (4.32¢)
misge = —(m3 + Myy,) tan(8 — Be), (4.32d)
mg= = (mi + Myy) tan®(8 — 5e). (4.32€)

To obtain diagonal mass matrices (in Eq. (4.28)), the off-diagonal elements, m?%, and my+g=,
have to be zero. This is achieved for

ﬂc = /Bn = B (433)

The mixing angle « can be calculated by demanding that m? 5 should be zero. Alternatively,
one can diagonalize the matrix My (see Eq. (4.23)) directly. Both ways result in the tree-level
prediction

1
mi = 5 (4 023 — o+ 0 — w08 ot 25 (434
1
iy = 5 (w283 +fl, M) — 4 M cost 25 (4.35)
mye =m? + My, (4.36)

for the masses of the Higgs bosons. The mixing angle o reads

(m% + M%) sin B cos 3 ]

4.37
M2 cos? 3 +m? sin® B —m3 (4.37)

«a = arctan {—
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Figure 4.2: Tree-level Higgs boson masses in dependence of M4 for tan 8 = 10.

Conventionally, —3 < o < 0 is chosen. Alternatively, we can write

tan 2« mi + M%
tan28  m% — M2’ (4.38)
A A

In contrast to the tree-level Higgs boson masses, a Higgs boson mass is denoted with a capitalized
M, whenever higher-order corrections are included. In this thesis, m4 = My, since the tree-
level mass m 4 does not receive any higher-order corrections in the used on-shell scheme (see
Chapter 6).

Fig. 4.2 shows the tree-level masses in dependence of the mass of the A boson. For rising M 4
the masses of the H- and H* bosons rise too. In particular the mass of the H boson converges
to M4. In contrast the tree-level mass of the lightest CP-even Higgs mj remains constant
(mp < Mz). In addition, the couplings of the h boson become SM-like, since a — § — m/2, if
My > Myz. This limit is denoted as the decoupling limit.

As in the SM (see Section 2.3), the fermion masses are generated via Yukawa-interaction
terms arising from the superpotential given in Eq. (4.1),
Ly = = (h)ijli,r(iHT 02) Ly — (ha)sjdi, r(iH] 02) Q1
— (h) it r(—iH3 02)Q5 L + hc. (4.39)
Here, the above mentioned notation of H4 , instead of H; > becomes obvious.

Inserting the expansion of the Higgs doublets around the corresponding vevs (see Eq. (4.17))
yields

Me,p, 7= he,ll«,Tvl = h67M7TCﬁU7 (440&)
Mg, s,b = R, s pV1 = hd,s,pCaY, (4.40Db)
My,ct = hu7c7tv2 = hu,c,tSBU- (440(3)

for the masses of the fermions.
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Chapter

Methods for higher-order calculations

In this Chapter, we summarize basic concepts needed for the calculations presented in this
thesis. First, we briefly explain how UV divergencies appearing in higher-order calculations are
handled. Second, we discuss the use of effective field theories.

5.1 Regularization and renormalization

In quantum field theories, the classical relations between the different observables (tree-level
relations) are modified by quantum corrections. If all couplings are small enough, which is
assumed in this thesis, these corrections can be obtained by an expansion in the couplings. The
coeflicients at each order can be calculated by evaluating the corresponding Feynman diagrams.

Higher-order Feynman diagrams involve internal loops. These depict integrals over the
momentum of the internally propagating particle. E.g., integrals of the form

d*k 1

—_— 1
/ @2 R —m? (5.1)
R4

appear (with m being the mass of the internal particle). Those integrals diverge if k? — oo
(UV divergent). To render the result for physical observables finite, these divergencies have to be
absorbed into the bare quantities of the Lagrangian. This procedure is called renormalization.

5.1.1 Regularization

The first step of the renormalization procedure is the regularization of the divergent intergrals.
This is achieved by introducing a regularization parameter such that the integral becomes
finite. The original integral has to be recovered if the regularization parameter approaches a
certain limiting value. Widely used methods are dimensional regularization (DREG) [69-72]
and dimensional reduction (DRED) [73, 74].

In dimensional regularization the dimension of the loop integrals is shifted from 4 to D di-
mensions (D = 4 — 2e with € > 0),

4 D
[ i | o

The at first hand arbitrary renormalization scale ur (mass dimension 1) has to be introduced
to preserve the overall mass dimension of the integral. After shifting the integral to dimension
D, it is free of divergences. The result can be expanded in €; terms proportional to an inverse
power of e reflect the original divergence. In this way, the divergences are parametrized in an
analytic form.

The dimension shift is not only applied to loop integrals but also to all other four-dimensional
objects. This implies that the number of bosonic and fermionic degrees of freedom are changed
asymmetrically. In other words, DREG breaks supersymmetry. Therefore, in supersymmetric
theories DRED is used for the regularization of loop integrals. DRED resembles DREG in
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5. Methods for higher-order calculations

the way that it shifts the dimension of momenta and loop integral measures to D-dimensions.
But, all other four-dimensional objects, like the gauge boson fields, are left untouched. Thus,
supersymmetry is conserved.

5.1.2 Renormalization

In principle, renormalization can be carried out in various ways. The basic requirement is
that after renormalization all divergences appearing in physical observables are cancelled. In
renormalizable theories this cancellation can be reached by the procedure of multiplicative
renormalization. In multiplicative renormalization, the original parameters of the Lagrangian
are transformed by

m — mo = Zypm = (1+0Zy,)m =m + om, (5.3a)
g—90 =Zgg =(1+8Z,)9g =g +dg (5.3b)

with m being a generic mass parameter and g being a generic coupling parameter. The "bare’
coupling go and mass mg are split up into a renormalized finite quantity g (or m) and a
counterterm dg (or dm).

If in addition to physical amplitudes, also general Greens functions are required to be finite,
also the fields have to be renormalized by introducing field renormalization constants via

b0 =/Zsp = \/1+0Z40. (5.4)

This procedure can be summarized by

EO = Eren + £countertermsa (55)

where Loy is equal to the bare Langrangian Ly but all bare quantities are replaced by the
corresponding renormalized quantities. The counterterm Langrangian Lcounterterms contains all
counterterm contributions. The divergent parts of these counterterms are chosen such that all
divergencies originating from loop integrals are cancelled. In consequence, all n-point vertex
functions are UV finite.

5.1.3 Renormalization schemes

The finite parts of the counterterms are, however, not fixed by this condition and can in principle
be chosen freely. In the simplest scheme, the minimal subtraction (MS) scheme, which uses
DREG for regularization, the counterterms are chosen such that only the divergent terms are
cancelled, i.e., the finite parts of the counterterms are chosen to be zero. In the slightly modified
MS scheme, also the additionally terms oc In47w —vg (yg = —I(1)) are absorbed. These terms
appear in the calculation of every loop integral. In consequence, all terms proportional to

1
A=-+Indr — g (5.6)
€

are removed by choosing the counterterms in MS scheme. If DRED is used instead of DREG
for regularization, the schemes are called DR (instead of MS) and DR (instead of MS).

Another scheme, particularly well-suited for calculating physical observables, is the on-shell
scheme. Basically, it is defined such that the pole of a loop-corrected propagator corresponds
to the physical mass of the propagating particle. This corresponds to the condition that the
renormalized one-particle two-point vertex function (the hat marks a renormalized and therefore
finite quantity)

[(p?) = i(p* — M?) +i%(p?), (5.7)

is zero for p> = M2, where M is the renormalized mass. The quantity 3, denoted as self-energy,
is the sum of one-particle irreducible loop diagrams with two external legs. The associated
renormalized quantity including the counterterm contributions is labelled by 3,

»(p?) = B(p?) + counterterms. (5.8)
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5.2. Effective field theories

The condition f‘(p2 = M?) = 0 implies immediately that
Re S(M2) £ 0. (5.9)

has to be fulfilled. This condition has only to be fulfilled for the real part, whereas Im N #0
in general (i.e. above particle thresholds). This is the on-shell renormalization condition.

In the OS scheme, the field renormalization constants are typically fixed by demanding that
the residues of all propagators are equal to unity, yielding

O%(p?)
op?  Ip2=m2

= 0. (5.10)

The counterterms of the coupling constants can be fixed by certain scattering process. E.g.,
the OS counterterm of the electromagnetic coupling is fixed by demanding that the quantum
corrections to Thompson scattering vanish.

Generally, the determination of the counterterms by relating them to physical observables
eliminates the explicit dependence on the renormalization scale up.

5.1.4 Renormalization group

In other schemes, like MS, the results for physical observables depend in general explicitly
on pp. This explicit dependence is cancelled by a intrinsic dependence of the renormalized
Lagrangian parameters on upr at each level of the perturbative expansion.

This intrinsic dependence of the renormalized parameters can be derived by exploiting the
fact that the bare parameters cannot depend on ug, as in the case of a coupling constant,

1 d d d d
0="290= 5 299= 2429+ 92, (5.11)
where
t=1Inp%. (5.12)
Introducing the abbreviation
d
= — 5.13
ﬂg dtg’ ( )
called the beta-function of g, we obtain
1 d d d d
0=—g0=—(449) =2Z,— —Z, =
0 d 0
oo 9 ot +zi: (dt%) dgi | 7
0 0
=ZyBy+g |5 + E;ﬁgiagi] Zy, (5.14)

where the sum runs over all couplings of the theory. This equation allows to derive all beta
functions order by order by calculating the renormalization factors Z,. An analogous equation
can be derived for the mass parameters of the theory.

5.2 Effective field theories

If widely separated scales appear in a calculation, for example the electroweak scale and a
multi TeV SUSY scale, large logarithmic contributions appear in the calculation. These large
logarithms typically exacerbate the convergence of the perturbative expansion rendering dia-
grammatic fixed-order calculations unreliable. In such situations effective field theory (EFT)
are a useful method to resum these logarithms.

The main idea of EFTs is that the physics at low energies depends only marginally on the
physics at high energies. This fact can be used by decoupling or integrating out the "heavy’
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Figure 5.1: Matching the effective theory to the full theory at the tree-level and at the one-loop
level.

degrees of freedom leading to an effective Lagrangian containing only ’light’ fields suitable to
describe the low energy physics.
For illustration, we consider the toy model

Ly =3 (0u0)(0"0) + 5(0,8) (") —m?6* — M@ —V(5,8),  (5.15)
V(o ®) =016t + 22502 4 et (5.16)

with m <« M.
For energies Q? < M?, we remove the the heavy field ® from the theory and obtain the
effective Lagrangian by writing down all allowed terms involving only ¢,

)\eff
4!

Lor = 5 (0,0)(0"9) — m?¢? — Lol 2ol 1. (5.17)
At this point, the question arises how it is ensured that the effective field theory gives the right
result meaning the same result as in the full theory. We achieve this by matching the effective
field theory to the full theory at the scale Q@ = M.

Consider e.g. the four-point function of ¢. At the tree-level, it corresponds to the upper left
diagram in Fig. 5.1 in the effective field theory, in the full theory to the upper right one. If the
calculation of the four-point function in both, the effective and full field theory, are required to
yield the same result, it follows immediately that

AQ(Q = M) = A1l (Q = M) = \(Q = M). (5.18)

If the result should be identical also at the one-loop level, the results have to be matched
accordingly. This is depicted in the bottom row of Fig. 5.1. The one-loop diagrams of the full
theory contain loops involving not only the light ¢ but also the heavy field ®. The contribution
of this diagram has to be calculated in the limit m/M — 0 (terms suppressed by the heavy
scale M enter in the EFT via higher-dimensional operators as discussed below). In the EFT,
this contribution involving ® has to be compensated by adjusting Aeg at the one-loop level,

Aeit(Q = M) = 2D (@Q = M) + X F(Q = M). (5.19)

This one-loop correction enters through the tree-level diagram (lower left diagram in Fig. 5.1)
and is denoted as threshold correction. The procedure can easily be extended to higher loop
orders. Applying it to the three-point function of ¢ shows that

Geff = 0. (520)

So far ® has only entered through loop corrections which are compensated by adjusting the
effective coupling. But ® can also be responsible that a certain process is allowed in the first
place. Consider the same toy-model as above (see Eq. (5.15)) but with the changed potential

V(g,®) = go° . (5.21)
Naively, one could think that the effective Lagrangian is again given by

)\cff

j(b‘l. (5.22)

Lo = 3 (0,0)(0"9) — m? — %89 -
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5.2. Effective field theories

Figure 5.2: Matching the effective theory to the full theory, higher-dimensional terms.

The decoupled field ®, however, can also mediate interactions of six ¢ fields (see left diagram
in Fig. 5.2). To reproduce this effect in the EFT, higher-dimensional terms have to be included
into the effective Lagrangian, i.e.

Reff

Legg=... — ol

#S. (5.23)

Clearly, ke must have mass dimension -2. Therefore, the interaction term with the coupling
Keft 18 not renormalizable. This is, however, not an issue, because the EFT is replaced by the
full renormalizable theory at Q = M. The observation that the internal propagator involved in
the ®-exchange diagram behaves like

1 pQ<<M2 1
S TR Ve (529
in the limit p? < M? shows that
2 2
Keff X g~ /M*. (5.25)

In other words, the effects of high-energy physics are suppressed by the scale of these high-energy
physics. In this thesis, all such suppressed operators are omitted. This is a good approximation
if the scale of calculation is much smaller than the matching scale. If both are comparable,
however, numerical important terms might be missed in the EFT calculation without including
higher-dimensional operators.

It remains to clarify how this procedure of integrating out heavy particles helps to resum
large logarithmic contributions. The main missing ingredient is the use of the renormalization
group equations (RGEs) introduced in Section 5.1.4. They are used to run the couplings of
the EFTs, fixed by matching to the full theory at the scale of the heavy particles, down to
the scale of the light particles. At this scale, we can now calculate all physical observables
of interest. Since all heavy particles are integrated out, no large logarithms appear explicitly
anymore. These and also all other relevant information about the full high-energy model are
implicitly contained in the effective couplings: By looking at the structure of the RGEs — i.e.,
the derivative with respect to In u% — it becomes clear that the running down to the low scale
resums all appearing large logarithms. Non-logarithmic terms induced by the heavy particles
enter through the matching conditions at the high scale.
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Chapter

Renormalization of the Higgs sector

Before we discuss the calculation of the lightest C’P-even Higgs mass in the various approaches, it
is indispensable to explain how the Higgs sector of the MSSM is renormalized using the methods
presented in Chapter 5. First, we describe in detail the complete one-loop renormalization.
After that, we discuss the two-loop renormalization in the limit of vanishing electroweak gauge
coupling, which will be needed in Chapter 11. We also explain the renormalization of other
sectors relevant for the two-loop renormalization of the Higgs sector.

6.1 One-loop renormalization

Several different schemes for the renormalization of the MSSM sector can be used. Here, we
describe the scheme used in FeynHiggs, namely a mixed OS/DR scheme. This scheme was in
detail described in [8].

6.1.1 Counterterms

According to the presentation in Section 4.6, counterterms have to be introduced for the para-
meters,

M2 — M2 +6V M2, (6.1a)
M2, — M2, + 6V ME, (6.1b)
Tn, — Ty + (5(1)Th, (61C)
Ty Ty + (S(I)TH7 (61(1)
Ty —Ts + (5(1)TA, (6.18)
tan 8 — tan 8 + 6™") tan 8. (6.1f)
This implies that the mass matrices get counterterm contributions,
Mprac = Mpgac + 6 Mg ac, (6.2)
Mpy+gs = Mpyzg+ + 5(1)MHigj: (6.3)
with
G o
om 6m 0 0
1) — hH H
0 0 sWm?,  WmZ
D)2 §MWym2
(1) _ O mi My+a+
6 MHiGi == (5(1)m%{ZGi 5(1)77212Gi > . (65)



6. Renormalization of the Higgs sector

Choosing m4 as independent input parameter, all entries of Egs. (6.4) and (6.5), can be ex-
pressed in terms of 5(1)m§1 and the counterterms given in Eq. (6.1). The mass counterterms
for the CP-even Higgs bosons read

dWm?2 = 6Wm?2 cos? (o — B) + 6 M2 sin? (o + )

m (5(1)TH cos(a — B)sin®(a — B) 4+ 6Ty, sin(a — B)(1 + cos? (o — B)))
+6W tan Bcos? B (m? sin2(a — B) + MZsin2(a + f)), (6.6a)

1
dWm?2, = 3 (6(1)m?4 sin2(a — ) — 6 M2 sin 2(or + 6))

e .
Gy p— (5(1)TH sin®(a — B) — 6Ty, cos® (a — B))
—6W tan B cos? B (m% cos2(a — B) + M3 cos2(a + B)) , (6.6b)

dWm2 = sWm? sin?(o — B) + 6D M2 cos® (o + )

_ m (5(1)TH cos(a — B)(1 + sin®(a — B)) + 6V T, sin(a — B) cos(ar — B))
— 6@ tan S cos? B (m% sin2(a — B) + Mz sin2(a + B)) . (6.6¢)

In addition to parameter renormalization, also the fields have to be renormalized to guarantee
the finiteness of all Green’s functions with Higgs fields,

Hi 1+ %5(1)211 %5(1)212 Hi
(7—[2) - ( LWz, 14160 2y) \Hs ) (6.7)

Here, we introduced also — in contrast to [8] — an off-diagonal field renormalization. This off-
diagonal counterterm is not needed to render all appearing Green’s function finite but will be
helpful in Chapter 11.

Field renormalization constants for the neutral mass eigenstates are introduced via

h 1+36W2z, 1602,y 0 0 h
H 300 Zy 14 560 Zpy 0 0 H (6.8)
A 0 0 1+ 36WZan  36WZac A
G 0 0 %5(1)ZAG 1+ %(5(1)2(;(; G

For the charged Higgs this reads

H* 14+ 160 Zyepys L6Wzpige \ (H*
(Gi> - ( %5(1)ZHiGi 1+ %5(1)ZGiGi GE |- (6.9)

These counterterms are related to the field renormalization constants of the original doublets
by the rotation to the mass eigenstate basis (see Eq. (4.26))),

5V Zyp = s26W 211 — 5506M Zyy + 26M Zoy, (6.10a)

8D Zpr = —suca (6(1)211 - 5<1>222) + c2a6M Z1, (6.10b)
6V Z = 26W 211 + 5240 Z1g + 5200 Zs, (6.10c)
M Zaa = 530 211 — 52500 Z1 + 361 Zos, (6.10d)
8V Zag = —spcp (50)211 - 5<1>222) + 560 Z1, (6.10¢)

6 Zaa = 36 Ziy + 52560 Z15 + 53561 Zss, (6.10f)
5(1)ZH:(:H:(: = 5%6(1)Z11 — 5255(1)212 + 0%5(1)222, (6.10g)
6D Zye e = —speg (00211 — 60 232 ) + 25010 Z1a, (6.10h)
8 Zgege = c36W Z1y + 5256W Z15 + 5361 Zos. (6.10i)
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6.1. One-loop renormalization

6.1.2 Renormalization conditions

In order to determine the counterterms, renormalization conditions have to be imposed. As
mentioned above, we follow the prescription of [8] and correspondingly employ the OS scheme
apart from the DR renormalization of the Higgs fields.

For the massive gauge bosons Z and W, the on-shell condition reads

Re Xz2(M2) =0, Re Sww(M3) =0, (6.11)

where ¥ is the renormalized Z self-energy and Sww is the renormalized W self-energy. This
implies for the corresponding counterterms that

SOMZ =Re 2L (M2), 6D MZ, = Re £\, (MZ). (6.12)
Also the A boson is renormalized on-shell,
Re S44(m3) =0, (6.13)
with $44 being the renormalized A boson self-energy. This implies
dWm?% = Re L4(M3) (6.14)

and that the A bosons’s tree-level mass m 4 is equal to its physical mass M4 at the one-loop
level. We will therefore use the label M4 instead of m 4 in the following.

Furthermore, we demand that tadpole diagrams vanish to ensure that v, are still the
true vacua when considering higher-order corrections to the Higgs potential. Accordingly, the
tadpole counterterms have to be chosen as follows,

5Ty = -1V, 6Ty = -1, (6.15)

where T}(Ll) and Tg ) are the sum of the one-loop h/H tadpole diagrams.

In the on-shell scheme the field renormalization constants are normally chosen such that the
residua of the propagators are equal to one. It is in principle possible to use this prescription
here for the determination of the field renormalization of the A boson (see e.g. [6]). However, it
was shown that this procedure yields numerical unstable results. A better working alternative
is to renormalize the fields using DR renormalization conditions (for a discussion of this issue,
see [75]). The DR renormalization conditions for the field renormalization constants read

5 2y, = MW ZPR = — [Re B, (p7)] ", (6.16)
5D Zyy = 6W ZDR = — [Re S, (p7)] (6.17)

where X1, and X%, are the derivatives of the self-energies in the original gauge basis with respect
to p®. As said before, the off-diagonal field renormalization constant is not needed to cancel
divergences. Therefore, we fix it to be!

§M 715 = M ZDR = 0. (6.18)
Fixing the field counterterms, determines also the counterterm of tan 3,2

1 1
dtan B = 5tﬁ((smzn — W Zy0) + 5= 360 Z15. (6.19)

By this fixing the field renormalization counterterms as specified, a renormalization scale PR
is introduced. In principle, it can be fixed freely. In this thesis, the default value of FeynHiggs
is adopted, which is uP® = M,. This means especially that the input DR parameter tan 3 is
defined at the scale M;.

n Chapter 11, a non-zero finite part will be added to the off-diagonal field renormalization constant.
2Actually, the counterterm of tan 3 also contains a contribution from the vev counterterms, §(Dwg/ve —
6<1)v1/v1. In the DR scheme, this term is, however, equal to zero.
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6. Renormalization of the Higgs sector

6.1.3 Renormalized one-loop self-energies

Using the counterterms derived above, the renormalized self-energies of the h and H bosons can
be written in terms of the unrenormalized self-energies. The field renormalization counterterms
are necessary to cancel momentum dependent divergences.

Using the terminology of Eq. (5.8), the renormalized self-energies for the CP-even part of
the Higgs sector read as follows,

San(p?) = Sha(p?) + 6 Znn(p> — mj) — 6mi, (6.20a)
Sha(0?) = Sha(0?) + 6Znn (p* = (mj, + m%)/2) — dmjp, (6.20b)
f]HH(p2) :EHH(p2)+5ZHH(p2 —m%) —(5m%{, (6.20c)

with the counterterms from Egs. (6.6) and (6.10).

6.2 Two-loop renormalization

All two-loop corrections implemented in FeynHiggs are derived in the limit of vanishing external
momentum (for a study of momentum dependent effects at O(asa:) see [76, 77]) and vanishing
electroweak gauge couplings (often also denoted as gaugeless limit) which implies that

™
a— - 3 (6.21)
As mentioned in Section 4.6, the same relation holds in the decoupling limit, Mz /M4 — 0.
Correspondingly, all counterterms derived in this Section are only valid in the limit of these
approximations. The notation follows closely the one of [31], where also more details about the
renormalization as well as the applied approximations can be found.

6.2.1 Counterterms

All two-loop counterterms are introduced analogously to the one-loop counterterms as specified
in Egs. (6.1) and (6.2). First, we give the two-loop mass counterterms of the CP-even sector,

2
§@m? :Mf,c% (5(1)155)

- m [5<2>Th + 6<1>Th6(1>ZW} : (6.222)

5@z, M35ty + A5 M3S V1, — M3csy (5<1>tﬁ)2
- m [5<2>TH + 6<1>TH5<1>ZW] : (6.22b)
dPm2 =s@m?, (6.22c)

where 6(Y) Zyy combines the renormalization constants of the electromagnetic charge, the W
boson mass and the electroweak mixing angle. We will define it exactly in Section 6.3.
The two-loop field renormalization is introduced by extending Eq. (6.7),

Hi\ |, (1450020 + 382 360215+ 30 2y, Ha (6.23)
Ho 16WZ1,+ IADZ1, 1+ L6W 25 + 1A 725, ) \ M2 ) ’
where
1 2
Az, =822, - - (5(1)22»]») . (6.24)

Similarly, we introduce two-loop field renormalization constants in the mass eigenstate basis,

h 1+ 500 Zp, + 36® Zy, - 560 Zyg + 56%) Zyn h

H 150 2+ 250 Z0 14 260 Zygw + 162 2,0 ) \H ) (6.25)
3 hH T 3 hH 3 HH T 3 HH

A N 1+%5(1)ZAA+%5(2)ZAA %5(1)ZAg+%5(2)ZAG A (6.26)

G 10WZuc+26P 20 1+ 16WZae+ 360 Zce) \G ) '
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6.2. Two-loop renormalization

Hi 1 + %5(1)ZHiHi + %(5(2)ZHiHi %5(1)ZHigi + %5(2)ZHiGi Hi
G* %5(1)ZHigi + %5(2)ZHiGi 1+ %6(1)Zgztg:t + %6(2)ZG:tg:t G*
(6.27)

The two-loop field renormalization constants are related to the ones in the gauge basis via

8P Zpy = AABD Z11 + 5556 AD Z15 + sFAP 2o, (6.28a)

6@ Zup = spcs (A 211 = AP Z5y ) — 25 AD 21, (6.28b)
8P Zyp = 30D 211 — 5050 Z15 + EAD Zys, (6.28¢)
8P Zsa = 30D Z11 — 505 AP Z15 + EAR) Zyy, (6.28d)
8@ Zag = —sges (A(Q)Zu - A(2)222) + s A 7y, (6.28¢)
6P Zaa = cFAP Z1y + 5230 Z13 + 50D Zss, (6.28f)
8D Z s e = S%A(Q)Zu — SQﬁA(2)Zlg + C%A@)ZQQ, (6.28g)
8@ Zyige = —sgep (A<2>Z11 - A<2>ZQ2) + s A 7y, (6.28h)
8P Zgrgr = EADZ11 + 5050 Z15 + FAP Zoy. (6.281)

The two-loop counterterm for tan 3 is given by>

1
2
+ étﬁ {3 (5(1)le>2 — (5(1)222)1 — % (1 +2tg — t% — Qt%) (5(1)Z12>2

1 1 1
— te0" 21160 Zoy — - (1 - 2t3) 01 20160 21y — S50 21260 20y, (6:29)

1
st = 58 (5(2)222 - 5(2)le> + 5 (1—-13) 821,

Setting dZ12 = 0, we recover the relation given in [31].

6.2.2 Renormalization conditions
As in the one-loop case, we fix the A boson mass on-shell by the condition,
(2) (2) 2 | 5(2) L s 2
6@ =T 0h(0) = M3 [6D Zaa + 7 (5 ZAA)
— W Z406WM% — 6V Z,4660m?,. (6.30)

Here, we set the external momentum to zero due to the zero-momentum approximation in
which we work at the two-loop level. Consequently, field renormalization constants appear in
the definition of the counterterm.

The two-loop tadpole counterterms are fixed by demanding that the tadpoles vanish at the
two-loop level,

TP 45712 =0, (6.31)

where TZ-(Q) are the two-loop tadpoles of the i boson (i = h, H). The appearing two-loop tadpole
counterterms including field renormalization, labelled by 'Z’, are given by

1
oOTE = (6(1)Zhh5(1)Th + 5<1>ZhH5<1>TH) +6OT,, (6.32a)

1
T = 2 (5<1>ZHH5(1)TH + 6(1)ZhH6(1)Th) 6Ty, (6.32b)

These conditions allow to fix §¥)T} appearing in Eq. (6.22).

3In the gaugeless limit, the divergent parts of the two vev counterterms again cancel each other as in the
case of the one-loop counterterms.
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6. Renormalization of the Higgs sector

6.2.3 Renormalized two-loop self-energies

The renormalized two-loop self-energies are given by*

243 (0) = B (0) = 6m, (6.332)
S (0) = S§7(0) — 6@miy, (6.33b)
S0 (0) = 2573,(0) — 6@ mA, (6.33¢)
with the counterterms
1 2
6mf =M} (6(1)ZhH) 460 206D m2 4 60 2, psOm2 , + 6Pm2 (6.34a)

1
§@mz, =5 [(6(1)Zhh + 5(1)ZHH> sOm2, +6W 2,y (5(1)771%,, + J(I)m%)}

1 1
-+ ZM%(S(I)ZHH(s(l)ZhH + §M35(2)ZhH + 5(2)777%]1, (6341’))

4
+ 0 ZyrdOm? +6W 2,1 6Om2 ,, + 6@Pm?2,. (6.34c¢)

1 2
¥m% =M3 {5(2)ZHH + (5(1)ZHH) } )

The appearing one-loop counterterms have to be derived in the same approximation as all
other two-loop quantities. Applying the limit of vanishing electroweak gauge couplings and
vanishing external momentum to the relations in Section 6.1, we obtain

m,,2 _ ¢ )
omy, 2MW5W6 Th, (6.35a)
1), 2 _as2 2¢(1 € 1
6Wm2, =6 M3, (6.35¢)
SIm2 = — M226Wty + — S sy, 6.35d
AG ACB B My sy H ( )
Mm% =5W(0) — M36M Z4 4. (6.35¢)

We observe that the two-loop field renormalization constants appear exclusively in the Z-
dependent counterterms of Eq. (6.33), either directly or through the two-loop mass, tadpole
and tan 8 counterterms. In the combinations of Eq. (6.34) they completely drop out and hence
are not needed for the renormalized self-energies given in Eq. (6.33). This was already noted
for the diagonal field counterterms of O(a3) in [31].

6.3 Renormalization of other sectors

The two-loop renormalization of the Higgs sector also depends on other sectors, such as e.g.
the renormalization of the top and stop sector, which enters via one-loop subrenormalization.

The top-quark mass is fixed on-shell,
6Mm? = miRe [ (m?) + 2 () + 2505 (m3)| (6.36)
where the top self-energy is decomposed according to its Lorentz structure,

Si(p) = po_Sf (P?) + por S (0%) + mevsS7 (p%) (6.37)

with the chirality projectors

Wi = %(1 £ 7). (6.38)

4As mentioned above, we set the external momentum p? to zero, since the two-loop corrections used by
default in FeynHiggs are derived in the approximation of zero external momentum.
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6.3. Renormalization of other sectors

To resum QCD corrections, it is advantageous to additionally reparametrize the OS top mass
in terms of the SM MS top mass [78],

(M) = M, (146580 + 0531 (6.39)

with the SM QCD corrections (5QCD and the SM electroweak corrections 65 (for explicit
formulas, see e.g. [79]). This reparametrization induces additional finite two-loop terms.
The counterterms of the stop sector are derived from the stop mass matrix (see Eq. (4.6)),

M — M? + s M? (6.40)
with
SOM 0 mg, +0my med DX Xid g (6.41)
mté(l)Xt + Xté(l)mt 5(1)mth + (5(1)7’71? ’

The counterterm of X; is related to the counterterm of A; via

(6.42)

W i is the counterterm of the Higgsino mass parameter p, which we fix in the DR scheme.
To fix the remaining counterterms § 1)m , 6Mm ER and 6() X, we rotate the counterterm

matrix to the mass eigenstate basis (using the rotatlon matrix defined in Section 4.3),

5(1)m SWm2 .
1t2 to

and employ the OS scheme by imposing on-shell conditions for the stop masses M; and Mg,

§Wm2 =Re BV (M2), (6.44)

t1t1
dWm2 =Re B{) (M2). (6.45)

t1

A third renormalization condition fixes the mixing of the stops,

1
6Wm ;. = §Re[ E Z (M) + = (M2)], (6.46)

tltz t2

leading to

WX, = —

oy [(57”%1 - 5(1)m%2)U£,11U£,12

+6Wm t" 7, (Ui Ug 1o+ Uz 11Uz o) — Xté(l)mf] (6.47)

In later parts of this thesis, we will also employ the DR scheme for the renormalization of the
stop sector. In this case, the counterterms are still given by the equations written down above,
but the UV finite part has to be omitted.

Also the renormalization of the sbottom sector enters via one-loop subrenormalization. The
sbottom counterterms are introduced analogously to the stop counterterms. Different renor-
malization conditions have, however, to be chosen. Owing to the SU(2); gauge symmetry, the
following relation holds,

m2 = mtgL. (6.48)
Therefore, 6(1)m§L is not an independent counterterm but fixed by

5(1)m§L — 5(1)mt2 _Ufu(;(l) +U2 5(1)mt22

2Ut12Ut226 m? ;. —2m 6N my. (6.49)
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6. Renormalization of the Higgs sector

For the second sbottom mass, we impose the on-shell conditions by setting

sMm2 =Re ¥y ; (M3), (6.50)

The bottom-quark mass and the sbottom trilinear coupling A; are fixed in the DR scheme.

Not only third generation squarks enter at the two-loop level but also neutralinos and
charginos. As described in Section 4.4 and Section 4.5, they are mixtures of the bino, the
winos and the Higgsinos. The couplings of the bino and wino components vanish in the limit
of vanishing electroweak gauge couplings; only the Higgsinos have non-vanishing couplings
proportional to the Yukawa couplings.

Therefore, it is sufficient for the two-loop renormalization in the limit of vanishing elec-
troweak gauge couplings to renormalize only the Higgsino mass parameter p. As already men-
tioned above, we fix its counterterm in the DR scheme. Alternatively, also an on-shell condition
can be applied (see e.g. [31]).

Another counterterm relevant for the two-loop renormalization is §(Y) Zyy (see e.g. Eq. (6.22)).
It is given in terms of the renormalization constants of the electric charge, the W boson mass
and the sine of the electroweak mixing angle by

§We 5(1)MW 5(1)8W

oW Zy = 6.51
W= oy p— (6.51)
with (following from Eq. (2.9))
s 2 /s SO M
W v ( Z W) : (6.52)
SW SW MZ MW

The W and Z boson mass counterterms as well as the counterterm of the electric charge are
fixed using the OS scheme (see Section 6.1.2).

6™ Zy appears not only in the two-loop Higgs mass counterterms (see Eq. (6.22)) but also
enters via renormalization of the top- and bottom-Yukawa couplings. Due to (see Eq. (4.40))

my €my my emy
hy=—=——7— and hpy=—=———"—, 6.53
‘ V2 \/§858WMW ’ U1 \/ngSWMW ( )
the corresponding counterterms read

s S
§Why = hy ( A 5<1>ZW) : (6.54)

me tB

s §M¢
§Why = hy ( M 20 08y 5<1>ZW> . (6.55)

my

Instead, the Yukawa couplings can be reparametrized in terms of the Fermi constant G, as
performed in FeynHiggs. In that case, the relation

2

(&
2WGp=— (1+A )
V2Gr 4S%MV2V( + Ar) (6.56)

has to employed. MSSM predictions for the higher-order contribution Ar can be found in [80-
83]. The effect of this reparametrization in the one-loop self-energies is formally of two-loop
order.
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Chapter

Calculation of Higgs-boson masses

The most straightforward way to calculate loop corrections to the MSSM Higgs boson masses is
the Feynman diagrammatic (FD) approach (see Section 7.1). In practice, this means that the
Higgs self-energies are directly calculated by evaluating the corresponding Feynman diagrams.
Despite the conceptional simplicity, this method has some shortcomings. I.e. for non-SM
particles higher-order contributions, which are not feasible in the Feynman diagrammatic ap-
proach, become important. Such scenarios are easier to handle within an effective field theory
(EFT) framework. Renormalization group equations (RGEs) allow to resum the potentially
large higher-order corrections effectively (see Section 5.2). However, in this EFT framework
terms which are suppressed in case of a high SUSY scale are missed if no higher-dimensional
operators are included. They might be especially relevant for light SUSY spectra. To obtain a
precise prediction for low as well as high SUSY scales, we therefore combine both approaches.
This hybrid method is described in Section 7.3.

7.1 Feynman diagrammatic approach

In the Feynman diagrammatic approach, the prediction of the CP-even neutral Higgs boson is
based on the calculation of Higgs self-energies involving contributions from SM particles, extra
Higgs bosons, as well as their corresponding superpartners. In this approach the contributions
from all sectors of the model and of all particles in the loop can be incorporated at a given
order.

In the MSSM with real parameters, after calculating the renormalized Higgs boson self-
energies (i)hh, Shp and Sy 1), the physical masses of the CP-even Higgs bosons h, H can be
obtained by finding the poles of their propagator matrix, whose inverse is given by

ATl (p2 —mj, + SN (p?) 2 (p?) ) .
ZhM () p? = mi + SR (p?)

We introduced the label “MSSM” to indicate that the corresponding self-energy contains SM-
type contributions as well as non-SM contributions.

In FeynHiggs the full one-loop corrections to the Higgs self-energies as well as two-loop
corrections of O(auavs, apas, o, ayay, ) are implemented [8, 14, 19, 20, 22, 24, 27, 30, 31,
45-47] (o = yf,b/(47r) and as = g3/(4m)). While those two-loop corrections in the gaugeless
limit have been obtained for vanishing external momentum, there is furthermore an option to
incorporate the momentum dependence of the corrections at O(azas) [76, 77] (see also [84]).

Finding the (complex) poles corresponds to solving the equation

(7.1)

(o7 =+ SNNGA) (92— + SN - (BMENGD) =0 ()

In the decoupling limit, M4 > My, the physical mass of the lightest Higgs boson, which
becomes SM like, can be obtained as solution of the simpler equation

p? —mp + SpEM(p?) =0 (7.3)
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7. Calculation of Higgs-boson masses

up to corrections from the hH and HH self-energies, which are suppressed by powers of M4.
In the following discussion we will for simplicity use Eq. (7.3) for determining the pole of the
propagator and we will furthermore neglect the imaginary parts of $,5.0 In FeynHiggs the
complex poles of the propagator are obtained from the full propagator matrix, taking into
account the real and imaginary parts of the Higgs boson self-energies.

Solving Eq. (7.3) iteratively for the case where imaginary parts are neglected yields an
expression for the Higgs pole mass,

(Mit)pp = mi; — SRS (mi) + SN (mi) P (i) + . (7.4)

where the prime denotes the derivative of the self-energy with respect to the momentum squared.
We introduced the label “FD” to indicate that this formula represents the Higgs mass as
calculated in the Feynman diagrammatic approach. The ellipsis stands for terms involving
higher-order derivatives and products of differentiated self-energies. In App. B, we provide a
formula from which these terms can be derived recursively. At a given order, the Higgs pole
mass is obtained by expanding Eq. (7.4) to this order.

It is an advantage of the Feynman diagrammatic approach that it allows to take the mass
effects of all particles in the loops into account for any pattern of the mass spectrum. If there
is, however, a large splitting between the relevant scales, in particular a large mass hierarchy
between the electroweak scale and the scale of some or all of the SUSY particles, the fixed-
order result will contain numerically large logarithms that can spoil the convergence of the
perturbative expansion.

7.2 EFT calculation

Another approach to calculate the mass of the SM-like Higgs boson in the MSSM is using
effective field theory (EFT) methods. These allow the resummation of large logarithmic con-
tributions so that contributions beyond the order of fixed-order diagrammatic calculations can
be incorporated. Without including higher-dimensional operators in the effective Lagrangian,
contributions suppressed by a heavy scale are, however, not captured.

In the simplest EFT framework, all SUSY particles are integrated out from the full theory at
a common mass scale Mgysy which is defined by the geometric mean of the stop soft-breaking
masses, Msuysy = N (see Section 4.3). Below Mgysy the SM remains as the low-energy
EFT.2 The couplings of the EFT are fixed at two different scales.

The Yukawa couplings and the gauge couplings are obtained from physical observables at
the low-energy scale, typically chosen to be the OS top mass M; (or Mz). E.g., for the SM
top-Yukawa coupling and the SU(2)1 gauge coupling this would read

yt(Mt) = % (1 + Ayt) , (7-5)
g0y = Y2 (1 4 ng) (76)

where the Ay, and Ag represent higher-order corrections (full expressions are listed in [79]) and
v is the SM vev.

The remaining free coupling, the Higgs self-coupling A, is determined at the high-energy
scale Mgygy by matching the SM to the MSSM. In the MSSM, the Higgs self-coupling is not
a free parameter, but fixed in terms of the gauge couplings,

1
MMsusy) = 7(9° +g%) cos®(28) + A (7.7)
All couplings on the right side have to be evaluated at the scale Mgysy. A\ are higher-order
corrections. This relation represents the matching condition of .
To evolve the couplings between the low- and high-energy scale, renormalization group
equations are employed. Solving this system of coupled differential equations with boundary

1Since the SM-like Higgs boson mass is close to the electroweak scale, only light SM particles will yield a
contribution to the imaginary part. This contribution is negligible.
2In case of M4 ~ M; the effective theory is a Two-Higgs-Doublet model and not the SM, see Chapter 11.
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7.2. EF'T calculation

values at the scales M; and Mgysy, we obtain A(M;) effectively resumming all large logarithmic
contributions (see Section 5.2).
A(M;) determines the MS mass of the SM Higgs boson at the scale M; via

— 2
(mfsvSM) — 2A(M;) v, (7.8)

with the MS vev (at the scale M;). The MS vev can be related to the on-shell vev,

2%, M
vds = y, (7.9)
via the finite part of the corresponding counterterm,
'Uidis = U%S —+ 5(1)'0208 ﬁn, (710)
which is given by
5(1) 2 6(1)M2 5(1) 2 5(1) 2
Yos _ W WL 57, (7.11)

2 = 2 2
Vo9 My, o e

6 Zy, is the field renormalization counterterm of the SM Higgs field fixed in the MS scheme.
It is introduced by

1
P — (1 + 25(1)Zhh> Dgnr- (7.12)

Therefore, we have (with vy being the bare vev),

S pr2 sMg2 sV e2
v2 = v3g + 0Wvdg + 06 Zpy, = vdg (1 + w2 Cw_ 26 ) : (7.13)
w Sw €

as expected from Eq. (7.9).
Getting from the running mass (Eq. (7.8)) to the physical Higgs mass one has to solve the
pole equation for the Higgs boson propagator,

—_ 2 ~
Pt = (my®™M) + S50 = 0. (7.14)

involving the renormalized SM Higgs boson self-energy (denoted by a tilde)

1
Mo (7.15)

$SM 2y _ ySM (2 _
hh(p) hh(p>ﬁn \/ivM—S P

which is renormalized accordingly in the MS scheme at the scale M; but with the Higgs tadpoles
renormalized to zero, i.e. the tadpole counterterm is chosen to cancel the sum of the tadpole
diagrams, TSM, for the Higgs field,

STIM = M (7.16)
With all these ingredients, the Higgs pole mass is now obtained as the solution of the equation
M} = 2X(My)vds — S (ME). (7.17)

Expanding the Higgs self-energy perturbatively around the tree-level mass m? of the MSSM
yields

(MP)prr = 203 A(M;) — Sipt(m3)
= SN (m3) - [202A (M) — S (m3) = mi] + - (7.18)
where the ellipsis indicates higher-order terms in the expansion. We use the subscript “EFT”

to indicate that this formula is the Higgs mass as calculated in the EFT approach.
We discuss the current status of EFT calculations in Chapter 8.
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7. Calculation of Higgs-boson masses

7.3 Hybrid approach

The fixed-order approach can be combined with the EFT approach in order to supplement
the full diagrammatic result with leading higher-order contributions (this is the basic strategy
used in FeynHiggs). The logarithmic contributions resummed using the EFT approach are
incorporated into Eq. (7.3) in the following way,3

p? —mi + SPSM(p?) 4 ATFT = 0. (7.19)

The quantity AEET contains all logarithmic contributions obtained via the EFT approach as well
as subtraction terms compensating the logarithmic terms already present in the diagrammatic

fixed-order result for SMSSM,

AR = —[203AM)] o, — [ERSY ()] - (7.20)

log
The subscript ‘log’ indicates that only logarithmic contributions have to be taken into account.
For the EFT result, which is obtained by numerically solving the system of RGEs, this is
achieved in practice by subtracting all non-logarithmic terms contained in the result. These
can be extracted by an iterative analytic solution of the RGE system.

The logarithms contained in f]l,;/IhSSM (m?) appear only explicitly when expanding in v/Msusy-
They can be derived by either expanding the analytic MSSM result or again by iteratively solv-
ing the RGE system up to the two-loop order. Since an expansion for large Mgysy is difficult
at the two-loop level from a technical point of view due to the large number of terms in the
analytic MSSM result, we use the second alternative. It is important to reparametrize the
result of the iterative RGE solution such that all couplings and masses are defined exactly as
in the fixed-order result, i.e., Gp and either the OS top mass or the SM MS top mass has to
be employed for the parameterization of the derived subtraction term (see also Sections 6.3
and 10.2).

Having derived all subtraction terms, we calculate AEgT and plug it into Eq. (7.19). We
obtain for the physical Higgs mass

(Mi)ybria = mj, — SHEM(ME) + [203A(My)] o, + [ZRSY (m)] o, =

= m%b + [2’01%/[78)‘(Mt)]10g - [ilf\b/[hSSM (mi)] nolog
= SN () ([205A )] o = [ENESM M) ) + oo (7:21)

We use the label ‘nolog’ to indicate that we take only terms without large logarithms into
account for the labelled quantity. We again would like to stress that the large logarithms
(and thereby the meant non-logarithmic terms) appear only explicitly in ilﬁthSM(m,%) when
expanding in v/Mgyusy. In this way, we identify the non-logarithmic terms. The subscript
“hybrid” is used to indicate that this formula represents the Higgs mass as calculated in the
hybrid approach.

As discussed in Chapter 6, a mixed OS/DR scheme is employed for renormalization (default
choice in FeynHiggs). In contrast, in the EFT calculation, i.e. the calculation of A(M), all
SUSY parameters enter in DR renormalized form. Therefore, a conversion of the input paramet-
ers to the DR scheme becomes necessary. Since we will neglect the bottom-Yukawa coupling in
our EFT calculation and all two-loop contributions incorporated in the Feynman diagrammatic
calculation are derived in the limit of vanishing electroweak couplings, only the parameters of
the stop sector need to be converted. They enter first at the one-loop level. Therefore, a one-
loop conversion involving only large logarithmic terms is sufficient to reproduce the logarithms
of the Feynman diagrammatic calculation. The conversion of the stop masses does not involve
any large logarithms. The conversion of the stop mixing parameter X;, however, does,

o 30é X2 M2
xDR _ x0s Jq o [%s _ 2% (1 A )|, s L 7.22
t ¢ % 167 M2 " M} (7:22)

3For M4 ~ Msusy, the EFT approach allows only to resum logarithms appearing in the calculation of the
SM-like Higgs mass. It yields no information about the other non-SM Higgs masses. Motivated by the fact that
the top-Yukawa coupling is responsible for the dominant one-loop correction, we in practice include AEET into
the ¢pa¢a self-energy with a prefactor l/s%. In this way the shift also affects the hH and HH self-energies.
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7.3. Hybrid approach

Mg is the stop mass scale, Mg. = /M, M;,. Full conversion formulas taking into account also
non-logarithmic terms can be found in App. E.

A further issue to be discussed is the treatment of tan 8. In the EFT approach, tan 5 ap-
pears only in the matching condition of A at the SUSY scale (see Eq. (7.7)). This means that
the DR renormalized tan 3(Msysy) is required as an input of the EFT calculation. In the
Feynman diagrammatic calculation, tan 3 is also a DR renormalized quantity. The correspond-
ing renormalization scale, however, is chosen to be M; and not Msygy (see Section 6.1.2). In
consequence, we need to relate tan (M), which is used as input of the hybrid calculation, to
tan 8(Msusy). This presents a problem, since there is no proper way to define tan 3 in the
EFT below Msysy where the non SM-like Higgs bosons are integrated out. This problem has
already been noted in [85]. We find that without a running of tan 8 the EFT calculation does
not reproduce the one-loop result of the Feynmann diagrammatic calculation. This strongly
motivates to evolve tan 8 between M; and Mgsysy despite the lack of a rigorous definition.
In practice, we regard tan 3 as a high-energy parameter with an evolution according to the
one-loop RGE of the MSSM [85],

1 dtan®8 3,
tan?f dlnQ? = 1672 "

(7.23)

which is determined by the anomalous dimensions of the Higgs fields, with contributions only
from the top-quark loops. The parameter h; denotes the MSSM top-Yukawa coupling, which
at lowest order is related to the SM top-Yukawa coupling y; by

Yt = hysin B. (7.24)
Rewriting the RGE in terms of y; yields

1 dtan?f3 _ 3 5
1+tan?3 dlnQ? 16727t

(7.25)

Since only SM entries contribute to the running [85], the RGE has not to be modified for scales
below Mgsysy, even if passing an intermediate threshold. This method reproduces correctly the
one-loop result of the diagrammatic calculation.

In principle, for a NLL resummation also the two-loop RGE should be employed, which
for the MSSM can be found in [86, 87]. It is, however, unclear which contributions of the
two-loop RGE are due to SM particles and which are due to their supersymmetric partners.
From a practical point of view, numerical checks suggest that the two-loop running is negligible.
Therefore, only the one-loop RGE is used in this work.
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Chapter

Advances in the hybrid approach

The hybrid approach has first been introduced in [42]. Therein, only the resummation of leading
logarithms (LL) and next-to-leading logarithms (NLL) in the limit of vanishing electroweak
gauge couplings was considered. In this Chapter, we describe several improvements to the
EFT calculation implemented in FeynHiggs: the inclusion of electroweak contributions, the
implementation of separate gaugino/Higgsino thresholds as well as resummation of next-to-
next-to-leading logarithms (NNLL) in the limit of vanishing electroweak gauge couplings.

We will neglect the bottom-Yukawa coupling in our EFT calculation. Contributions pro-
portional to the bottom-Yukawa coupling enter, however, via the Feynman diagrammatic cal-
culation at the one- and two-loop level. Apart of this restriction, the improvements mentioned
above, bring the EFT part of the calculation to the same level of accuracy as available in pure
EFT codes.

8.1 Electroweak contributions

As a first improvement with respect to [42], we include electroweak contributions in the resum-
mation procedure at the LL and NLL level. Correspondingly, we use the full two-loop RGEs of
the SM (see App. F), including terms proportional to the electroweak gauge couplings to evolve
the SM couplings.

Another source of logarithms proportional to the electroweak gauge couplings at the NLL
level are one-loop threshold corrections. Therefore, the threshold correction of the Higgs self-
coupling at the SUSY scale has to be extended at the one-loop level by adding the various
electroweak one-loop contributions,

Asm(Msusy) :i(g2 +¢”%) c0s®(28) + AstopA + AncavyiiA + Apwinod + Apgp_ysh (8:1)
AgiopA is the contribution from the top and stop sector (extended by electroweak contribu-
tions in comparison to [42]); ApeavynA, the contribution from the heavy non-SM Higgs bosons;
AgwinoA the contribution from charginos and neutralinos. The term Agg_,35sA accounts for the
fact that the tree-level contribution is expressed in terms of MS renormalized gauge couplings
of the SM and not in terms of DR renormalized gauge couplings of the MSSM as well as that
the one-loop pure SM corrections differ in the MS and the DR scheme. All of these threshold
corrections have been derived in previous works [11, 36, 38, 85]. We use the expressions given
in [38], which are also partly listed in App. C. Accordingly, also the relations used to extract
SM gauge and Yukawa couplings from physical observables at M; must include electroweak
one-loop corrections [79]. This is especially relevant for the MS top-quark mass, respectively
the top-Yukawa coupling, as will be discussed later in Chapter 13.
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8.2 Gaugino/Higgsino thresholds

The assumption of a common mass scale for all SUSY particles is quite limiting. To allow for
electroweakinos (charginos and neutralinos) lighter than Mgygy (but still above the electroweak
scale), we introduce an additional electroweakino threshold at the scale M,. We assume that all
charginos and neutralinos are approximately mass degenerate (having masses similar to M, ),

MX ~ MI,MQ,,LL with Mz < MX < MSUSYa (82)

where M7 and Ms are the electroweak gaugino soft-breaking masses and p is the Higgsino mass
parameter.

This means that at Mgygy all SUSY particles but charginos and neutralinos are integrated
out. The corresponding EFT below Mgygy, denoted as split model, is the SM with charginos
and neutralinos added. The corresponding effective Lagrangian reads [38]

Lepiit =Lsm + (...)— % YWW — %MXBB — Mx(iﬂggz)Hd

- %HT <§2u0awa + gluB> Ha

- %(—Z'HTJQ) (g2daawa - gldB) Ha+ hec. (8.3)
with the bino field B , the wino fields W and the Higgsino fields ﬁd’u. The ellipsis stands for the
associated kinetic terms. The effective Higgs—Higgsino-gaugino couplings are labelled gi,,,....
The number in the subscript refers to the symmetry group U(1)y or SU(2)r, the letter to the
involved Higgsino. These effective couplings are determined by a one-loop matching of the split
model to the full MSSM at the scale Mgysy (explicit expressions have been derived in [36, 38|
and are list in App. C). All couplings are evolved between the electroweakino scale and the stop
mass scale using two-loop split model RGEs, which have been derived in [36, 38, 88] and are
listed in App. F.

At the scale M, all electroweakinos are integrated out, and the remaining EFT below M,, is
the SM. We match the SM to the split model using the threshold corrections derived in [36, 38]
and listed in App. C. Le., the term AgwinoA in Eq. (8.1) is now part of the matching condition
of A at M,,. Also the top-Yukawa coupling receives a threshold correction at the electroweakino
scale. Below M, the SM RGEs are used for evolving the couplings.

In addition to allowing for light charginos and neutralinos, we also consider the case of a
light gluino. This case is implemented by introducing an additional threshold marked by the
gluino mass Mj, below which the gluino is integrated out. The gluino is also assumed to be
heavier than the electroweak scale such that eventually the SM is recovered as the EFT close
to the electroweak scale. However, no assumption about the ordering of Mj and M, is made,
ie. Mgz < M, as well as Mz > M, is allowed. Since the gluino does not couple directly to the
Higgs boson, no additional one-loop matching condition for A has to be considered. The same
argument applies for the electroweak gauge couplings, the Yukawa couplings (in the absence of
sfermions) and the effective Higgs—Higgsino—gaugino couplings of the split model. An explicit
calculation also shows that the strong gauge coupling does not receive a threshold correction.
However, the presence of the gluino in the EFT above Mj modifies the RGEs (see App. F).

8.3 NNLL resummation

As a further improvement, we include resummation at the NNLL level. This is restricted to the
dominating contributions resulting from the top-Yukawa coupling and the strong gauge coup-
ling. NNLL resummation at this level requires two-loop threshold corrections of O(asay,a?).
Therefore, we extend Eq. (8.1) by the corresponding two-loop contributions,

1
)‘SM (MSUSY) :1(92 + 9/2) C082(25) + Astop)\ + AheavyHA + AEWino)\ + Aﬁ_)m)\

+ Aaa A+ Ag2 A (8.4)

The O(as, ay) corrections have been derived in degenerate form (meaning that all involved
SUSY masses are assumed to be equal) in [37], based on [18], and in non-degenerate form
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8.3. NNLL resummation

in [38]; the pure top-Yukawa correction O(a?) have been obtained in degenerate form in [37,
40], based on [18], and in non-degenerate form in [41]. In FeynHiggs, both O(asay) and O(a?)
threshold-corrections are implemented in degenerate as well as in non-degenerate form. The
non-degenerate expressions are listed in App. C.9.

Also the matching conditions for the SM gauge and Yukawa couplings to physical observables
at the scale M; have to be extended to include the O(a2, asay, o) corrections. These are taken
from [79]. The matching condition for the top-Yukawa coupling involves the MS top-quark
mass which for NNLL resummation is obtained from the pole mass by means of the standard
QCD and top-Yukawa corrections at the two-loop level [79].

Furthermore, three-loop RGEs are needed for the coupling constant evolution. Since only
NNL logarithms of O(as, ay) are to be resummed, we neglect the electroweak gauge couplings
at the three-loop level of the needed RGEs.

All couplings of electroweakinos, being present below Mgygy for M, < Msysy, are propor-
tional to the electroweak gauge couplings when their matching conditions at Mgygy are plugged
in. In consequence, their presence has no influence on the form of the three-loop RGEs at this
level of approximation. Hence for all considered hierarchies at all scales below Mgysy, the
needed three-loop RGEs are just the corresponding SM RGEs, which are well known [89-95]
and listed in App. F. The same argument implies that the two-loop matching conditions of A
do not have to be modified for M, lower than Msysy.

In the case of a gluino being lighter than the SUSY scale, we also do not have to modify
any threshold corrections. The two-loop threshold correction of the Higgs self-coupling derived
in [38] is valid for arbitrary gluino masses. Below Mgysy, the gluino couples only via gluon—
gluino—gluino vertex since no squarks are present. Therefore, it affects the Higgs self-coupling
only from the three-loop level on. The top-Yukawa coupling is influenced from the two-loop
level on. These modifications are beyond the order of NNLL resummation. A light gluino,
however, does lead to modifications of the RGEs of the three-loop RGEs. These modifications
are unknown. The effect of three-loop running was, however, found to have negligible influence
on the final result for M}, (see e.g. [39]). Therefore, we expect also the modifications due to the
presence of a gluino to be negligible and use the SM three-loop RGEs for all possible hierarchies.
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Chapter

Scheme conversion of input parameters

As mentioned in Section 6.3, the fixed-order calculation used for our hybrid approach by default
employs the OS scheme for the renormalization of the stop sector. Pure EFT calculations, how-
ever, are typically done in the DR scheme. This means in particular that the input parameters
of our hybrid calculation and the pure EFT calculations have different definitions. Therefore,
a parameter conversion from the OS to the DR scheme or vice versa is crucial for a compar-
ison of our hybrid approach to pure EFT calculations (we will perform such a comparison in
Chapter 10).

In this Chapter, we discuss issues related to this conversion between parameters of OS and
DR renormalization schemes. We will focus on the case where DR parameters are used as main
input. These are then converted to the OS parameters which are inserted into our result in
the OS scheme. It should, however, be stressed that the related problems are not intrinsic to
the OS approach. The same problems would occur if a DR result were used with OS input
parameters. Note that the prediction for the mass of the SM-like Higgs boson within the MSSM
is particularly sensitive to higher-order effects of this kind through the pronounced dependence
on the stop mixing parameter X;, which receives large corrections when converting from the
DR to the OS scheme or vice versa.

In the case where fixed-order results at the n-loop level obtained in two different renorma-
lization schemes are compared with each other, and higher-order logarithms are unknown and
not expected to be particularly enhanced, it is well known that the results based on the same
type of corrections in two schemes differ by terms that are of O(n 4 1). The same is true for
different options regarding how to perform the parameter conversion that differ from each other
by higher-order contributions. The numerical differences observed in such a comparison can
therefore be used as an indication of the possible size of unknown higher-order corrections.

The situation is different, however, in the case that we are considering here, since the
comparison is not performed between fixed-order results but between results incorporating a
series of (resummed) higher-order logarithms. It is crucial in such a case that the correct form
of the higher-order logarithms that can be derived via the EFT method, which in our case arise
from the large splitting between the assumed SUSY scale and the weak scale, is maintained
in the parameter conversion. We will demonstrate below that the parameter conversion that
is usually applied for a comparison of renormalization schemes in fixed-order results does not
maintain the correct form of the higher-order logarithms. Since those higher-order logarithms
are numerically important, a conversion carried out in the described way leads to very large
numerical discrepancies for large values of the SUSY scale.

9.1 Conversion between DR and OS parameters applic-
able to fixed-order results

The most straightforward method used for the conversion of DR input parameters to OS para-
meters in fixed-order results is to derive the shift between a parameter p in the two schemes

according to p©S = pﬁ + Ap at the considered loop order, see e.g. [96].
The input parameters of our calculation are the soft-breaking masses of the squark and
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9. Scheme conversion of input parameters

slepton sector, the soft-breaking trilinear couplings, the soft-breaking masses of the gaugino
sector, the mass of the CP-odd Higgs boson, the Higgsino mass parameter p as well as tan 3.
The soft-breaking masses and trilinear couplings of the slepton sector and of the first and second
generation squarks as well as the bino and wino soft-breaking masses, M7 and Ms, appear only
at the one-loop level of our fixed-order calculation.! Therefore, their renormalization scheme
is not fixed. The same is true for the gluino soft-breaking mass M3, which appears only at
the two-loop level. Ay, u and tan 3 are already fixed in the DR scheme (see Chapter 6). The
conversion of the input mass M 4 has numerically a very small effect and is therefore neglected.
For the remaining parameters my, , m;j_, m;_and A; a one-loop conversion is employed.

The corresponding full one-loop level conversion formulas, including logarithmic as well as
non-logarithmic terms, read

oS DR
2 2 1 2
(mEL) = (m{L) + 6( )mEL ﬁn, (91)
oS DR
2 2 1 2
oS DR
(ng) - (m%R) + 5(1)mth ’ (9'3)
A9S = APR 4 5(1) 4, . (9.4)

Here, the shifts between the OS and DR parameters are given by the finite parts of the associated
OS counterterms, which are defined in Eqs. (6.41) and (6.42).

Alternatively, we can also rotate to the corresponding mass eigenstate basis (see Eq. (6.43))
and substitute A; by X; (see Eq. (4.5)). Then, we need to convert the stop masses and the
stop mixing parameter,

PR
2 2 1 2
_1\4-{1 — (mgl) —’—5( )mfl ﬁn, (9.5)
PR
2 2 1 2
MfQ = <m~2) +5( )mfz ﬁn’ (96)
PR
2 _ 2 1 2
52 = (m62> +5( )m& n, (97)
X208 = xPR 4 50X, . (9.8)

The mass counterterms are determined in Eq. (6.44), Eq. (6.45) and Eq. (6.50). The counterterm
of X; is given in Eq. (6.47). Explicit conversion formulas are listed in [19, 20, 22, 78] and in
approximated form in App. E.

This conversion of input parameter has to be distinguished from the conversion necessary to
combine the fixed-order calculation and the EFT calculation in our hybrid approach. The on-
shell parameters obtained as described above are used as input of the overall hybrid calculation
containing the OS renormalized fixed-order calculation. For the EFT calculation, this OS
stop mixing parameter is then converted back to the DR scheme using a one-loop conversion
containing only large logarithms according to Eq. (7.22). This means in particular that the
knowledge of the initial DR parameters is not used any further once the conversion to OS
parameters has been carried out. While this procedure is suitable for fixed-order results, it
leads to problems if results containing a series of higher-order logarithms are meant to be
converted.

Indeed, converting DR input parameter to the OS scheme and using the in this way obtained
OS parameters as input for an OS calculation incorporating higher-order logarithms generates
additional higher-order terms. These cause a deviation in the logarithmic contributions. This
can be seen by investigating the Higgs self-energy up to the two-loop level where the parameter
X 08 obtained from the conversion has been inserted,

B &(1),08 & (2),08
SOS(X0%) = U O5(X05) 4 £2105 (X 08). (9.9)

LAll two-loop corrections are calculated in the limit of vanishing electroweak gauge couplings. In addition,
the first and second generation Yukawa couplings are negelected.
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9.2. The case of large higher-order logarithms

Using instead Eq. (9.8) to write XS in terms of XPK,

SRS = SPOCOPR 4 AX) + 2R (XPT 4 AXy), (9.10)
where we replaced §(V) X, . by AX; for an easier notation. Performing an expansion in AX;
yields !

. . — 9 . — . —
SERXE) = S O ¢ | S P | A 5 )
o - _
+ | B P i+ 0(ax?) =
DR/ DR 0 «(2),08, vDR
= SPR(XPR) + {axtz;h) (XPR) | AX, + O(AXD). (9.11)

Thus, the obtained expression obviously differs from the original DR result by terms of 3-loop
order and beyond.

Here, we only wrote down explicitly the conversion of X;. To exactly recover the DR
renormalized self-energy, also the other OS parameters have to be converted.

9.2 The case of large higher-order logarithms

The higher-order terms in Eq. (9.11) that are not present in the original DR result contain
in general logarithmic contributions which for a result containing a series of higher-order log-
arithms cause a deviation from the logarithmic corrections determined via the RGE. In our
numerical discussion in Chapter 13 below, we will demonstrate that those higher-order contri-
butions that are induced by the parameter conversion can be indeed numerically sizeable.

In a hybrid approach, as pursued in FeynHiggs, where a fixed-order result in the OS scheme
is combined with higher-order logarithmic expressions expressed in the DR scheme, there is a
further issue. It concerns the DR value of X; used in the EFT part of the calculation. Only
logarithmic terms are kept in the relation between XP®, as used in the EFT calculation, and

XPS, see Eq. (7.22). If instead an input value for XP® were converted to X% using the full
one-loop contributions according to Eq. (9.8), the stop mixing parameter used in the EFT
calculation of FeynHiggs would differ from the input parameter.

In order to properly address the case where DR parameters associated with a result con-
taining a series of higher-order logarithms are used as input for our calculation, we follow the
strategy to perform the parameter conversion in the fixed-order result rather than in the infinite
series of higher-order logarithms. For this purpose we have extended the fixed-order calculation
implemented in FeynHiggs such that the incorporated fixed-order result is given in terms of
the DR parameters XPR, m}iR, ng (the corresponding soft-breaking parameters are used as
the actual input parameters). This new result complements the existing result that is given
in terms of the on-shell parameters X 29, M, M;,. The reparametrisation on which the new
result is based can be viewed as the parameter conversion described in the example of the
previous section, but truncated at the two-loop level,

SEROKO%) - SO + | S SRS | ax, = SPRGPY. 9a2)
We have used the same procedure also for the stop masses. The two-loop terms that are induced
by the conversion at the one-loop level have been added to the two-loop result derived in the
on-shell scheme in order to arrive at the corresponding expression in the DR scheme. Explicit
expressions for these additional terms can be found in App. A. Using the above result given in
terms of DR parameters, the value of X, that is used in the EFT part of the calculation equals
the DR input parameter.
Accordingly, depending on the provided input parameters the evaluation of the prediction
for the mass of the SM-like Higgs boson proceeds in the following ways:

e For on-shell input parameters the on-shell fixed-order result is combined with the higher-
order logarithms obtained in the EFT approach, where XP® used in the EFT calculation
is related to X% as specified in Eq. (7.22).
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9. Scheme conversion of input parameters

e For DR input parameters in a high-scale SUSY scenario where the impact of higher-
order logarithms is expected to be large, the DR fixed-order result is combined with the
higher-order logarithms obtained in the EFT approach, where the XP® used in the EFT
calculation is set equal to the corresponding input parameter.

e For DR input parameters in a low-scale SUSY scenario where the impact of higher-order
logarithms is expected to be small, both the fixed-order DR result and the fixed-order
on-shell result can be employed, where for the latter the parameter conversion described
in the previous section is used.

For the input parameter m,., we still use a one-loop conversion as specified in Eq. (9.3).
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Comparison between different approaches

In the following we will discuss the differences between the various approaches presented in
Chapter 7. It is obvious from the discussion of the previous Chapters that the diagrammatic
fixed-order result and the pure EFT result differ by higher-order logarithmic terms that are
contained in the EFT result but not in the diagrammatic fixed-order result as well as by non-
logarithmic terms that are contained in the diagrammatic fixed-order result but not in the pure
EFT result. In the hybrid approach the diagrammatic fixed-order result is supplemented by
the higher-order logarithmic terms obtained by the EFT approach.

We focus in the following on the comparison between the hybrid approach and the pure
EFT result. In the present Chapter we leave aside issues related to the used renormalization
schemes, which were addressed in Chapter 9. While the hybrid approach and the pure EFT
approach both incorporate the higher-order logarithmic terms obtained by the EFT approach,
this does not necessarily imply that all logarithmic terms in the two results are the same.
This is due to the fact that the determination of the Higgs boson masses from the poles of
the progagators within the hybrid approach is performed in the full model (in the example
considered here the MSSM, incorporating loop contributions from all SUSY particles), while in
the EFT approach it is determined in the effective low-scale model (in the considered example
the SM). We will demonstrate below that the determination of the propagator pole in the
hybrid approach generates logarithmic terms beyond the ones contained in the EFT approach
at the two-loop level and beyond which actually cancel in the limit of a heavy SUSY scale with
contributions from the subloop renormalization. This cancellation is explicitly demonstrated at
the two-loop level. We will furthermore discuss the difference in non-logarithmic terms between
the results of the hybrid and the EFT approach.

10.1 Higher-order logarithmic terms from the determin-
ation of the propagator poles
In the EFT approach where the Higgs boson mass is determined as the pole of the propagator

in the SM as the effective low-scale model, while the SUSY particles have been integrated out,
the logarithmic terms are given by (see Eq. (7.18))

(MP)ger = [20ZANM)],  — 93 (m}) [202 A (My)], + ... (10.1)

log log

The logarithmic terms contained in the result of the hybrid approach are given by (see Eq. (7.21))

O~ g, S ][],
= SR (i) [203 A M)] o, - (10.2)

In the decoupling limit (M4 > M;, where in particular the light CP-even Higgs boson has

SM-like couplings), we can split up the MSSM Higgs self-energy f]thSSM into a SM part and a

non-SM part,

S0 oM (mi) = E (mi) + SRS (). (10.3)

49



10. Comparison between different approaches

In the mixed OS/DR scheme of the full diagrammatic calculation, the Higgs field renorma-
lization constants are fixed in the DR scheme. For scalar propagators, there is no difference
between the DR and the MS scheme at the one-loop level. Consequently,

Zi (m7) = Z33 (m}) (10.4)

holds (as in Chapter 7, we here use the hat to denote quantities renormalized in the mixed
OS/DR scheme presented in Chapter 6 and the tilde to denote MS renormalized quantities).

Using this relation, we obtain for the difference between the higher-order logarithmic terms
from the determination of the pole of the propagator obtained in the EFT and the hybrid
approach

Alog_(Mh)log (M}%)EET:
= [Srsmp)] [N nR)] - S nd) (A, e (105)

nolog

log
= A,
p2

Since this difference, which is of two-loop order and beyond, results only from the momentum
dependence of the non-SM contributions to the Higgs self-energy, we call it A;Ozg in the following.

We give analytic expressions for Ai)ozg in App. B.

In Section 10.3 we will demonstrate at the two-loop level that in the limit of a heavy SUSY
scale the quantity A;Of consisting of “momentum-dependent non-SM contributions” as given
in Eq. (10.5) cancels out with contributions of the Higgs self-energy’s subloop renormalization.
Before we address this issue we first compare the non-logarithmic terms in the two approaches.

10.2 Non-logarithmic terms

In the EFT approach, the non-logarithmic terms are given by (see Eq. (7.18))

(MR yst = [22 M), — SE (m3)
S (2 ( 202 MM, — Skl (m3) — mi) o (10.6)

By construction, all non-logarithmic terms contained in the result of the hybrid approach
originate from the fixed-order diagrammatic calculation (see Eq. (7.21)),

(Y™ = mi — [SMMend)| -+ [BRmR)] [EMM D] (0)

nolog nolog

Deviations A"°8 between the non-logarithmic terms in the hybrid approach and the EFT
approach arise from the following sources,

A1 = (MRY% — (MR)SE = ATNE,, + Aes + AT, (10.)
We explain the different terms below.

Since all non-logarithmic terms in the hybrid approach originate from the fixed-order dia-
grammatic calculation, one- and two-loop terms that are suppressed in case of a high SUSY
scale, Ag%‘}g o+ are included in the result of the hybrid approach. Terms of this kind would
result from higher-dimensional operators in the EFT approach. Those terms that are included
in the hybrid result as implemented in FeynHiggs but not in the publicly available pure EFT
results constitute an important source of difference between the corresponding results, which
is expected to be sizeable if some or all SUSY particles are relatively light (see also [41] for
a discussion of contributions of this kind in the EFT approach). It should be noted that in
general terms of O(v/Mgsuysy) also originate from solving the full pole mass equation, Eq. (7.2),
rather than the approximated one, Eq. (7.3).

At zeroth order in v/Msysy, the non-logarithmic terms of the EFT approach contained
in A(M) in Eq. (10.6) agree with the non-SM contributions in Eq. (10.7). They result from
the threshold corrections at the matching scale Mgysy. These threshold corrections are so far
only known fully at the one-loop order. At the two-loop order only the O(asay, a?, azap, o)
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10.3. Terms arising from the determination of the propagator poles at the two-loop level

corrections are implemented in publicly available codes so far. Thus, those terms in the non-
logarithmic product of self-energy times derivative of the self-energy being not of O(a?, ayap, o)
are not present in (M, ,3)EFT. At higher orders, all terms involving a derivative of XA]Z?L“SM are
affected. Therefore, we can write

ARE = [ShesMim)] S|
nolog nolog
_ [igc})lnSM/(,n,ﬂ )] Olat,a) [EMSSM (m2 ):| Olas )

h hh h

nolog nolog

+ {higher—order terms involving (9/8p?)"L5onSM 1y > 1} . (10.9)

As we will demonstrate in the following section, also the non-logarithmic non-SM contributions
arising from the determination of the pole of the propagator cancel out with contributions of
the subloop renormalization in the limit of a high SUSY scale.

Apart from these terms and from the non-logarithmic terms of O(v/Mgugy) discussed above,
Ancloe a further difference between the hybrid approach and the EFT aproach is due to

v/Msusy’

the parametrization of the non-logarithmic terms, An°19%

parac- In the EFT approach all low-scale
parameters are MS quantities. The results of our hybrid approach, on the other hand, are
expressed in terms of on-shell parameters. For the top-quark mass both the results expressed in
terms of the pole mass, M;, and the running mass at the scale My, T, (M;) (see [78] for details
on the involved reparametrization) have been implemented. As explained in Section 6.3, the
Higgs vev is a dependent quantity in our renormalization scheme which is expressed in terms of
the on-shell quantities My, sy and e according to Eq. (7.9) (and furthermore reparametrized
in terms of the Fermi constant G, see Eq. (6.56)). Accordingly, the non-logarithmic terms in
the EFT approach are parametrized in terms of the MS quantities m;(M;) and vyg(M), while
depending on the option chosen for the top-quark mass the non-logarithmic terms in FeynHiggs
are expressed in terms of either i (M;) and vg, or M; and vg,, where we substituted the
Fermi constant by vg,.,

) 1
VG, = —F——-
P 9V2Gk

Those parametrizations differ from each other by higher-order terms. The observed differences
are therefore related to the remaining uncertainties of unknown higher-order corrections.

It should be noted that also within the EF'T approach there is a certain freedom for choosing
different parametrizations. For instance, the threshold corrections at the matching scale can be
expressed in terms of the SM MS top- Yukawa coupling or in terms of the MSSM DR top- Yukawa
coupling.

(10.10)

10.3 Terms arising from the determination of the propa-
gator poles at the two-loop level

We saw in Section 10.1 and Section 10.2 that the different determination of the propagator
pole in the hybrid approach and the EFT approach gives rise to both logarithmic and non-
logarithmic contributions in which the expressions given for the two approaches differ from
each other. We will now explicitly demonstrate at the two-loop level that those differences in
fact cancel out in the limit of a heavy SUSY scale if all the relevant terms at this order are
taken into account.

As a first step, we write down the correction to M7, derived by an explicit diagrammatic
calculation. At strict two-loop order, we obtain

& MSSM, (1 & MSSM, (2
(MfQL)FD = m% — X ( )(m%) — X ( )(m%)

&nonSM, SSM, SMSSM, (1
+ (Zhh W(m2) + S5y “”(mi)) SMSSML() (2, (10.11)

The superscripts indicate the loop-order of the corresponding self-energy.*

I In our discussion here we treat the two-loop self-energy as the full result containing all contributions that
appear at this order. The specific approximations that have been made at the two-loop level in FeynHiggs will
be discussed below.
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10. Comparison between different approaches

We obtain the renormalized two-loop self-energy from the unrenormalized one via

EMSSM,(Q) (m2)

MSSM, (2)
hh n) =2

=X, (m3) + (two-loop counterterms) + (subloop-ren.). (10.12)

The subloop-renormalization can be derived from the one-loop self-energy via a counterterm-
expansion. Expressing all couplings appearing in the one-loop self-energy through masses di-
vided by vg,. (for the remainder of this section we drop the subscript “Gg”, i.e. we use the
shorthand v = vg,. ), we can write

(subloop-ren.) =

= (52 SN SIS 12 S (M SUSSILD) 12) 4 (fcld ren.). =

Jv2 hh m;
(00*)MSSM - nissn (1 9« MsSM, (1
= =T i)+ D Em) MM S () 4 (freld xen.),  (10.13)
. . & MSSM, (1) 9 . .
where we used in the last line that ¥, o 1/v* if all couplings are expressed by the

respective mass divided by v. The superscript “MSSM” for the counterterms is used to indicate
that these are the counterterms of the full MSSM.

We are interested in terms involving the finite parts of the derivative of the Higgs self-
energy, i.e. terms which could potentially cancel the term proportional to iZZﬂSM’(l)/(m%) in
Eq. (10.11). At first sight it would seem that terms of this kind could arise from an on-shell field
renormalization of the Higgs field. It is well-known, however, that those field renormalization
constants drop out of the prediction of M}, order by order in perturbation theory (as explained
in Chapter 6, we employ a DR renormalization for the Higgs fields). Also the mass counterterms
as well as the genuine two-loop counterterms do not contribute terms that are proportional to
EZZHSM’(l)/(m%). The only remaining term is the vev counterterm (with the vev parametrized in
terms of the Fermi constant). According to Eq. (7.11) and Eq. (6.56) it is given at the one-loop

level by, having the same form in the SM and the MSSM,

2 2
v M,

MZ MG

2 2 2 2 2 2
ov*  OMy, N CTW ((5MZ 5MW> B 5% —Ar—6Zu. (10.14)
Sy €

The renormalization constant 67 represents within the MSSM the DR field renormaliza-
tion constant of the SM-like Higgs field, while in the SM it is understood to be the MS field
renormalization constant of the Higgs field.

We verified by explicit calculation that in the limit of a large SUSY scale the following
relation holds,

5,02 MSSM 502 SM ~non
( )2 - Uz) — X SMW m2) + O(v/Msusy).- (10.15)

v

Using this relation, we can rewrite the two-loop self-energy (omitting terms of O(v/Msusy)),

SMSSM, (2) _ ¢MSSM,(2) SnonSM, (1)/ SMSSM, (1)
Zhh (mj,) =2y, (mj) (502)MSSM_ (52)5M Zhh (m7,) Sy, (mj,), (10.16)

where the subscript ‘(6v%)MSSM — (§502)SM i5 used to indicate that the MSSM vev counterterm,
appearing in the subloop renormalization, is replaced by its SM counterpart.
Plugging this expression back into Eq. (10.13) and Eq. (10.11), we obtain

SMSSM,
(M)pp = m3 — Sy W ()

SMSSM,(2) &nonSM, (1)7 SMSSM, (1)
- (Zhh (mj,) (502)MSSM _s (§42)5M + X (mIQz)Zhh (mi))

2 nonSM, (1 ~SM, (1 ~MSSM, (1
(SO () + SO () ) SN () =

2 &MSSML(1), 2y &MSSM,(2), 2
=my Ehh (mh) Zhh <mh)‘(5v2)MSSM_>(5U2)SM

&SM, (1 SMSSM, (1
+ X ( )I(mi)zhh ( )(m,%) (10.17)

52



10.3. Terms arising from the determination of the propagator poles at the two-loop level

We observe that the corresponding subloop renormalization term cancels in Eq. (10.11) the

term f)ianM’(l)'(m,%) involving the non-SM contributions to the Higgs self-energy by which the

determination of the propagator pole in the hybrid approach differs from the EFT approach.

The origin of Eq. (10.15) is the different normalization of the SM-like MSSM Higgs doublet
®pssv and the SM Higgs doublet ®gy. Comparing the derivative of the two-point function,
appearing in the LSZ factor of amplitudes with external Higgs fields,? we obtain in the limit of
a heavy SUSY scale,

1 1.
Prissm (1 + 222@*”“”(%)) = Dy (1 + 22;?24’(”’(7112)) , (10.18)
or equivalently
1. non
Pprissm = Psu (1 - §Ehh SM’(l)’(mi)> . (10.19)

Expressed in terms of a relation between the counterterms of the vevs, this implies Eq. (10.15).

While as mentioned above the Higgs field renormalization constant drops out in the Higgs
mass prediction order by order, it is nevertheless noteworthy that the introduction of an OS
field renormalization constant would lead to

SASM (m3) |5 gos =0 (10.20)
h
and

(JUZ)MSSM|6Z’?}LS _ (602)SM‘52}?’1S7 (1021)

implying that no terms involving EE%“SM’ appear in the subloop renormalization at the two-loop
level.

While we have demonstrated this cancellation at the two-loop level, it is to be expected that
it would also occur at higher orders. Explicit formulas for higher-order terms of this kind are
given in App. B. While the described cancellation occurs at the full two-loop level, only partial
cancellations occur between the full one-loop self-energy times its derivative and the two-loop
self-energy if for the latter certain approximations are made.

In the fixed-order calculation implemented in FeynHiggs, the two-loop self-energies are de-
rived in the gaugeless limit (i.e., two-loop corrections of O(asat, asay, i, aray, i) are incor-
porated [19, 20, 22, 24, 30, 31]), and by default the external momentum of the two-loop graphs
is neglected. Accordingly, all O(a?, a;ay, a%) non-SM terms arising through the determination
of the propagator pole at the two-loop level are cancelled in the limit of a large SUSY scale by
corresponding subloop renormalization contributions within the diagrammatic calculation (the
determination of the propagator pole obviously does not give rise to terms of O(asay, asayp)). In
previous versions of FeynHiggs, we have already taken this issue into account and constructed
the subtraction terms according to Eq. (7.20) in order to not subtract logarithmic contributions
that are needed for the cancellation with the corresponding terms arising from the determin-
ation of the propagator poles. For terms arising through the determination of the propagator
pole beyond O(a?, aiay, o ), however, the cancellation in the limit of a large SUSY scale did not
occur because the corresponding contributions in the irreducible self-energies at the two-loop
level and beyond are not incorporated. In order to avoid unwanted effects from an incomplete
cancellation, we have removed the uncompensated terms arising from the determination of the
propagator pole in FeynHiggs.

21t should be noted that such an LSZ factor enters in the EFT approach via the matching condition at the
high scale.

93






oo 1 1

Resummation for low M 4

The discussion in the previous Chapters has focused mainly on single scale scenarios, in which
all non-SM particles share a common mass scale (and split scenarios with low mass electroweaki-
nos). In this Chapter, we will discuss another class of phenomenologically interesting scenarios,
namely scenarios with light non-SM Higgs bosons. In this case the low energy EFT is not well
described by the SM but better by a Two-Higgs-Doublet-Model (THDM). After discussing the
EFT calculation incorporating such an effective THDM, we will focus on the implementation
of this EFT calculation into the hybrid framework of FeynHiggs.

11.1 EFT calculation

With respect to the EFT calculation discussed in Chapter 8, we take into account one additional
mass scale: the non-SM Higgs boson scale M. M, marks the scale at which the non-SM
Higgs are integrated out. Consequently, we have a set of eight different EFTs: the SM, the
SM plus electroweakinos, the SM plus gluino, the SM plus electroweakinos and gluino, the
THDM, the THDM plus electroweakinos, the THDM plus gluino as well as the THDM plus
electroweakinos and gluino. Leaving aside the gluino threshold, this results into three different
low M 4 hierarchies (see Fig. 11.1).

In the corresponding EFT calculation, we take into account full one-loop threshold correc-
tions and full two-loop RGEs. This implies full LL and NLL resummation. Additionally, we
include O(asa;) matching conditions for the Higgs self-couplings. O(a?) threshold corrections
for matching the THDM to the MSSM are currently not known. Moreover, three-loop RGEs for
the THDM are not yet available. Since the SM three-loop running is negligible, one may believe
that this also holds for the three-loop THDM running [97]. Nevertheless, the resummation of
NNLL contributions is incomplete.

11.1.1 Relevant EFTs

Here, we give a brief overview of the various EFTs appearing in the various hierarchies. We
already described the SM and the SM plus EWinos in Chapter 8. We will not describe EFTs
with gluino, since the presence of the gluino does not induce any effective couplings. It, however,
does alter the RGEs (see App. F).
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11. Resummation for low M4

Msusy, M, Msusy Msusy
THDM THDM-+EWinos THDM+EW:inos
My My M,
SM-+EWinos THDM
SM My My
SM SM
M, M, M,

Figure 11.1: EFT towers covered for various hierarchies (gluino threshold not shown).

The Two Higgs Doublet Model

Decoupling all sfermions, gauginos and Higgsinos from the full MSSM leads to a THDM as the
remaining effective theory below the SUSY scale. The THDM Higgs potential can be written
as follows,

1 1
Verpm (@1, ®2) =m2®{®y + mi®ldy — m2,(d1 0, + ¢1d,) + §A1(q>{q>1)2 + 5Ag(ap;cbg)?
1
+ Xa(@[ 1) (@]2) + Ai(@]@2)(@501) + 225 ((@])? + (2])?)
+ 26(@]1) ((@]®2) + (2f01) ) + Ar(@]®s) ((@]@2) + (@f@1)), (11.1)

where ®; 5 denote the two doublets of scalar fields. Since we consider only the real MSSM, all
the coefficients can be chosen as real parameters.
At the minimum of the potential each Higgs field ®; acquires a vev,

(@) = (0> i=1,2, (11.2)

Vi

Decomposing the Higgs fields into components according to

o/
he <Uz' + 75 (% +ixz-)> ' (11.3)

and expanding the potential around the minimum yields the mass matrix of the CP-even neutral
Higgs bosons,

2 2
M2, = ™ T2 2 (@11 Q12 ’ 114
¢ (—m%2 m3 T a1 am (114)
with the entries
ayp = 3>\1C% + ()\3 + A4 + )\5)8% + 6)\68ﬁ057 (115)
ajo = 2()\3 + /\4 + )\5)5505 + 6)\5626 + 6/\78%, (116)
A9 = 3)\28% + ()\3 + M+ )\5)0% + 6)\78[36[3. (11.7)

With the minimum conditions for the Higgs potential, m? and m3 can be eliminated; the
following relations for the masses of the CP-odd neutral A boson and of the charged H* bosons
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11.1. EF'T calculation

are obtained,
2

m2 = 212 2090, 4 Ag/ts + Mrtg), (11.8)
SpCp

my= =m4 + 02\ — A1), (11.9)

and the CP-even mass matrix /\/liqb can be cast into the following form,
M3y =m? (881%% _‘i%cﬁ> +20° (ZE 2;2) (11.10)

with

b1 = )\10% + 2X¢sc8 + /\55%, (11.11)
bia = (As + Aa)spcs + Aech + Arss, (11.12)
ba2 = X554 2A75pCs + As5Ch. (11.13)

The tree-level mass eigenstates h and H are obtained by a rotation,
H _ Co Sa b1
(- 2) () a1y

2M?
$30 = fids , —g <a<0. (11.15)

\/(Milfﬁl - M%‘zfﬁz)Q +4 (M5>1¢2>2

Often, it is useful to work in the Higgs basis instead of the mass eigenstate basis [98]. It is
obtained by rotating the original fields ¢; 2 in Eq. (11.3) by the angle 3,

(in) - (2 o) (@) 119

In this basis, only H; acquires a vev, (H1) = v = \/v? + v3 and the mass matrix in Eq. (11.10)
is transformed into

with the angle o determined by

My =m? (8 (1)) + 207 (Zg 22) (11.17)
with
c11 = Alc‘é + )\Qsé +2(A3+ Mg + )\5)5%0?3 + 4/\65502’ + 4)\75%%, (11.18)
cla = — )\1550% + )\25‘;’305 + (A3 + s+ A5)spegeap — /\6026(35% — c%)
+ Ars3 (3¢ — s3), (11.19)
coo = (A1 + )\2)5%0% —2(As + /\4)5%6% + /\5(3% + c%) — (A6 — A7)s28C28. (11.20)

To get from the Higgs basis to the mass eigenstate basis, we have to rotate by the angle a — .
We also need the Yukawa part of the effective THDM Lagrangian, which is given for the
third generation quarks by

£$EkDM = —htt_R(—i(I)gO'Q)QL — h;ER(—i@{Ug)QL + h.C., (11.21)

with the third-generation quark doublet @7, and the Pauli matrix o9. h; and h} are the effective
top-Yukawa couplings. All other Yukawa couplings are neglected in the EFT calculation; they
are, however, fully captured through the diagrammatic calculation at the one-loop level, in case
of the bottom-Yukawa coupling also at the two-loop level.

As already noted in [39], the effective THDM with the Yukawa texture as given in Eq. (11.21)
is not a type II model where only ®5 couples to up-type quarks. Although the tree-level
Yukawa sector of the MSSM is that of a THDM of type II (see Eq. (4.39)), loop corrections
induce also a coupling of ®; to the top-quark, which enters through the matching procedure
in the effective THDM. We take this coupling fully into account in all the affected RGEs and
threshold corrections. Hence, we have to deal with 12 coupling constants, consisting of three
gauge couplings, seven Higgs self-couplings, and two Yukawa couplings. RGEs for the considered
THDM are listed in App. F.

57



11. Resummation for low M4

The Two Higgs Doublet Model with Electroweakinos

If in addition to the non-SM Higgs bosons also light electroweak gauginos and Higgsinos
(EWinos) are present, the effective Lagrangian below the scale Mgygy is the one of the THDM
described above, extended by extra mass and interaction terms

1~ 1~ o~
— 5 MWW = SMBB — M, (iHT o9 Ha
1 ) — = =\~
- EHL (QQuuaaW + gluuB) Hu - 7 Il ddo'aW - glddB> Ha
1. T o ra o )/ 1 . ~ e A o\ 14
_ — o (—iHE _
75 H502) (920000 + G1uB) Ho = 5 (~H102) (3200007 ~ G10aB) Ha
+ h.c. (11.22)

L =LrupMm + ( . )

for the bino field B , the wino fields W“, and the Higgsino fields ﬁu,d (tThe ellipsis denotes their
kinetic terms). The associated Higgs fields H, q are related to the doublets ®; 2 in Eq. (11.3)
by

Hoy =Po, (11.23)
Hy =io, @ (11.24)

The coupling constants §1ye,1dd,1ud,1du,... are effective Higgs—Higgsino—Gaugino couplings. The
numeral in the subscript refers to the attached gauge symmetry (i.e. U(1)y or SU(2)r), the first
letter to the involved Higgs doublet, and the second letter to the involved Higgsino. Altogether,
we now have 20 effective couplings in the game. Corresponding two-loop RGEs for all couplings
are listed in App. F.

11.1.2 Matching the EFTs

After having specified the various EFTs, we describe how they are matched to each other. To
derive the matching conditions, we have to compare physical amplitudes with external light-
particles computed in the EFT valid below the matching scale and the full model (or the more
complete EFT) valid above the matching scale. The difference between the physical amplitudes
has to be absorbed by adapting the effective couplings in the particular EFT that is to be
matched.

Terms contributing to the matching conditions arise from different vertex corrections and
from different normalizations of the external fields. The part coming from the vertex corrections
is obtained by calculating the vertex functions in the high-energy and the low-energy theory.
The difference can then directly be absorbed into the effective coupling of the low-energy theory.
At least at the one-loop level, at which we mostly work, this procedure is straightforward.
Therefore, we will not go into more details.

If all external fields are non-mixed mass eigenstates, the external leg corrections are just
given by the corresponding LSZ factors, the wave-function renormalization. The difference
between the LSZ factors in the high-energy and the low-energy theory has again to be absorbed
by the low-energy effective coupling.

In case of mixing in the external fields, a more careful discussion is required. Even when the
external fields are diagonal at the tree level, loop contributions to the two-point vertices induce
mixing between the mass eigenstates at higher orders. This transition has to be included as
further external leg corrections, in addition to the LSZ factors. In the MSSM and the THDM,
the mixing between the CP-even Higgs bosons h, H is the important issue. It is ascribed to a
non-diagonal self-energy Xy, 1.

Conveniently, all external leg corrections can be written in form of a single matrix, the
Z-matrix (see [8] for more details). It gives the relation between the external, asymptotical-
free physical states and the tree-level mass eigenstates used for the calculation of the vertex
correction. At the one-loop level, the MSSM relation reads

S 2
phys 1—|— E m M -~
<h ) i) e "), (11.25)

phys > m
H % 1+ EHH (mH) H
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11.1. EF'T calculation

where we used the symbol = to mark MSSM quantities. ;) and X gy are the diagonal self-
energies entering the LSZ factors. The prime denotes the derivative with respect to the external
momentum. The corresponding relation in the THDM is written as follows,

~ S 2
() < (M ) e (z)

hys S| m2 ~ ~ (1126)
e Bplnl) 14 45 (md) ) \H

mp,

where we used the symbol ~ to mark THDM quantities.
Egs. (11.25) and (11.26) yield the relation between the mass eigenstates of the MSSM and

the THDM,
2
~ 1 + lAzl m2 AEhH(mh) -~
<§> - 3 A% (1) i~y b (11.27)

i Alpulmi) g L LAY (m3) | \H

2 _
mi—mj,

where the AY,, summarize the differences between the self-energies, for =,y € {h, H},

Azmy(p2) = ia:y(pQ) - iﬂcy(pQ)- (11.28)

The mass eigenstates are related to the gauge eigenstates via Eq. (11.14),

<g> =Ua (%) B (cia EZ) (Z;;) ) (11.29)
(2[) o (%) N (c? EZ) @;) : (11.30)

With these relations, Eq. (11.27) can be transformed into the gauge eigenstate basis,

~ AX m? ~
~ =Ug m2 a ~ . .
2 Sl 14 LAY (m) 2

At lowest order, the mixing angles of the THDM and the MSSM are equal and fixed by the
condition that they relate the gauge eigenstate basis to the tree-level mass eigenstate basis. At
the one-loop level the angle & of the THDM can be chosen independently (as a free parameter),
allowing for a difference

Aa=a—a. (11.32)
Using this shift to replace & by @ in Eq. (11.31) we obtain, expanded up to the one-loop level,

. AT 2D _a.) (3
<@>:U§ 2 A5, (m5,) mj, — My ) Us 4 , (11.33)

o | ABwu(mi) L Ay 14+ 3 AY p (m o2

my—mj
Next we expand AXy g (m?;) around p? = m3,
AEhH(m%I) = AEhH(m;QL) + AZ%H(m%{ - m,%) + O(’U/MSUsy, MA/MSUsy). (11.34)

All higher-order derivatives of the AX,, are suppressed by Mgugy and therefore negligible in
the EFT calculation. For the same reason, we drop the specification of the external momentum
in all derivatives of AY,, in the following (which is always taken at m3).

Using the expansion (11.34) and rewriting the self-energies partly in the gauge eigenstate

basis yields
S\ _[(1+3A%, A%,
b2 %AE/M 1+ %Azéz

AY 2y 1 0 —1 &
+ (nm — 3A%y - Aa> (1 0 )] <‘§;> . (11.35)

with the notation AY;; = A¥y ¢, for i,j € {1,2).

9 9 ~9

n contrast to other Chapters, the symbols and ” are not used to label specific renormalization
schemes. Here, they are only used to distinguish MSSM and THDM quantities.
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11. Resummation for low M4

The second matrix corresponds to the one-loop part of a unitary matrix and thereby to a
basis transformation by a rotation. It can be absorbed by adjusting A« according to

AEhH(mz) 1
Aa = 77”}% — m%: - §AEIhH' (11.36)

The first matrix in Eq. (11.35) is not unitary and hence cannot be removed by a basis trans-
formation. Therefore, there is a remaining difference between the normalization of the gauge
eigenstates in the MSSM and the THDM, given by the following relation,

b1 (1+§A2’11 $A%, ) &1
1) = : ) (%), 11.37
<¢2> 3AYL, 14+ 5A%5) \ ( )

which corresponds to the one used in [85]. As noted above, it is only valid at the one-loop level.
Replacing the fields ®; 2 by the corresponding vevs, we immediately obtain

()= (st 11358) () .
This directly implies
B=pB+ % (A%, — A, spes + ATpeas] = B+ %AEQ%H? (11.39)
or
tan 8 = tan 3 + Q%Az}hm’ (11.40)

respectively, with Hj o being the fields of the Higgs basis defined in Eq. (11.16).

We have to take care of Eq. (11.37) whenever we match a coupling involving an external
Higgs field. The different normalizations of the Higgs fields will introduce derivatives of Higgs
self-energies into the matching conditions.

Following this procedure and including vertex corrections, we derived a full set of one-loop
threshold corrections for all appearing effective couplings and hierarchies. Below, we list only the
tree-level matching conditions and the dominant one-loop corrections, i.e. those proportional
to the strong gauge coupling or the top-Yukawa couplings. Full one-loop threshold corrections
for all effective couplings including electroweak contributions are listed in App. C.

In addition to the calculation of matching conditions, we will also need Eq. (11.37) for
combining the diagrammatic fixed-order calculation and the EFT calculation.

Matching the THDM to the MSSM

The Higgs self-couplings in the THDM scalar potential are fixed at the tree-level in terms of
gauge couplings [85],

1
Al,tree(MSUSY) = )\2,tree(MSUSY) :Z(QQ + 9/2), (1141)
1
)‘37tree(MSUSY) :Z(QQ - 9/2), (1142)
1
M tree (Msusy) = = 5 9, (11.43)
A5 tree(Msusy) = A6 tree (Msusy) = A7 tree(Msusy) =0. (11.44)

At the one-loop level, these relations receive additional contributions [85],

1
4 42 1 12 /
AXg = 6kh}A? (1 - 12At> +0(g,9), (11.46)
1 ~
ANz = §kﬂ2h2‘(3ﬂ4?) +0(g,9'), (11.47)
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11.1. EF'T calculation

ANy = %k[ﬂhf(f& - A2) 1+ 0(g,9), (11.48)
AXs = —%khfﬂzflf +0(g,9"), (11.49)
Adg = %khfﬂ% + 09,9, (11.50)
ANy = %khfﬂflt(/lf —6)+0(g,9") (11.51)

with i = u/Msysy and A, = Ay /Msusy (see Section 4.3). The factor k = (47)~2 is used to
mark the loop-order. A; is the stop trilinear coupling and h; the top-Yukawa coupling of the
MSSM (see Eq. (4.39)).2 In addition to these one-loop corrections, we also include O(asay)
threshold corrections, listed in App. C.9.

For i = 1, the effective top-Yukawa couplings are given by

4 . 1.,
htTHDM(MSUsy) _h}s\/ISSM{l + k [393(1 - At) - 4h?A%:| } + O(gvg/)a (1152)

4
(hy) THPM (Mgusy) htk{ -

A I
39§ﬂ + 4thtu} +0(9,9"). (11.53)

The full expressions for i # 1 are given in App. C.
The matching condition for tan S is obtained from Eq. (11.40) yielding

1 A i
t%:HDM(MSUSY) = tI/;/ISSM(Msusy) [1 - Zkh?(At — /ts)(As + fits) + O(g,9) | - (11.54)

Matching the THDM+EWinos to the MSSM

Neglecting the weak gauge couplings, the relations for matching the THDM to the MSSM
are also valid when the THDM+EWinos is matched to the MSSM. The additional effective
Higgs—Higgsino—Gaugino couplings of the THDM+EWinos fulfill the tree-level relations

Gruu(Msusy) = g1aa(Msusy) = ¢', (11.55)
G2uu(Msusy) = g2aa(Msusy) = g, (11.56)
G1ud(Msvsy) = g1au(Msusy) = J2ua(Msusy) = Geau(Msusy) = 0. (11.57)

Matching the THDM to the THDM+EWinos
Matching the THDM to the THDM+EW:inos, the Higgs self-couplings, the gauge couplings,

the top-Yukawa couplings and ¢z are not modified at the tree-level. If the weak gauge couplings
are neglected, there are also no loop corrections. The full one-loop corrections including the
weak gauge couplings are listed in App. C.

Matching the SM to the THDM

In this specific case, the characteristic scale for all the couplings below is the mass M4. In the
decoupling limit M4 > Mz (o — B — T ), which is assumed when the heavy Higgs bosons are
integrated out, the Higgs self-coupling

AMa) =c11 + AX, (11.58)
with ¢1; from Eq. (11.18), 8 = BTHPM " and the one-loop correction
2
AN = — 3k {()\6 + )\7)ng + (>\6 - )\7)04[3 - ()\16% — )\28% - ()\3 + )\4 + )\5)ng) 825} . (11.59)
The SM top-Yukawa coupling y; is fixed by

yi(My) =(hiHPMsg 4 B THPM ) 11 %k (hfHPMeg — h;THDMsﬁ)2 : (11.60)

2For definiteness, we now assign an explicit label for the Yukawa couplings hy, b} introduced in Eq. (11.21)
for the THDM.
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11. Resummation for low M4

Matching the SM+EWinos to the THDM-+EWinos

Neglecting the weak gauge couplings, the relations for matching the SM to the THDM are
also valid if the SM+EW:inos is matched to the THDM-+EWinos. At tree-level, the effective
Higgs-Higgsino—Gaugino couplings of the SM+EWinos and the THDM+EWinos are related
by

glu(MA) - gluusﬁ + glduCL% g2u = gQuuSﬂ + g2ducﬁv (1161)
G1d(M4) = G1ddcs + G1udSs, 92d = §2ddCs + G2udSs- (11.62)

One-loop corrections proportional to the electroweak gauge couplings can be found in App. C.

11.1.3 Calculation of pole masses in the EFT approach

The proper way to calculate the physical masses of the CP-even Higgs bosons in the EFT
framework depends on the mass hierarchy. For M, > M;, the low-energy theory is the SM
(or the SM+EW:inos). Therefore, the procedure described in Section 7.2 can be applied. For
My ~ My, though, there is no need to integrate out the non-standard Higgs bosons and the low-
energy theory is better described by a THDM (or a THDM+EWinos). In this case, the physical
masses of the CP-even Higgs bosons are obtained by finding the poles of the propagators, i.e.
the zeroes of the determinant of the inverse propagator matrix, depicted here in the Higgs basis
as a possible choice,

A=l (2 p? =g, + 35,5, 0% Wby, + 355,07
—iA (P = ~2 S 2 2 _ =2 S 2 (11.63)
Mg, + 2,0, (00) P = M, + i, m,(07)
The widetilde ”~” indicates, as in Section 11.1.2, that the corresponding quantities are those of

the THDM. The ﬁz%{iHj’s are the elements of matrix My defined in Eq. (11.17) and the -s
are the corresponding self-energies of the THDM (or the THDM+EWinos) renormalized in the
MS scheme.

In situations where M, is larger than M;, but the separation is also not too large, e.g.
My — My ~ 100 GeV, it is difficult to decide if the SM should be used as low-energy theory
or the THDM might the better choice. Therefore, a smooth transition between both cases is
beneficial. To implement such a transition, we follow a procedure similar to the one introduced
in [39]: We include the contribution of the running between M4 and M, into m% 5 . The same
contribution is in addition added to the off-diagonal entries m%; . with a prefactor 1/t3 and to
ﬁzfquz with a prefactor 1/75%.3 In this way both limits, M4 > M; and M4 ~ M;, are properly
recovered.

11.2 Combination of fixed-order and EFT calculation

As in Section 7.3, we want to combine the result of the EF'T calculation described in Section 11.1
with the fixed-order calculation implemented in FeynHiggs. This combination is done in several
steps. First, we have to relate the quantities computed in the EFT approach, namely the entries
of the inverse propagator matrix, the two-point vertex function, to those in the fixed-order
approach. Second, proper subtraction terms have to be identified and subtracted such that
double-counting of terms appearing in both results is avoided. Finally, differences in input
parameters resulting from different renormalization schemes have to be considered by proper
conversion of the parameters.

We choose to perform the combination in the gauge eigenstate basis. Therefore, we need to
know the relation between the two-point vertex function matrix in the full MSSM, denoted by
Aq:sq%’ and in the effective THDM, labelled as Aqiw% Again, as in Section 11.1.2, the symbol ~

is used to mark quantities in the full MSSM, and ~ to mark quantities in the effective THDM.
Both matrices have to be equal in case of Higgs fields with the same normalization in either

3Corresponding to the additional factor 1 /tg in the top-Yukawa coupling for Hs for the dominant part of
the contribution (see also footnote in Section 7.3)).
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11.2. Combination of fixed-order and EFT calculation

of the models. In our case, however, the Higgs field normalization is different, as specified by
Eq. (11.37), which leads to the relation

- 1+ 2AY] LAY _ 14 LAY LASY
Lip?) = 22411 20212 1,2 3AXY, sAY,
A(%(p ) = ( %Az/m 1+ %Az/m (%(p ) %AE’H 1+ %AE’QQ . (11.64)

As noted in Section 11.1.2 this formula is valid only in the decoupling limit of Mgygy > M;
and at the one-loop level. Explicit formula for the AEQJ» are listed in App. D.

To takes this relation into account in the combination of the EFT result and the fixed-order
result, we now add finite pieces to the one-loop field renormalization constants in order to
compensate for the different normalization of the MSSM and THDM Higgs doublets, redefining
the one-loop field counterterms fixed in Egs. (6.16)-(6.18) by

6(1)Zij = 6(1)Zij ‘div + 6(1)Zij ‘ﬁn (11.65)
with the proper choice, according to Eq. (11.64),

sz =-A%,, W2y

fin

=AY, Mz,

fin

= —AY),. (11.66)

fin

Since Eq. (11.64) is valid only at the one-loop level, it cannot be applied for the two-loop
field counterterms 5(2)Zij. These two-loop terms, however, do not appear in the renormalized
two-loop self-energies (see Section 6.2). Based upon the expressions in Section 6.2 it is easy to
show that the full dependence of the two-loop self-energies on the one-loop field renormalization
constants is given by

. 1

SO =30 - (1] + 510z 11.67
ni (0) . ni (0) 52 sy My \1h sz T 2% h hh | 5 (11.67)

. 1

S8R0 =xB0] - (19| +iarPivz "
hH (0) 57 hH (0) 57 25WMW H 57 + 2 S,B H hh | » ( 68)

(2 2 2

2GR0 =00 -0, . (11.69)

where we used the subscript §Z to indicate that only contributions proportional to a one-loop
field renormalization constant are taken into account.

With the additional finite parts introduced in the field renormalization constants, the inverse
propagator matrix of the MSSM becomes equal to that of effective THDM (with restriction to
the same perturbative order). Hence, the combination of the fixed-order (MSSM) and the EFT
(THDM) approach is straightforward, which means that the MSSM inverse propagator matrix
is replaced by

Adzs(% — A;é + AFFT (11.70)

where APFT contains the resummed logarithms and corresponding subtraction terms,

A1

AEFT = Ail ~—
logs el

5 (11.71)

logs '

We checked numerically that the logarithms of the EFT calculation properly recover the logar-
ithmic behavior of the full fixed-order result when restricted to the same perturbative order.

11.2.1 Redefinition of tan

As mentioned in Chapter 6, for the fixed-order calculation by default the DR scheme is employed
for field renormalization of the Higgs doublets and for the renormalization of tan 5. Thus, there
is a renormalization scale entering the diagrammatic calculation. By default, it is chosen to be
equal to the pole mass M; of the top quark. This in particular means that tan £ is normally a
MSSM DR quantity defined at the scale M;.

The redefinition of the field renormalization constants by a finite shift, as described above,
has an impact on the renormalization and hence the conceptual definition of tan 8. In presence
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11. Resummation for low M4

of an off-diagonal field renormalization constant, the counterterm of tan g is given by (assuming
still 6wy /vy = 8Py Jv)

1
6Wty = St (5(1>222 - 5(1)211) + - (1=13)6W 2y, (11.72)

1
2
For the corresponding two-loop counterterm, see Section 6.2. With the finite parts of the field
renormalization constants in Eq. (11.66) and switching to the Higgs basis, we find

1

Wtg| =5 ASYy . (11.73)
€s

fin

Comparing this result to Eq. (11.40), we realize that tan 8 by now is not a MSSM quantity
anymore, but instead a quantity of the THDM. Furthermore, the scale is changed to M4, since
the THDM part in AE}h Hy is evaluated at the scale M 4. In conclusion, the finite shift in the
field normalization constants of the MSSM leads to the conversion

tySSM(My) — 5PN (M), (11.74)

Hence, tgHDM(M 4) is the proper input parameter of the fixed-order calculation.

11.2.2 Conversion of input parameters

The fixed-order calculation employs either the OS or the DR scheme for the renormalization
of the stop sector. In case of an OS renormalization, this means in particular that the stop
masses and the stop mixing angle are renormalized on-shell. For the EFT calculation, however,
respective DR quantities are needed. Therefore, the parameters have to be converted. As argued
in Section 7.3, one-loop conversion including only logarithmic terms is sufficient to reproduce
the diagrammatic OS expressions from the EFT DR result. Any further terms in the conversion
induce higher-order contributions which are presently not under control.

In the case of M4 = Mgysy, only the stop mixing parameter X; turns out to be affected by
large logarithms in the conversion (see Section 7.3). Here, we extend the conversion formulas to
the case of M4 < Mguysy. As in the case of M4 = Mgsysy, we find no large logarithms in the
conversion of the stop mass scale Mg. In the conversion formula of the stop mixing parameter,
however, additional large logarithms appear in the conversion formula,

= 3a N 3 « N
XPR (AL =XxO0S1 4 |S o2 X)L - 21 - V2L 11.
+(Msusy) =X, il o 167r( 7) T6m t%( ©)La (11.75)

using the abbreviations
M3 M3 . ¢ O
L=n(>5), La=ln(-5), Xi=-t=A4-", Y,=A4, +ts. 11.
H(Mf)’ A H<Mi>, v Mg t t5 t t + [itg (11.76)

More details and full one-loop expressions for the parameter conversion are given in App. E.
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Comparison to other codes

In this Chapter, we will briefly compare the hybrid calculation of the MSSM Higgs boson masses,
presented in this thesis, to other calculations, which are implemented in publicly available codes.
This technical comparison will be followed by a numerical comparison in Chapter 13.

Publicly available codes based on diagrammatic fixed-order results or effective potential
methods include CPSuperH [97, 99, 100], SoftSUSY [101], SPheno [102, 103] and SUSPECT [104].
Publicly available pure EFT calculations are SUSYHD [40] and MhEFT [37, 39, 105]. FlexibleSUSY
[106, 107], based on SARAH [108-111], includes both a diagrammatic and an EFT result. Fur-
thermore, it also has the option to use a hybrid method different from the one pursued in
FeynHiggs, called FlexibleEFTHiggs [43]. Its basic idea is to include terms suppressed by the
SUSY scale into the matching conditions in order to obtain accurate results for both low and
high scales. The same approach has been included into SPheno [44].

In [112] a comparison of the various diagrammatic codes can be found. A detailed numerical
comparison between various diagrammatic and EFT codes has be performed in [43]. Therein,
it is also discussed in detail how FlexibleEFTHiggs compares to other codes. We therefore
focus on a comparison of FeynHiggs to pure EFT codes. This comparison will be performed in
two simplified scenarios, one single-scale scenario and one scenario with low M 4.

For the single-scale scenario, we will use SUSYHD as an exemplary EFT code for comparison.
The EFT calculation of SUSYHD is quite similar to that in FeynHiggs: Both codes implement full
leading and next-to-leading resummation and O(asa, a?) next-to-next-to-leading resummation
of large logarithms. So the levels of accuracy are basically identical. There are, however, several
differences which are listed below.

e SUSYHD by default uses the top-Yukawa coupling calculated from the OS top mass at the
NNNLO level. FeynHiggs instead uses the NNLO value by default, which is formally the
appropriate setting for the resummation of NNLL contributions. For all numerical results
shown in this work, we deactivate the NNNLO corrections to the top-Yukawa coupling in
SUSYHD.

e SUSYHD includes the bottom- and tau-Yukawa couplings in the renormalization group
running and also includes corresponding one-loop threshold corrections. In FeynHiggs,
the bottom and tau Yukawa couplings are set to zero in the EFT calculation. In the part
of the fixed-order diagrammatic calculation, however, terms proportional to the bottom-
Yukawa coupling are included at the one- and two-loop level (at the one-loop level for the
case of the tau-Yukawa coupling).

e SUSYHD includes the electroweak gauge couplings in the running up to the three-loop level.
FeynHiggs takes them into account up to the two-loop level. At the three-loop level, they
are set to zero. This difference is numerically completely negligible.

e FeynHiggs includes a one-loop running of ¢g to relate tg(M;), which is used as input of
FeynHiggs, to t3(Msusy), which enters through the matching at the SUSY scale (see
Section 7.3). In contrast, SUSYHD uses tg(Mgsusy) as input.
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12. Comparison to other codes

e Similarly, FeynHiggs uses a DR renormalized Higgsino mass parameter u at the scale M.
The running to the scale Mgysy, at which it enters the EFT calculation via the matching
conditions at the SUSY scale, is neglected. SUSYHD uses u(Msysy) as input.

More details on the EFT calculation implemented in SUSYHD are given in [40].

Despite the listed differences including the different treatment of the renormalization scales
of tg and p, we find excellent agreement between the results of the RGE running of both codes.
The numerical difference of the quantity v?A\(M;) calculated using the two codes is always
< 50 GeV? for the single scale scenario defined in the beginning of Chapter 13 and tg ~ O(10).
This translates into a difference in My, of < 0.1 GeV.

For the scenarios with low M 4, there are two other publicly available codes for calculating the
Higgs pole masses via a THDM matched to the MSSM: the MhEFT package [105], based on [39],
and FlexibleSUSY in the recent version [107], based on [113]. As pointed out in [107], agreement
has been found with the MhEFT results. We therefore restrict ourselves to a comparison of
FeynHiggs to MhEFT (version 1.1).

The calculation implemented into MhEFT is a pure EFT calculation. Therefore, terms sup-
pressed by heavy scales are missed. Apart of this obvious difference to FeynHiggs, there are
some more differences which we list below:

e MhEFT does not employ the DR scheme for renormalization of the SUSY parameters.
Instead, MS renormalization is used. Therefore, conversion of the input parameters is
needed for the comparison with FeynHiggs. Corresponding conversion formulas can be
found in [112].

Although, as argued in Chapter 9, this conversion will induce unwanted higher-order
terms, it is currently the only way to compare both results, since neither FeynHiggs offers
the possibility of a MS renormalization nor MhEFT the possibility of a DR renormalization.
In practice it is a viable method since the numerical impact of the conversion is almost
negligible, owing to the small numerical difference between MS and DR parameters.

e The EFT calculations entering FeynHiggs and MhEFT differ in various aspects. MhEFT
assumes a type II THDM as the effective THDM in the evolution equations. Further-
more, EWino contributions to the various threshold corrections are neglected. Also in
the RGEs, EWino contributions are neglected at the two-loop level and only taken into
account in approximate form at the one-loop level. In addition the one-loop threshold
corrections between the SM and the THDM are neglected for the top-Yukawa coupling
and approximated for the SM Higgs self-coupling (i.e., the heavy Higgs contribution to
the one-loop threshold correction between the SM and the MSSM is used). On the other
hand, MhEFT has implemented an approximation for the O(a?) threshold corrections for
the quartic couplings by including the known O(a?) threshold correction from matching
the SM to the MSSM in A2, whereas all other self-couplings receive no O(«a3) threshold
correction.

e In MhEFT, the THDM self-energies & g,a, and 5 d,a, (see Eq. (11.63)) are neglected.
Thereby, terms of O(M;/M,4) are missed.

These differences should be kept in mind, when interpreting the numerical results of the com-
parison presented in Chapter 13.
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Numerical results

In this Chapter, we present a numerical investigation of the various corrections discussed in the
previous chapters. In addition, we will briefly discuss the remaining theoretical uncertainties.

In the course of this investigation, we will restrict ourselves mainly to simplified scenarios.
First, we always assume that all slepton and squark soft-breaking masses are equal,

m[ =Mmg = MSUSY- (13.1)

Also the gluino mass parameter M3 is set equal to Mgygy. All trilinear soft-breaking couplings
(except of the stop coupling) are set equal zero,

Ae,u,‘nu,d,c,&b =0. (132)

The stop trilinear coupling A; is fixed via the stop mixing parameter X;, which is defined either
using the OS scheme or the DR scheme (in this case the associated scale is chosen to be Mgysy).
The same scheme is used for the definition of the stop soft-breaking masses.!

Second, we set

M1 = M2 =nu= MX‘ (133)

p is defined as DR parameter fixed at the renormalization scheme of the fixed-order calculation
(by default M, is used; for scenarios with low M4, Mgsysy will be used).

As a third scale, we take into account the non-SM Higgs boson mass scale marked by the
OS mass of the CP-odd Higgs boson M 4.

The ratio of the vevs of the two Higgs doublets, tan 3, is defined as a MSSM DR parameter
at the default renormalization scale M;. For scenarios in which the effective THDM implement-
ation, described in Chapter 11, is used, however, a different definition will be used. There, the
input parameter is tan 3THPM (A1) (see Section 11.2.1).

For scenarios with DR input parameters, we always use the DR renormalized fixed-order
result avoiding parameter conversion if not stated otherwise.

13.1 Advances in the hybrid approach

In this Section, we investigate the numerical effect of the various higher-order contributions
discussed in Chapter 8.

First, we examine the contribution of the resummation of logarithms proportional to the
electroweak gauge couplings. The left panel of Fig. 13.1 shows M), as a function of Mgysy
for XtOS/MSUSY = 0 and XtOS/MSUSY = 2. The results with a resummation of logarithms
proportional to the electroweak gauge couplings and without such a resummation are compared.

ISince no two-loop corrections related to sleptons or first and second generation squarks are implemented,
we do not have to specify the scheme of the related soft-breaking parameters. The soft-breaking mass for the
right-handed sbotoom is renormalized using either the DR scheme, if for the stop parameters the DR scheme is
used, or the OS scheme as defined in Section 6.3, if for the stop parameters the OS scheme is used. The sbottom
trilinear coupling is always renormalized in the DR scheme.
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Figure 13.1: Left: M, as a function of Mgysy for X% /Msysy = 0 (solid) and X% /Msysy = 2
(dashed). The results with (green) and without (blue) resummation of electroweak logarithms
(LL4+NLL) are compared. Furthermore, the result without resummation of electroweak logar-
ithms but with electroweak NLO corrections to the MS top-quark mass (red) is shown. Right:
The results with resummation of electroweak logarithms at the LL and NLL level (blue) and
at the LL level only (red) are compared.
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Figure 13.2: Left: Mh as a function of MSUSY for XtOS/MSUSY =0 (sohd) and XtOS/MSUSY =2
(dashed). The results with (red) and without (blue) electroweakino threshold are compared.
Right: The difference between the NLL and the NNLL result as a function of X5/Mgygy for
Msusy = 2 TeV (blue), Msusy = 5 TeV (red) and Msysy = 10 TeV (green) is shown.

The latter corresponds, apart from some minor adaptations, to the result presented in [42].
Furthermore, the result without resummation of logarithms proportional to the electroweak
gauge couplings but with electroweak NLO corrections to the MS top mass is shown. For
XO8 /Mgysy = 2, we observe a downwards shift of ~ 1.5 GeV for Mgygy = 1 TeV. This shift
is almost completely caused by the electroweak NLO corrections to the MS top mass yielding
a reduction of the MS top mass by 1.1 GeV. This translates directly to a downwards shift of
M, [114]. For rising Msysy, the downwards shift caused by the corrections to the MS top
mass is more and more compensated by the upwards shift caused by the resummed logarithms
proportional to the electroweak gauge couplings. For vanishing stop mixing, the behaviour is
very similar. For Mgygsy = 1 TeV, the downwards shift is smaller (~ 1 GeV) owing to the
reduced dependence on the MS top mass for vanishing stop mixing.

The right panel of Fig. 13.1 shows M}, as a function of Mgygy for XtOS/MSUSY = 0 and
X5 /Msysy = 2. The results with a resummation of logarithms proportional to the electroweak
gauge couplings at the LL and NLL level and with a resummation of logarithms proportional to
the electroweak gauge couplings at the LL level and vanishing electroweak gauge couplings at
the NLL level are compared. We observe that the effect of a NLL resummation of electroweak
logarithms is < 0.5 GeV over the whole Mgygy range for both vanishing and non vanishing
mixing. This shows the minor importance of the electroweak NLL resummation in comparison
to electroweak LL resummation, which leads to shifts of up to 2.5 GeV for Mgysy ~ 20 TeV.

The effect of the electroweakino threshold is investigated in the left panel of Fig. 13.2, which
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Figure 13.3: Left: M, as a function of Mgysy for X% /Msysy = 0 (solid) and X% /Msysy = 2
(dashed). The results using pure O(as, ;) LL and NLL resummation (blue) are compared to
the results using full LL and NLL as well as O(as, a¢) NNLL resummation. Right: Same as
left, but My, is shown as a function of X5/Mgsygy for Msysy = 1 TeV (solid) and Msysy = 5
TeV (dashed).

displays M, as function of Mgysy for XP°%/Mgsysy = 0 and X°% /Msygy = 2. In contrast to
the previous figure, the electroweakino mass scale M, is not chosen to be equal to Msysy, but
is fixed to 400 GeV. To disentangle the effect of the electroweakino threshold in the EFT calcu-
lation from the fixed-order one-loop corrections due to neutralinos and charginos, we compare
the results with a electroweakino threshold to the results without a separate electroweakino
threshold. To get the results without a separate electroweakino threshold, we set M, = Mgsysy
in the EFT calculation, but keep M, = 400 GeV in the Feynman diagrammatic calculation.
The plot clearly shows that the implementation of a separate electroweakino threshold becomes
only relevant for Mgusy 2 5 TeV. This behaviour does not depend on the size of the stop
mixing.

The effect of a separate gluino threshold is found to be negligible. For Mgygy up to 20 TeV,
its inclusion shifts M}, downwards by at most 0.2 GeV for | X5 /Mgysy| < 2 and Mz = 1 TeV.
The diagrammatic two-loop corrections capture almost the entire effect of varying My, which
can be sizeable (~ 2 GeV) for large stop mixing.

In the right plot of Fig. 13.2, the difference between the results without and with NNLL
resummation as a function of XtOS/MSUSY is shown for Mgysy = 2 TeV, Msysy = 5 TeV
and Mgysy = 10 TeV. Between X5 /Mgysy ~ —1 and X5 /Mgysy ~ 1.5, we observe only
small shifts (< 0.3 GeV). For XP%/Mgsysy ~ —2, My, is shifted upwards by the inclusion of
NNLL resummation by up to 1 GeV, whereas M}, is shifted downwards by up to 0.5 GeV for
XtOS/MSUSY = 2. This behaviour is mainly caused by the O(asa:) matching condition of A,
which exhibits a similar dependence on XtoS /Msusy-

Note that the comparison made in the right plot of Fig. 13.2 does not exhibit the effect of the
two-loop corrections to the MS top mass, since also for the curve without NNLL resummation
the two-loop QCD corrections in the MS-mass — pole-mass relation are employed. We have kept
them because they constitute the by far dominant part of the two-loop corrections to the MS
top mass, shifting the MS top mass down by 1.9 GeV. This downwards shift causes a downwards
shift in M}, of about the same size, as discussed before in the context of the electroweak NLO
corrections to the MS top mass. Two-loop corrections to the MS top mass are formally not
needed in the case of LL and NLL resummation. This means actually that the main effect
of going from NLL to NNLL resummation is caused by the higher-order matching condition
of the MS top mass, as in the case of including electroweak corrections into the resummation
procedure.

To sum up, we analyse the total numerical impact of the improvements discussed in Chapter 8.
The comparison is displayed in Fig. 13.3, where the left panel shows M}, as a function of Mgysy
for X285 /Mgysy = 0 and XP5/Mgysy = 2. For XP5/Mgysy = 2, we observe a downwards
shift of up to 2 GeV over the whole considered Msgysy range. For vanishing stop mixing, a
smaller shift is observed. The right panel in Fig. 13.3 shows M}, as a function of XtOS /Msusy
for Msysy = 1 TeV and Msysy = 5 TeV. We observe a smaller shift for negative values of Xy;
e.g. for Msysy = 1 TeV the shift is ~ 0.5 GeV for XtOS/MSUSY = —2, whereas it amounts to
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Figure 13.4: Left: M, as a function of Mgysy for XPR/Mgysy = 0 (solid) and XPR/Mgysy =
V6 (dashed). The results using a DR to OS conversion of the input parameters (blue) and
a DR renormalization of the fixed-order result (red) are compared. Right: Same as left plot,
apart that M), is shown in dependence of XP®/Mgysy for Msysy = 1 TeV (solid), Msysy = 5

TeV (dashed) and Mgysy = 20 TeV (dot-dashed).

~ 2 GeV for X5 /Msysy = 2. The large positive shift for negative X% by the inclusion of
NNLL resummation (see right plot of Fig. 13.2) is compensated by the downwards shift origin-
ating from the electroweak NLO correction to the MS top-quark mass. This downwards shift
is, however, enhanced by the negative shift induced by NNLL resummation for positive X5,
This is the reason for the observed asymmetric behaviour.

13.2 Comparison between pure EFT and hybrid calcula-
tion

In this Section, we present a numerical investigation of the effects discussed in Chapter 9 and
Chapter 10 and compare the result obtained by FeynHiggs to SUSYHD as an exemplary pure
EFT code.

We first look at the numerical difference between employing a one-loop conversion from DR
to OS input parameters (“param. conv.”) and using a DR renormalized fixed-order result (“DR
scheme”), see the discussion in Chapter 9. The left plot of Fig. 13.4 shows the corresponding
results for XPR/Mgygy = 0 and XPR®/Mgysy = /6 as a function of Msysy. One can see that
for vanishing stop mixing, the difference between the two methods is negligible small.

In case of XPR/Msysy = /6, there, however, is a sizeable shift: For Mgysy < 10 TeV the
difference between the two methods leads to an approximately constant shift in the prediction
for Mj,. The result obtained using a DR fixed-order result is ~ 1 — 2 GeV smaller than the
one obtained by the one-loop conversion of the input parameters. The shifts occur not only for
scales of a few TeV, but also for very low scales (Msyusy =~ 0.4 TeV). Therefore, we conclude
that at low scales the observed shifts are mainly caused by non-logarithmic higher-order terms
by which the DR result and the result involving a parameter conversion differ from each other.

For Mgysy 2 10 TeV, we observe that the difference between the two results is increasing
rapidly to up to 8 GeV in the region up to Mgysy ~ 20 TeV. This behaviour is mainly due
to the fact that the parameter conversion that is used for the comparison of fixed-order results
induces higher-order logarithmic contributions that are not compatible with the implemented
resummation of logarithms to all orders (see the discussion in Chapter 9). For high SUSY scales,
where the higher-order logarithmic contributions become numerically large, this mismatch leads
to the observed large deviations. To a lesser extent, also the deviation between the input
stop mixing parameter and that used in the EFT calculation plays a role in this context (see
Chapter 9).

In the right plot of Fig. 13.4 the two results are compared as a function of XP®/Mgygy for
Mgsusy = 1,5,20 TeV. For Msysy = 1 TeV and Msysy = 5 TeV the deviations stay relatively
small except for the highest values of |[XPR/Mgysy|. In contrast, for Mgysy = 20 TeV the
uncontrolled higher-order contributions induced by the one-loop conversion of the input para-
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Figure 13.5: Comparison of the M}, predictions using numerical pole determination with the
predictions using fixed-order pole determination, such that terms arising from the determination
of the propagator pole are omitted that go beyond the level of the corrections implemented in
the irreducible self-energies. Left: Prediction for M), as function of Mgysy for vanishing stop
mixing and XP®/Mgysy = 2. Right: Prediction for M;, as function of of XP®/Mgygy for
Msusy =1 TeV (solid), Msysy = 5 TeV (dashed) and Mgysy = 20 TeV (dot-dashed).

meters are seen to have a huge effect which even reverts the usual pattern of the dependence on
| XPR/Mgysy|, giving rise to local minima at | XP®/Mgsysy| ~ £2.5. We emphasize again that
the same kind of uncontrolled higher-order effects would occur if a one-loop conversion of OS to
DR parameters would be used as input for a DR result containing a series of numerically large
higher-order logarithms. Fig. 13.4 shows that numerical instabilities noticed in comparisons of
EFT results with FeynHiggs carried out in the literature [40, 43, 44] are a consequence of an
inappropriate application of the conversion of input parameters between the OS and the DR
schemes. The higher-order contributions implemented in FeynHiggs are seen to be numerically
stable up to very high SUSY scales in the considered scenario.

As a next step we investigate the impact of the terms arising from the determination of the
propagator pole. As explained in Chapter 10, there occurs a cancellation in the limit of a large
SUSY scale between non-SM terms arising through the determination of the propagator pole and
contributions from the subloop renormalization of the irreducible self-energy diagrams. This
cancellation was incomplete for terms beyond O(a?, ayap,a?). Therefore, we have modified
the determination of the propagator poles such that terms are omitted that would not cancel
because their counterpart in the irreducible self-energies is not incorporated at present. In
Fig. 13.5, the “old” numerical pole determination is compared to the “new” fixed order pole
determination. The difference between the two results corresponds essentially to the terms
A and ATS® given in Eqgs. (10.5) and (10.8).

In the left plot of Fig. 13.5, we show the results as a function of Msysy for XP® = 0 and
XPR/Mgysy = 2. One observes that the difference grows almost logarithmically with Mgugy-
This is expected since the largest terms in A;(;gs + A;glog are in fact logarithms of the SUSY
scale over M;. Consequently, for small scales (Mgysy < 1 TeV), these terms induce only a
small upwards shift of < 0.5 GeV. For large scales (Msusy 2, 5 TeV), however, this shift grows
to up to 1.5 GeV for vanishing stop mixing and 2 GeV for XP®/Mgysy = v/6. In the right plot
of Fig. 13.5, the difference is depicted as a function of XtDR/MSUSy for Msysy = 1,5,20 TeV,
shown as solid, dashed and dot-dashed lines, respectively. One can see that the difference
between the two results is approximately quadratically depependent on XPR/Msugy. This
reflects the XP® dependence of the derivative of the Higgs boson self-energy (see Eq. (B.17)).

Having investigated the numerical impact of the scheme conversion of the input parameters
as well as of the terms arising from the determination of the propagator pole, we now turn to
a direct comparison of FeynHiggs with SUSYHD.? The FeynHiggs results in this comparison
are obtained employing the DR renormalization of the stop sector and the fixed-order pole
determination.

2We use SUSYHD with the top-Yukawa coupling evaluated at the NNLO level. Using instead the NNNLO
value would shift the results of SUSYHD shown here downwards by ~ 0.5 GeV.

71



13. Numerical results

MO : — . T T
f —FeynHiggs ] F ——FeynHiggs My = M, = Msusy, tg =10 E

F — sUSYHD XP"/Msusy = V6 _J r [ —— SUSYHD

_____

P

XPR/Mgysy =0

M, [GeV)
-
%)

M, [GeV]

My =M, = us‘,rs\. ts =107

100 | I | L L
500 1000 10000

Msysy [GeV] X;[W/ Msusy

Figure 13.6: Comparison of the M, predictions of FeynHiggs using the DR renormalized fixed-
order result and the fixed-order pole determination with SUSYHD. Left: M) as function of
Msysy for XPR/Msuysy = 0 (solid) and XP®/Msysy = 2 (dashed). Right: M as function
of XPR /Mgsysy for Msysy = 1 TeV (solid), Msysy = 5 TeV (dashed) and Msysy = 20 TeV
(dot-dashed).

The left plot of Fig. 13.6 shows M) as a function of Mgygy for XPT{/MSUSY = 0 and

XtDR /Msusy = V6. For vanishing stop mixing and Mgsysy 2 1 TeV, we observe an excellent
agreement of the FeynHiggs curve with the SUSYHD result. Even for very large scales Mgysy ~
20 TeV, we find agreement within ~ 0.5 GeV in the considered simple numerical scenario, in
which all SUSY scales are chosen to be equal to each other. For low scales (Mgusy < 1 GeV), it
can be seen that the FeynHiggs result is higher by up to ~ 1 GeV compared to the SUSYHD result.
The origin of this difference are terms suppressed by the SUSY scale, which are included in
FeynHiggs but not in SUSYHD. For XP®/Msusy = v/6, we basically observe the same behaviour
as in case of vanishing stop mixing. The overall agreement in the simple numerical scenario is
very good (within ~ 1 GeV for Mgysy = 0.5 TeV). For low scales (Mgsusy < 0.5 GeV), the
FeynHiggs result is lower compared to the SUSYHD result by up to ~ 2 GeV. As in the case of
vanishing stop mixing, this can be traced back to terms suppressed by the SUSY scale. We will
discuss this and investigate the remaining differences in more detail below in Fig. 13.7.

In the right plot of Fig. 13.6 the comparison between the M}, prediction of the new FeynHiggs
version and SUSYHD is shown as a function of XP®/Mgsygsy for Mgysy = 1,5,20 TeV, shown
as solid, dashed and dot-dashed lines, respectively. Again one can see an overall very good
agreement between both codes for Mgysy = 1 TeV (within 1 GeV) in the considered simple

numerical scenario. The agreement is especially good for small | XP®/Mgugy|, but the devi-
ations stay below 1 GeV also for increasing mixing in the stop sector except for the highest
values of |XP7R/MSUsy‘ in the case of Mgysy = 1 TeV. The larger deviations of up to ~ 2 GeV
for \Xt[TR/MSUSﬂ 2 2.5 in the case of Mgygy = 1 TeV are due to terms suppressed by Mgysy
which become large for increasing | XPR /Mgygy|.

In Fig. 13.7, we further investigate these remaining differences between FeynHiggs and
SUSYHD observed in Fig. 13.6. In the left plot we show the difference between the results of
FeynHiggs and SUSYHD for M} (not for Mj,). Since in both codes actually M7 is calculated,
taking the square root of these results can obscure the true dependences of the difference. As
an example, if the difference in M? is constant when varying Msysy, we would not observe a
constant difference when comparing the difference in Mjy. We show in the plot the difference
in M? for the case where the fixed-order result of FeynHiggs is parametrized in terms of
the SM NNLO MS top mass. For Mgysy < 1 TeV in the case of vanishing mixing and for

Msysy < 3 TeV in the case of XPR/MSUSY = /6 we observe large gradients. For larger
scales (Mgsusy 2 3 TeV), the difference is only slowly increasing when raising Msysy. For
vanishing stop mixing, the difference is growing by ~ 50 GeV? when raising Mgysy from 3 TeV
to 20 TeV. For XPR/Mgysy = v/6, similarly a growth of ~ 50 GeV? is recognizable. This
behaviour is mostly due to the differences in the EFT calculations implemented in FeynHiggs
and SUSYHD discussed in Chapter 12. In addition, however, we observe an offset relative to the

zero axis for Mgusy > 3 TeV. For vanishing stop mixing, it is small (~ 50 GeV?), whereas

~
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Figure 13.7: Left: Difference of the M? predictions of FeynHiggs and SUSYHD as a function of
Mgysy for XPR/Mgysy = 0 (solid) and XPR/Msysy = V6 (dashed). For the parametrization
of the diagrammatic result of FeynHiggs the SM NNLO MS top-quark mass is chosen. Right:
Differences due to the different parametrization of the top-quark mass and the vev in a fixed-
order O(azas,a?) calculation, taking into account only non-logarithmic terms, as a function
of XPR/Mgusy. The difference between the result parametrized in terms of the MS NNLO
top-quark mass and vg, and the one parametrized in terms of the MS NNLO top-quark mass
and vy is shown.

for XPR/Msusy = v/6, the shift is more significant (~ 150 GeV?). The nearly constant offset
between the two codes can be traced back to the different parametrization of the non-logarithmic
terms discussed in Section 10.2.

We further analyse the influence of the different ways to parametrize the non-logarithmic
terms in the right plot of Fig. 13.7. It shows the difference in M? obtained from a dia-
grammatic calculation of O(ayas, o) using different parametrizations of the vev for the non-
logarithmic one- and two-loop terms (see Section 10.2 for more details). Note that these non-
logarithmic terms, apart of O(v/Mgysy) contributions, stay constant when varying Mgysy.
For XP®/Mgsysy ~ V/6 the difference between parametrizations in terms of v » and vyg (both
using the SM NNLO MS top-quark mass) amounts to ~ 220 GeV?2. Such a shift accounts
for the main part of the nearly constant offset observed in the left plot of Fig. 13.7. For
XtDR /Msusy ~ 0 the difference between the parametrizations in terms of vg, and vyg is seen
to become very small. The nearly constant offset for vanishing stop mixing observed in the left
plot of Fig. 13.7 can be explained in a similar way by different parameterization of terms that
are not of O(azas, a?).

Finally, we briefly comment on the differences between FeynHiggs and other pure EFT
codes that have been reported in the literature. In [40] it was claimed that differences between
FeynHiggs and SUSYHD of up to ~ 9 GeV would occur for Msysy = 2 TeV and XPR/Mgysy ~
V6. As already noted in [40], this difference was somewhat reduced if the NNLO MS top mass
was employed in the calculation of FeynHiggs.> While at the time of the comparison carried
out in [40] the EFT calculation of FeynHiggs was not yet at the same level of accuracy as the
one of SUSYHD, the differences claimed in [40] were in fact primarily caused by an inappropriate
application of the conversion of input parameters between the DR and the OS scheme. The in-
appropriate parameter conversion, for which the authors of [40] used their own routine, caused
a deviation of 3-4 GeV for Mgysy = 2 TeV and XPR/MSUSY ~ /6 and was also respons-
ible for the apparent numerical instability at large SUSY scales of the FeynHiggs curve with
XPR/Mgsysy = 0 shown in [40]. The numerical effect of this deviation was larger than the shift
caused by employing the NNLO or NNNLO MS top-quark mass in FeynHiggs, in contrast to
the claim made in [40].

Also the comparison figures between FeynHiggs and FlexibleEFTHiggs as well as SPheno
shown in [43, 44] are plagued by deficiencies arising from an inappropriate application of the

3In the FeynHiggs version employed in the comparison by default the NLO MS top mass was used. This was
formally correct for the resummation of the LL and NLL contributions that was implemented in FeynHiggs at
that time. As found in Section 13.1, the shift in the top-quark mass from NLO to NNLO generates the main
numerical effect when going to NNLL resummation.
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Figure 13.8: Left: M;, as function of tan 8 for XP®/Mgusy = 0 (solid) and XPR/Mgusy = v/6
(dashed) in a scenario with a low M4 and with different definitions of tan 8: in the MSSM at
the scale M; (blue) and at the scale Mgysy (red, overlapping with blue), and in the THDM
at the scale M4 (green). Right: Same signature, but for M4 = Mgsysy (overlapping red and
green curves).

parameter conversion between the DR and the OS scheme. We stress again that such a para-
meter conversion would give rise to the same kind of problems when starting from OS parameters
and converting to DR ones.

13.3 Resummation for low My

In this Section, we investigate the numerical impact of the implementation of an effective
THDM into FeynHiggs. This means in practice that we compare the results using the calcu-
lation outlined in Chapter 8 (corresponding to FeynHiggs2.14.1, see www.feynhiggs.de for a
full version history) to those from the calculation presented in Chapter 11, which is implemented
in a still private FeynHiggs version based on FeynHiggs2.14.1. In addition, we show results
from FeynHiggs2.14.0 to point out the impact of the non-degenerate O(a?) threshold correc-
tions [41] , which were implemented as a new feature in FeynHiggs2.14.1 (see also Section 8.3).
The degenerate O(a?) threshold corrections [40], used in FeynHiggs2.14.0, implicitly assume
M = Msysy. We furthermore compare the results of the calculation presented in this thesis
to those of MhEFT.

For illustration of the numerical effects, we investigate simplified scenarios as defined in the
beginning of this Chapter. We set the gluino mass Mj; equal to Msysy?. As default values for
the figures, we set Mgysy = 100 TeV and M, = 500 GeV. In combination with low M4 and
tan 8 values, this choice maximizes the numerical impact of the effective THDM.

For the SUSY parameters, we use the DR scheme with the corresponding renormalization
scale being Mgysy. The DR scheme is also used for X; (except in Fig. 13.12, where the OS
scheme is used). tan 3 is defined as tan STHPM (M), unless stated otherwise.

Aside from the simplified scenarios, we also study a more complicated situation, the “low-
tan S-high” scenario proposed by the LHC Higgs Cross Section Working Group in [115].

13.3.1 Shifts from tan  definition

As explained in Section 11.2, we account for the different normalization of the Higgs doublets in
the full MSSM and the effective THDM by introducing a finite shift in the field renormalization
constants of the fixed-order calculation. This changes the definition of tan 8: from a MSSM
quantity to one of the THDM, along with a change of the renormalization scale from M; (the
default of FeynHiggs) to My.

We analyze the numerical effect of this redefinition in Fig. 13.8. It shows results of FeynHiggs
for M), using different definitions of tan 8: tan SMSSM (M) (default definition in FeynHiggs),

4Note that our EFT calculation also allows to treat scenarios with Mj as an independent parameter. The
numerical effect of the additional threshold, however, is small since the dominant two-loop effect is already
captured by the fixed-order calculation (see also Section 13.1)
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Figure 13.9: M), as a function of My for XP®/Msysy = 0 (solid) and XPR/Mgysy = V6
(dashed). Left: tanf8 = 1. Right: tan = 3. The results of FeynHiggs without effective
THDM - using the degenerate O(a?) threshold correction (blue) and using the non-degenerate
O(a?) threshold correction (green) — are compared with the results of FeynHiggs with effective
THDM (red).

tan STHPM(M/4) (default definition in this Section) and, for comparison, tan SMSSM(Mgygy)
(achieved by shifting the renormalization scale to Mgysy). Accordingly, the meaning of the
horizontal axis is not the same for the different curves.

The left panel displays a low-M 4 scenario. The curves for tan AMSSM(M/,) and tan STHPM (M 4)
are very close to each other. This is essentially due to M4 ~ M;, the additional non-logarithmic
threshold correction of tan 8 between the THDM and the MSSM in Eq. (11.54) has only a small
numerical impact. In contrast, there is a large hierarchy between M; (or M4) and Mgsysy-
Therefore, the third curve for tan AMSSM(Mgygy) is shifted upwards for low tan 3, by up to
~ 2 GeV for tan 8 2 1.2. This shift shrinks for rising tan 3, as a consequence of the decreasing
dependence of M}, on tan 8. For tan 8 < 1.2 a small downwards shift of up to 2 GeV is visible.

In the right panel, the same set of curves is displayed, but now for M4 equal to Mgysy.
Therefore, the curves using tan STEPM(M4) and tan SM5SM(Mgysy) are very close; again, the
additional non-logarithmic threshold correction of tan 8 between the THDM and the MSSM
turns out to be negligible. Due to the large scale separation between M; and Mgygy the curve
using tan SMSSM (M) is shifted downwards by up to 2 GeV between tan 3 ~ 1.2 and tan 3 ~ 6.
For tan 8 < 1.2, a small upwards shift up to 1 GeV is visible.

13.3.2 Impact of the effective THDM

Having investigated the numerical effect of different definitions of tan 8, we now scrutinize the
impact of the implementation of an effective THDM into the hybrid framework of FeynHiggs.

In Fig. 13.9, we compare the results of various stages of FeynHiggs by showing M}, in depend-
ence of M4: the previous version without an intermediate effective THDM using degenerate
O(a?) threshold corrections (corresponding to version 2.14.0) as well as using non-degenerate
O(a?) threshold corrections (corresponding to version 2.14.1), and the new version with the
effective THDM implemented. One observes that the curves of FeynHiggs with and without
effective THDM converge to each other for rising M 4. This is expected since for M4 = Msysy,
the SM+EWinos can be matched directly to the MSSM and no effective THDM 1is needed.
The small remaining deviation of the THDM curve for M4 = Msysy and XP®/Msysy = V6
is caused by the O(a?) threshold correction, which is part of the current FeynHiggs (without
effective THDM) but not available for the THDM-modified version. For M4 < Mgysy we
observe sizeable shifts, in particular in the left panel where tan 8 is set to 1. The step from
degenerate to non-degenerate O(a?) threshold corrections already induces a downwards shift of
up to 5 GeV for vanishing stop mixing and of up to 7 GeV for XP® /Mgygy = V6. Implement-
ing now the effective THDM leads to a further shift downwards by up to 2 GeV for vanishing
stop mixing and up to 3 GeV for XPR/Mgygy = V6.

In the right panel with tan 8 = 3, the curves show the same qualitative behavior, i.e. for
low M 4 the implementation of an effective THDM shifts M) downwards, but in comparison to
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Figure 13.10: M, as a function of tan 8 for XP®/Mgygy = 0 (solid) and XPR/Msysy = V6
(dashed). Left: M4 = 200 GeV. Right: M4 = 1 TeV. The results of FeynHiggs without
effective THDM — using the degenerate O(a?) threshold correction (blue) and using the non-
degenerate O(a?) threshold correction (green) — are compared with the results of FeynHiggs
with effective THDM (red).
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Figure 13.11: M}, as a function of XP®/Mgygy for tan 3 = 1, (solid) tan 3 = 2.5 (dashed),
and tan 8 = 3.5 (dotdashed). Left: M4 = 200 GeV. Right: M4 = 1 TeV. The results of
FeynHiggs without effective THDM — using the degenerate O(a?) threshold correction (blue)
and using the non-degenerate O(a?) threshold correction (green) — are compared with the
results of FeynHiggs with effective THDM (red).

the results with tan S = 1, the effects are less pronounced (< 1.5 GeV).

This strong dependence on tan 3 is visualized more specifically in Fig. 13.10, where M}, is
shown versus tan  for the same cases as in Fig. 13.9. In the left panel, the difference between
FeynHiggs with and without effective THDM is displayed for M4 = 200 GeV and in the right
panel for a larger value M4 = 1 TeV. The effects of the various steps of improvement are most
pronounced for low tan 8 and shrink quickly for increasing values; for tan 8 2 5, the shifts are
negligible. Again, the use of the non-degenerate O(a?) threshold correction brings the result
without effective THDM closer to that with effective THDM. The curves in the left and right
panel behave very similar; the overall M}, values are higher for larger M 4, but the shifts remain
of the same size despite the slightly reduced hierarchy between M4 and Msuysy.

Next, the dependence on the stop-mixing parameter XP® is analyzed in Fig. 13.11, present-
ing M, versus XPR/Mguygy for two different mass scales M4 = 200 GeV (left) and M4 = 1 TeV
(right). As one can see, the difference between M, predicted by FeynHiggs with and without
effective THDM is only mildly dependent on X% /Mgygy. For all values, the effect of including
the THDM is a downwards shift of M}, becoming smaller for increasing tan 3.

From a phenomenological point of view, shifting the curves according to the various levels
of improvement is relevant for the proper determination of the parameter range that predicts
M}, compatible with the measurement. We have kept in all the figures the case with degenerate
O(a?) threshold correction in the version without THDM in order to point out the significance
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Figure 13.13: M, as a function of Mgysy for XPR/Mgysy = 0 (solid) and XPR/Mgysy = v/6
(dashed). Left: tan 8 = 1 and M4 = 200 GeV. Right: tan 8 = 3 and M4 = 1 TeV. The results
of FeynHiggs without effective THDM — using the degenerate O(a?) threshold correction (blue)
and using the non-degenerate O(a?) threshold correction (green) — are compared with the results
of FeynHiggs with effective THDM (red).

of going to the non-degenerate O(a?) threshold correction (realized in FeynHiggs2.14.1) which
already accounts for a substantial part of the shift when turning to the new version with the
effective THDM.

So far, all the numerical results refer to the DR scheme for the stop-sector renormalization.
As a distinct feature of FeynHiggs, also the OS scheme can be used for renormalizing the stop
input parameters. In order to illustrate the use of OS renormalization, we include Fig. 13.12
as the equivalent of Fig. 13.11, now in the OS scheme, displaying the M) dependence on
X908 /Mgysy for Ma = 200 GeV (left) and for M4 = 1 TeV (right). The overall behavior of
the results is similar to the results obtained in the DR scheme; also the shifts when turning to
the THDM case are similar in size, although slighty more pronounced in the OS scheme.

Here, it is, however, important to note that the shift between FeynHiggs with and without
effective THDM depends sensitively on the Higgsino mass parameter p when the OS scheme is
used®. This is due to the needed conversion of X; between the DR and the OS scheme, according
to Eq. (11.75), which involves an extra term that can become large for M4 <« Mgysy, low tan 3,
u ~ Msyusy and XtOS/MSUSY ~ 2, inducing large differences between XtOS and XtDR. This
signals that in those regions the one-loop conversion is insufficient yielding unreliable results
for M}, and recommends the use of the DR scheme.

The Msusy scale dependence of the effect from implementing the THDM is explicitly shown
in Fig. 13.13. In the left panel, we set tan = 1 and M4 = 200 GeV to maximize the shift

54 is set to My = 500 GeV in Fig. 13.12

7



13. Numerical results

—muJ’:li
—tanf =2 1
—mn.i:SE

PRI B RS RA N B R EEE W | ' ' PR
100 200 300 400 500 1000

My [GeV]

Figure 13.14: Shifts to the SM MS top mass induced by non-SM Higgs bosons as a function of
My for tan 8 =1 (blue) tan 8 = 2 (red) and tan 3 = 5 (green).

for illustrative purposes. Even for Mgysy ~ few TeV, a sizeable shift occurs between the
results with and without effective THDM, despite the small hierarchy between M4 and Mgysy.
Phenomenologically this observation is, however, of less interest since the Higgs mass values
reached are below 115 GeV over the whole considered range of Msysy.

The configuration in the right panel of Fig. 13.13, with tan3 = 3 and M4 = 1 TeV, is
more relevant for phenomenology since M}, ~ 125 GeV can be reached for Mgysy ~ 10 TeV
(and XPR/Msysy = v/6). The difference between the results from FeynHiggs with and without
effective THDM, however, is negligible for Msusy < 20 TeV. We conclude that in the commonly
considered scenarios with stop masses around the TeV scale and the h boson playing the role
of the SM Higgs boson the additional corrections from an intermediate THDM are negligible.

13.3.3 Results for the heavier Higgs bosons

The role of the SM-like Higgs boson can not only be played by the h boson, also the H boson is
a potential candidate (see [116, 117] for recent studies) and deserves a closer inspection. In the
following, we investigate the prediction for the mass of H boson within our hybrid approach.

In this class of scenarios M4 is smaller than M;. In consequence, the proper EFT at the
electroweak scale is the THDM and not the SM. In the present study, we take the values of the
SM MS couplings (v, 91,92, 93) at the scale M; computed in [79] as boundary values for the
EFT calculation. Thus, the EFT at the scale M; is replaced by the SM, which is then matched
to the THDM. This procedure avoids the detailed calculation of the THDM MS couplings at
the electroweak scale, but neglects THDM-specific terms.

In order to estimate the uncertainty arising from this approximate determination of the
boundary values, we investigate the numerical effect of the presence of extra Higgs bosons for
the determination of the MS top mass, as the parameter with the strongest impact in the Higgs
boson mass calculation. As a rule of thumb, a shift of 1 GeV in the top mass implies a shift of
the same size in the Higgs masses. As displayed in Fig. 13.14, the shift induced by the presence
of extra non-SM Higgs bosons is at most 300 MeV. This value is reached if M4 = 80 GeV and
tan 8 = 1. For larger M4 and/or larger tan §, the shift is quickly diminished below 100 MeV.
Accordingly, we estimate the uncertainty induced by neglecting the non-SM Higgs bosons when
extracting the MS couplings to be below 0(0.5 GeV).

In Fig. 13.15, the dependence of My on M4 (left) and on tan S (right) is presented. In
contrast to the parameters in the previous figures, we set M, = Mgsysy = 10 TeV to reduce the
overall size of M. The left panel illustrates the situation for tan 5 = 1, when the differences
between the various versions are sizeable. We find an approximately constant shift between
the results with and without effective THDM (employing the non-degenerate O(a?) threshold
correction), of about 1 GeV for unmixed top squarks and 4 GeV for XP®/Mgysy = v/6. For
the range of input quantities, however, My is too large for H playing the role of the SM Higgs
boson.

My can only be significantly decreased by raising tan 8. This possibility is analyzed in the
right plot of Fig. 13.15, where M4 is set to 80 GeV. The shift between the results with and
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without effective THDM shrinks for rising tan 3, as it was the case for M},. To reach the desired
value of 125 GeV for My, tan 8 has to be at least > 7. In this region, however, the difference
between the results with and without the effective THDM is completely negligible. Also the
uncertainty induced by not including contributions from non-SM Higgs bosons in the extraction
of the low-energy couplings, estimated above, is totally negligible.

In addition, we also investigated the impact of the effective THDM on the prediction of the
charged Higgs mass Mpy+. For the calculation of Mg+ no resummation of large logarithms
was available before. Nevertheless, we only find negligible shifts below 1 GeV in the scenarios
considered above.

13.3.4 “Low-tan S-high” scenario

In the “low-tan 8-high” scenario, defined in [115], all soft SUSY-breaking sfermion masses, as
well as the gluino mass, are set equal to Mgysy. The value of Mgysy is chosen such that the
result for Mj, is close to the experimentally determined mass and varies between a few TeV (in
case of large M 4 or tan 8) and 100 TeV (in case of small M4 or tan ). In its original definition,
the OS scheme was employed for renormalization, with the OS stop mixing parameter varying
with tan 8 as follows,

2 for tan g < 2
X098 /Msysy = < 0.0375tan? 8 — 0.7tan 8 + 3.25 for 2 < tan B < 8.6 (13.4)
0 for 8.6 < tan 8

Owing to the problems with OS parameters in scenarios with low M4 mentioned in Sec-
tion 13.3.2, we define all parameters as DR quantities®. Accordingly, we modify the values
for X,

0.0375tan? 8 — 0.7tan 3 + 3.25 for tan < 8.6

. (13.5)
0 for 8.6 < tan 3

XPTD“/MSUSY = {

In this way, XPiR /Mgysy will be close to the value which maximizes Mj; when tanf = 1 is
approached.
The remaining parameters are given by

pnw=15TeV, My=2TeV, Apcsud=2TeV. (13.6)

M; is fixed via the GUT relation My = 3 tan® 6y My ~ 0.5M.

The left panel of Fig. 13.16 contains M}, obtained from the FeynHiggs version including the
THDM, in dependence of tan 8 and M 4. One finds that M), comes close to the experimental

6The use of the DR scheme will be also be beneficial when comparing with MhEFT in the next subsection.
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Figure 13.16: Left: M;, computed with FeynHiggs including the effective THDM as a function
of M4 and tan 8 in the “low-tan 8-high” scenario. Right: Same as left plot, but the difference
between the result with and without effective THDM is shown.
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Figure 13.17: Left: M}, as a function of M4 for tan 8 = 1. Right: M}, as a function of tan 8 for
M4 = 200 GeV. The results of FeynHiggs with effective THDM (blue) and MhEFT (red) are

compared for XPR/Mgysy = 0 (solid) and XPR/Mgysy = v/6 (dashed).

value of 125 GeV only in the upper part of the plot where tan 3 2 6. For lower values of tan 3,
My, drops down to the region around 105 GeV. If additionally My is small (~ 200 GeV), M,
is even below 102 GeV. In comparison with the results shown in Fig. 3 of [115], M}, is reduced
by several GeV.

The results in [115] were produced using FeynHiggs2.10.4. Since then, many additional
improvements were implemented in FeynHiggs (see discussion above). To point out the effect
of the most recent developments since FeynHiggs2.14.0, we show the difference between the
most topical version of FeynHiggs with effective THDM and the non-THDM version 2.14.0 in
the right panel of Fig. 13.16. The diagram shows that for the considered scenario the M), values
obtained with an effective THDM are below the values obtained without effective THDM. For
tan 8 2 3, the downwards shift is small (below 1 GeV). For smaller tan 3, the shift increases to
about 4 GeV for M4 = 500 GeV. If in addition also My is small (~ 200 GeV), the difference
amounts to even more than 8 GeV.

13.3.5 Comparison to MhEFT

After investigating the numerical impact of an effective THDM on the hybrid calculation of
FeynHiggs, we compare our results to MhEFT (version 1.1).

First, we compare the results for M), in dependence of M, (see left panel of Fig. 13.17). We
choose tan 8 = 1 to maximize the impact of the effective THDM. For vanishing stop mixing,

FeynHiggs and MhEFT are in close agreement. Also for X}TR /Msusy = \/6, both codes agree
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Figure 13.18: Left plot: M}, as a function of X; for tan § = 1 (solid) tan 8 = 2.5 (dashed) and
tan 8 = 3.5 (dotdashed). M4 = 200 GeV is chosen. The results of FeynHiggs with effective
THDM (blue) and MhEFT (red) are compared. Right plot: M}, in the “low-tan 8-high” scenario.
The difference between FeynHiggs with effective THDM and MhEFT is displayed.

within ~ 1 GeV. The remaining deviation is caused by the different parameterization of non-
logarithmic terms (see Section 10.2). For low M4 this constant shift is compensated by terms
of O(M;/My) which are included in FeynHiggs but not in MhEFT.

In the right panel of Fig. 13.17, the results are compared as a function of tan 3, setting
My = 200 GeV. The overall good agreement is confirmed. Especially around tan 5 ~ 3 both
results are very close to each other, whereas the agreement is slightly worse for smaller or higher
values of tan 8 (but still within 1 GeV). Reasons for the disagreement are again the different
parameterization of non-logarithmic terms as well as terms of O(M;/Ma).

This behavior is also reflected in the left panel of Fig. 13.18 showing M}, as a function of
XtDiR. For tan 8 = 2.5 and tan 8 = 3.5, FeynHiggs and MhEFT nearly superpose each other.
Only for | XPR/Msygy| > 2.5, small deviations are visible which originate from the different
parameterizations of non-logarithmic terms. These terms become large for large |XP7R /Msusy]|-
For tan 8 = 1, a deviation of < 1 GeV is visible for | XPR /Mgygy| < 2.5, which is mainly caused
by O(M/M4) terms.

In the right panel of Fig. 13.18, we have another look at the “low-tan $-high” scenario
using the DR scheme, as defined in Section 13.3.4. In the whole M 4-tan 3 plane the difference
between both codes is smaller than 2 GeV. Especially for low M4 or low tan 8 both codes
agree very well, whereas FeynHiggs yields slightly larger results than MhEFT in the rest of the
parameter plane.

Finally, we comment on the comparison between FeynHiggs and MhEFT shown in [39] (see
Fig. 10 and 11 therein). The authors of [39] compared both codes in the “low-tan S-high”
scenario and found deviations of up to 15 GeV. According to their claim, this discrepancy was
mainly caused by the missing implementation of an effective THDM in FeynHiggs. In our
Fig. 13.16, right panel, we found, however, the effective THDM to induce shifts of not more
than 8 GeV. This raises the question for the origin of the remaining difference of ~ 7 GeV. One
reason is certainly the fact that FeynHiggs has evolved a lot since version 2.10.2; which was
taken for the comparison in [39]. A second more important reason is the parameter conversion
used for the comparison, which was done for the “low-tan 8-high” scenario defined with OS
parameters, Eq. (13.4). Therefore, the OS stop mixing parameter had to be converted to
the MS scheme which is employed in MhEFT. In this conversion, M4 = Msysy was assumed.
Thereby, an important logarithmic contribution was missed (last term in Eq. (11.75)), which
is especially large for low tan 8 and low M4, thus exactly in the parameter region where the
largest deviation between FeynHiggs and MhEFT was observed.
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Figure 13.19: M}, predictions of FeynHiggs including bands indicating the estimated theoretical
uncertainty. Left: M) as function of Mgysy for XPR/Msysy = 0 (solid) and XPR/Msysy =
V6 (dashed). Right: Mj, as function of XP®/Msysy for Mgygy = 2 TeV.

13.4 Remaining theoretical uncertainties

In the end, we also want to briefly discuss the remaining theoretical uncertainties. The hybrid
calculation of FeynHiggs can be improved by either advancing the fixed-order calculation or
the EFT calculation. An improvement of the fixed-order calculation would correspond to the
inclusion of higher-order non-logarithmic terms, which are partly suppressed in case of a high
SUSY scale. The unsuppressed parts of these corrections could also be used to obtain higher-
order threshold corrections at the SUSY scale to improve the EFT calculation. The inclusion
of these higher-order threshold corrections would then correspond to higher-order unsuppressed
non-logarithmic terms as well as logarithms going beyond the current order of resummation.
Another way of improving the EFT calculation would be to include higher-order RGEs or
higher-order threshold corrections at the electroweak scale. Such improvements would generate
logarithms beyond the current order of resummation.

The uncertainty estimate included in FeynHiggs focuses so far on the evaluation of the
uncertainty of the fixed-order calculation. It consists of three components:

e varying the renormalization scale entering the diagrammatic calculation between M;/2
and 2M,; (M, is the default scale),

e switching between different parametrizations of the top mass (OS top mass and SM MS
top mass) at the NNLO level,

e deactivating the resummation of the bottom-Yukawa coupling for large tan 5 (see [118]
for more details).

The change in the parametrization of the top mass is performed only for the non-logarithmic
terms. The EFT result containing all resummed logarithms is left unchanged.

The resulting estimate is shown in Fig. 13.19. For vanishing stop mixing we observe that
the estimated theoretical uncertainty is very small. A change of Mgysy only marginally ef-
fects the estimate. For rising |XPR/Mgusy|, the estimate increases to up to ~ 2 GeV for
XPR/Msysy = V6 (~ 1.5 GeV for XPR/Msysy = —+/6). Also in this case, the estimate is
nearly completely independent of Mgysy. Only for Msysy < 500 GeV a significant decrease is
noticeable.

In the considered scenario, the uncertainty estimate originates nearly completely from the
change in the parametrization of the top mass. The variation of the renormalization scale
and deactivating the resummation of the bottom-Yukawa coupling yield only negligible con-
tributions. This explains the larger uncertainty for large stop mixing, since in this case the
dependence on the top mass is stronger.

These results hint at a problem with the estimate of FeynHiggs: It does not take into
account any uncertainty associated with large logarithms, e.g., in the case of vanishing stop
mixing the main correction to the Higgs mass consist of large logarithms. In addition, studies
of the uncertainties of pure EFT calculations suggest that the uncertainty in the case of large
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13.4. Remaining theoretical uncertainties

stop mixing should decrease with rising Mgysy due to a shrinking top-Yukawa coupling at
Msusy [40]. Nevertheless, at least for low Mgysy the results presented here should give a solid
estimate of the remaining theoretical uncertainty.
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Conclusions

The discovery of a Higgs boson and the measurement of its mass by the experiments ATLAS [1]
and CMS [2] at the LHC enables stringent tests not only of the SM but also of BSM theories.
In supersymmetric models, like the MSSM, the Higgs boson mass itself can be predicted in
terms of the model parameters and therefore used as a precision observable.

Different methods are used for the calculation of the mass of the lightest CP-even Higgs
boson. Perturbative calculations at a fixed order allow to obtain all corrections at a given
order and are therefore precise for low SUSY scales. In the light of increasing experimental
bounds on SUSY particles from direct searches, however, EFT calculations became increasingly
popular. They allow to resum large logarithmic contributions by means of renormalization group
equations. These large logarithmic contributions can spoil the convergence of the perturbative
expansion in pure fixed-order calculations. They are therefore precise for high SUSY scales.
For low scales, though, they become inaccurate since terms which would be suppressed for high
SUSY scales are missed, if no higher-dimensional operators are taken into account.

To profit from the advantages of both method — high precision for low scales in the case of
the fixed-order calculation and high precision for high scales in the case of the EFT calculation
— we described how a hybrid approach allows to combine both techniques. For this combination
several subtleties have to be taken into account: Subtraction terms have to be introduced to
avoid the double counting of terms contained in both calculations. Moreover, a conversion
between the different renormalization schemes used in the fixed-order and the EFT calculation
has to be performed.

Originally, this method was restricted to supplementing the existing one- and two-loop
fixed-order calculation implemented into the public code FeynHiggs by a resummation of lead-
ing and next-to-leading logarithms in the limit of vanishing electroweak gauge couplings. In this
thesis, we have presented and discussed the inclusion of electroweak contributions. In addition,
we implemented separate electroweakino and gluino thresholds, and investigated the effect of
the resummation of next-to-next-to-leading logarithms in the limit in the limit of vanishing
electroweak gauge couplings. These improvements shift the prediction for M, especially pro-
nounced for positive values of the stop-mixing parameter X; with downwards shifts in M}, of
about 2 GeV.

We found that this is mainly caused by the electroweak NLO corrections to the MS top-
quark mass. The genuine effect of resumming electroweak contributions shifts the Higgs mass
upwards compensating the downwards shift induced by the smaller MS top-quark mass. This
effect becomes only relevant for SUSY scales larger than a few TeV. Furthermore, electroweak
NLL contributions are found to be much smaller than electroweak LL contributions.

We also investigated the effect of various intermediate thresholds. In our framework, an
electroweakino threshold yields significant contributions only for SUSY scales above 5 TeV. We
found that a gluino threshold is completely negligible, since the main contributions sensitive to
the gluino mass are already captured by the two-loop Feynman diagrammatic result.

Furthermore, we found NNLL resummation of O(«s,ay) to shift the lightest Higgs mass
downwards for positive stop mixing, whereas it leads to a larger upwards shift for negative
values of X;.
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14. Conclusions

After discussing these improvements, which brought the EFT part of the calculation in
FeynHiggs to the same level of accuracy as dedicated pure EFT codes, we have presented a
detailed comparison between various approaches used to predict the mass of the SM-like Higgs
boson in the MSSM in a scenario in which all SUSY mass scales are chosen equal to each
other. In particular we have compared pure EFT calculations with our hybrid approach. In the
literature significant deviations between the results obtained via the two approaches have been
reported especially at large SUSY scales. In the course of this investigation, we have identified
three sources of the observed differences.

We could show that a large part of the reported discrepancies can be traced back to para-
meter conversions between different renormalization schemes. In EFT calculations typically the
DR scheme is used for the renormalization of SUSY breaking parameters, e.g. the stop mixing
parameter. In the diagrammatic calculation of FeynHiggs (in the default case), however, the
OS scheme is employed in the scalar top sector. We have demonstrated that the a one-loop
scheme conversion of input parameters often used for the comparison of fixed-order results is
not suitable for the comparison of results containing a series of higher-order logarithms. This
kind of parameter conversion would induce higher-order logarithmic contributions that are not
compatible with the implemented resummation of logarithms to all orders. We have shown that
the form of the higher-order logarithms obtained in one scheme can manifestly be maintained
if the fixed-order part of the calculation is reparametrized to this scheme. In order to enable
this approach for DR input parameters, we have extended FeynHiggs such that the results are
provided both in terms of the on-shell parameters XS, M; = m S, My, = mQS (as before)

and the DR parameters X; DR ER, mg DR Ip practice, this was achleved by reparametrlzmg
the existing OS fixed-order result We have demonstrated that many of the apparent discrep-
ancies reported in the literature have mainly been caused by an inappropriate application of
the conversion of input parameters between the OS and the DR schemes. This issue is not a
problem of the OS renormalization, but analogously appears if OS parameters are used as input
for codes employing the DR scheme.

Another difference between pure EFT calculations and the hybrid approach arises from
the determination of the poles of the Higgs propagator matrix. We have shown explicitly at
the two-loop level that there occurs a cancellation in the limit of a large SUSY scale between
non-SM terms arising through the determination of the propagator pole and contributions
from the subloop renormalization of the irreducible self-energy diagrams. Since we expect
that similar cancellations will happen at higher loops, we have modified the determination of
the propagator poles in FeynHiggs such that terms are omitted that would not cancel because
their counterpart in the irreducible self-energies is not incorporated at present. Unless otherwise
stated, the numerical results presented in this work have been obtained using this new method
of pole determination. Numerically, we found that the terms beyond O(a?, azap, of) for which
the cancellation was incomplete before are negligible for low scales (Mgusy < 0.5 TeV). They
can be more significant for high scales (~ 1.5 GeV for Mgygy ~ 20 TeV).

Furthermore, we investigated the impact of different parametrizations of the non-logarithmic
one- and two-loop terms. In this context, we found the top-quark mass and the vev to be
especially relevant. Despite the results being formally identical at the strict two-loop level,
using e.g. a SM NNLO MS top-quark mass instead of the OS top-quark mass induces changes
in the higher-order non-logarithmic contributions.

In our numerical comparison, we focused on a single scale scenario with a moderate tg,
which is particularly suited for an EFT calculation. We specifically compared the results of
FeynHiggs and the EFT code SUSYHD. Using the NNLO value of the MS top-Yukawa coupling
in SUSYHD (by default the NNNLO value is used in SUSYHD, which leads to a downward shift
by ~ 0.5 GeV in Mj), we find very good agreement between FeynHiggs and SUSYHD for scales
Msysy 2 1 TeV. Such a good agreement is in fact expected for high SUSY scales since
the hybrid approach of FeynHiggs incorporates essentially the same logarithmic contributions
as pure EFT calculations. For Mgusy < 1 TeV we observe significant differences between
FeynHiggs and SUSYHD due to terms suppressed by the SUSY scale that are not incorporated in
the EFT calculation of SUSYHD. The observed differences stay relatively small for the considered
simple scenario with a single SUSY scale, reaching ~ 1 GeV for Mgysy ~ 300 GeV. Larger
deviations can be expected in SUSY scenarios with non-negligible mass splittings between the
various SUSY particles. Such kind of mass patterns are accounted for in the diagrammatic
fixed-order part of the hybrid approach.
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Afterwards, we discussed the implementation of an effective THDM into the hybrid frame-
work of FeynHiggs. First, we described our EFT calculation. It allows not only to treat the
case of light non-SM Higgs bosons but also of light electroweakinos. Furthermore, it includes
complete one-loop threshold correction and takes all appearing effective couplings fully into
account. In this context, we also discussed how the matching between the different EFTs is
performed paying special attention to the different normalization of the Higgs doublets.

This difference in the normalization also plays a crucial role in the combination of the
existing fixed-order calculation with the new EFT calculation for low M,. We accounted
for the different normalization by introducing finite field renormalization constants into the
fixed-order calculation. We also discussed how this affects the definition of tan § as an input
parameter. Moreover, we investigated the effect of low M, on the scheme conversion of the
stop mixing parameter which is necessary if OS input parameters are used.

In our numerical study, we compared the version 2.14.0 and 2.14.1 of FeynHiggs, both
with the SM as the EFT, to our new computation with an effective THDM. We found the
switch to an effective THDM to cause a negative shift in My of up to 3 GeV with respect to
FeynHiggs2.14.1. This maximal value is reached when tan 8 ~ 1 and the hierarchy between
the SUSY scale and M, is large (Msysy/Ma ~ 10%). The shift shrinks quickly when tan 3 is
increased. For tan 3 2 7, the effects resulting fom the THDM are almost completely negligible.
Similarly, the shift decreases when M 4 is increased or Mgysy is lowered. Larger shifts, up to 10
GeV, are found when comparing to FeynHiggs2.14.0. In that version, the implemented O(a?)
threshold correction implicitly assumed M4 to be equal to Msysy, leading to an overestimate
of M}, in scenarios with M4 < Mgysy.-

We also investigated predictions for the mass of the second CP-even Higgs boson H. In the
phenomenologically most interesting parameter region, where the H boson can play the role of
the SM Higgs boson, we found the shift induced by an effective THDM to be negligible. Also
the prediction of the charged Higgs boson mass is only marginally affected. In addition, we
looked at the “low-tanb-high” benchmark scenario developed by the LHC Higgs Cross Section
Working Group. For this scenario, we found corrections of up to -8 GeV in comparison to
FeynHiggs2.14.0 for tan 8 < 3 with the consequence that the updated M}, prediction is too
low for meeting the experimental Higgs boson mass. Finally, we compared our results with those
of the code MhEFT finding good agreement within 1 GeV throughout the considered parameter
space.

In the end, we presented a brief discussion of the remaining theoretical uncertainties. The
current uncertainty estimate of FeynHiggs focuses on the evaluation of the uncertainty of the
fixed-order calculation. Therefore, it is less suitable for high SUSY scales where the uncer-
tainty of large logarithmic contributions becomes relevant. Nevertheless, the results obtained
in this thesis provide important input for an improved estimate of the remaining theoretical
uncertainties from unknown higher-order corrections. Such an improved estimate will be the
subject of future studies, whose final goal will be to fully exploit the high precision reached on
the experimental side.
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Appendix

Fixed-order conversion: additional
two-loop terms

In this Appendix, we describe how the OS renormalized fixed-order calculation can be repara-
metrized such that the entering stop parameters are defined as DR parameters (see discussion
in Chapter 9).

In the limit Msysy > M; and degenerate m;, = mi, = Msgsuysy, the one-loop contributions
from the stop/top sector to the neutral Higgs self-energies at O(ay) are given by (here, we drop
the subscript “Gp”, i.e. we use the shorthand v = vg,,)

& 1 1 my D¢

X1 = g 202 ME (A1)

R T AR Vi R VR v (A-2)
- 1 1 m} M3 X2 Xt 2 uX, X? 1 p?X?

Yoy = — |-12ln—5 —12- L 4+ 2L - S (6 =L )+ St A.
2= 622 [ S VNS VR V ( mz) v |0 @Y

where M2 = M; M;,, and m; is either the OS top mass or the MS SM top mass.
If we convert the stop masses and the stop mixing parameter from the OS to the DR scheme

using the shifts defined in Egs. (9.1), (9.2) and (9.8), the following two-loop terms are generated
(see Eq. (9.12)),

A I 1 m} [AX; p? Xy AMsg 12 X?
AY —L - ! A4
L) 52 v? [MS M3 Mg M3 |’ (A4)
& 1 1mt AX,y uX3 QMXt I
AXiz =1e5 2 202 [MS <_3 M3t M3 035
AMsg ( pXP 4 pPXE /fth):|
+ 4 + — —12 : A5
s \“arn T P (4.5)
ASgy = L Lme |AX [ X (o XPN 8w () XYLt
27 8r2s2 02 | Mg M MZ)  ts Mg MZ) "2 M3
AMg X2 X,;1 21X, X2 1 pu2x?
-2 6-6—%+ =t — =2 (3-L )+ (A.6)
Mg M2 ML ts M2 MZ) " M
The quantity AMg is given by
AM 1 (Amtgl Am2 ) v (A7)
s = 5 T+ 3 S- .
a\ M2 M2

The quantities AX; and Am%l , are given by the finite parts of the associated counterterms
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A. Fixed-order conversion: additional two-loop terms

(defined in Eqgs. (6.44), (6.45) and (6.47)),

Am2 =6Wpy2
ty,2 ty,2

. (A.8)

AX, =6 X,

" (A.9)
Note that for all numerical results presented in this work, we used expressions valid also for
low Msyusy (Msusy ~ My) and general SUSY breaking. Note also that the shifts are performed
for all self-energies and not only for the hh self-energy as shown exemplary in Chapter 9.
Therefore, the procedure remains also valid in non-decoupling scenarios (M ~ My).

As described in Chapter 9, these two-loop terms are finally added to the respective self-
energies, i.e., the AY-s are added to the two-loop self-energies obtained from the diagrammatic
calculation. Higher-order terms which would be generated by a scheme conversion of the input
parameters are omitted. In this way, the renormalization of the stop sector is changed from the
0S to the DR scheme.
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Appendix

Logarithms arising from the
determination of the propagator poles

In this Appendix, we give explicit expressions, valid in the decoupling limit, for the logarithms
induced by the momentum dependence of the non-SM contributions to the MSSM Higgs self-
energy, i.e. for the quantity A;(;gs defined in Eq. (10.5).

In order to derive the (n+ 1)th order iterative solution to the Higgs pole mass equation (see
Eq. (7.3)) in terms of lower order solutions, Faa di Bruno’s formula (extended chain rule for
derivatives) is used,

1
2\(n+1) _ _ E .
(Mh) - | .

ay:- ... Q !
(a1..,an)€Ty "

9 (a1+...+an) S n
'<%J spssvey) [ ™, (B

pr=mj m=1
where an n-tuple of non negative integers
(a1y.yan) €T ifl-a1 +2-a2+ ... +n-a, =n. (B.2)
The zeroth order correction
(M}%‘)(O) =m? (B.3)

serves as starting point of the recursion.
We split A;)ng into a leading, a next-to-leading and a next-to-next-to-leading logarithm
piece,

AP = A+ AN 4 AN (B.4)

In FeynHiggs, the full momentum dependence by default is taken into account only at the
one-loop level. At the two-loop level, the external momentum is set to zero (see [76, 77| for a
discussion of the momentum dependence at the two-loop level). We can therefore split up the
non-SM contributions to the Higgs self-energy into a one- and a two-loop piece,

Synon, SnonSM, (1 SnonSM, (2
SR (p?) = £ O ) + £ 0), (B.5)

To shorten the expressions for the individual contributions, we first introduce abbreviations.
We write the non-SM contributions to the Higgs self-energy as

SomSM ) 2y — ) (CilLX +ciyLa+ C{ﬁlLs + Cl,o) ; (B.6)

SpomSM) (0) = k2 (ea,2L% + 21 Ls + c20) (B.7)
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B. Logarithms arising from the determination of the propagator poles

where k = (47)~2 is used to keep track of the loop order and

2 2 2
M M.
— X — A — SUSY
szlnii%, LA:lnig, LS:IHT. (BS)

The subscript of a coefficient ¢, indicates that it is the prefactor of the term keLb (L =
L,,L4,Ls). The corresponding superscript marks~ the origin of the respective term (from
EWinos x, from heavy Higgses A or from sfermions f). These superscripts are used only at the
one-loop level to be able to differentiate between the different types of appearing logarithms
(Ly, L4 and Lg). In the DR scheme, the appearing coefficients up to O(v*/Mg,,,,) (Mheavy =
M, Ma, Mgusy) are given by (for the remainder of this section we drop the subscript “Gpg”,
i.e. we use the shorthand v = vg,.)
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where all appearing couplings are SM MS couplings evaluated at Q = M; (g, g’ are the elec-
troweak gauge couplings, and X; = X;/Msusy). We write the derivative of the non-SM con-
tributions to the Higgs self-energy as

S (n2) = k(&4 Ly + ¢h0) » (B.15)

with the primes denoting that the corresponding coefficient appears in the derivative of the
self-energy. We again drop contributions of O(v?/Mg,,..). The coefficient multiplying L,
originates purely from EWino graphs and reads

1
A= —5(392 +97). (B.16)

The non-logarithmic coefficient has contributions from EWinos as well as from stops (neglecting
all other Yukawa couplings),

1

1 ~
o= §yt2XtQ 6(392 +9”)(sp+cp)?. (B.17)
——
stop contr. EWino contr.
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All higher derivatives of XA]E?L“SM(pz) are suppressed, i.e. of O(p? /M}?eavy).
The SM contributions are written in a similar way,

D \" asm,
(&) 0w

where the superscript 'n’ denotes the nth derivative of f]il,\f

= ket (B.18)

—a 2
p*=mj

) Here, we only give explicit

expressions for the pure top-Yukawa contributions to the first five derivatives of ESM (1)
Egl) = —%yfvo, (B.19)
~(2) gytov_Q, (B.20)
&Y = %y_2v‘4, (B.21)
dY = %y“‘v‘ﬁ, (B.22)
8 = Sy, (B.23)

Eq. (B.1) allows now to successively derive all corrections induced by the momentum de-
pendence of the non-SM contributions to the hh self-energy. The generated leading logarithms
can be resummed easily, since higher derivatives of 22%“81\4 are always suppressed, as noted
before. The resummed expression is given in terms of the ¢ coefficients by

c L
AL}j;ﬁ%[C Lo+e Latel L5+k022L} (B.24)
p 1+kc’1,1LX 1,1 11 1.1 s

A similar expression can be derived at the NLL level. We obtain

1

ANLL _.2 .
” (1+key 1 Ly)?

: [036,10/1,0Lx +0114,10/1,0[04 +C{,lcl1,OLS + 1,061 1 Ly
+ k (e1,0(¢11)° LY 4 c2.1¢) 1 Ly Ls + 2267 oL%)
+ k202’1<0/1)1)2L>2<LS . (B25)

At the NLL level, however, additional terms proportional to derivatives of the light self-energy
exist. Since these derivatives are not suppressed by a heavy mass, it seems not to be possible
to resum the corresponding logarithms. Nevertheless, including terms up to the 7-loop order
we find a good convergence behaviour and an induced shift of O(+£2 GeVZ) to M? in the
parameter region My < Myeavy S 20 TeV. The respective shift in M), is of O(50 MeV). We
therefore neglect this contribution completely.

At the NNLL level, we take into account only terms proportional to the strong gauge
coupling and the top-Yukawa coupling (terms proportional to electroweak gauge couplings are
negligible). We find that at this level all terms include derivatives of the SM self-energy. We
also find that this contribution to M7 is not negligible, O(20 GeV?). Therefore, we include
terms up to the 7-loop order, which are given by

NNLL _ 1.3 / o
A" =k"Lgc [02,1 - 017101}

1 FN2
- k4Lscl 0 [02 201 ot 2051) D) (C{,1) Cgl)]
-~ N 1 ~ 3 N

+ k5L?§C/1,0 [C{,1C2,2C§2) 6 (0{71) ng)]

Lo6ra, 2 +(2) FV - L\ @
+§k Lgch o |(c22)" 67 —cap <C1,1) G+t D (61,1) &)

1 2 7.3 1 P\ . 1 (5
- 51437]4%‘3/1,0 {(0272) C{ch ) - §C2,2 (C{,l) Cg ) + = 60 (01 1) ( )
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B. Logarithms arising from the determination of the propagator poles

+ O(k®), (B.26)

where all terms in the ¢ coefficients proportional to g or ¢’ are set to zero. Correspondingly,
the derivatives of the light self-energy only include terms proportional to y;. These are listed
in Egs. (B.19)-(B.23). This loop expansion quickly converges such that we can safely drop
higher-order contributions (8-loop and beyond).

We find the electroweak contributions at the NNLL level and even higher-order logarithms
(N"L with n > 2) to be completely negligible. Similar expressions can easily be obtained for
the non-logarithmic terms of the same origin (see Eq. (10.9)).
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Appendix

Matching conditions

In this Appendix one-loop formulas for matching the various EFT's to each other are provided.
All expressions are derived under the assumption that all particles, which are integrated out,
have masses equal to the matching scale. The couplings on the right hand side of all following
expressions have to be evaluated at the scale given on the left hand side of the corresponding
expressions. Couplings not listed do not receive any one-loop contributions to the matching
conditions.

Two-loop threshold corrections for the matching of the SM Higgs self-coupling to the MSSM
as well as for the matching of the THDM quartic couplings to the MSSM are given in App. C.9.

We will use of the following abbreviations,

R A,

A, = , C.1
"7 Msusy (G-1)

X 1
= ) C.2
a Msusy (©2)
Xy = A — ﬂ/tg, (C.3)
Vi = A, + jitg. (C.4)

C.1 Matching the SM to the MSSM

The threshold correction for matching the SM to the MSSM are well known (see e.g. [38]).
Therefore, we list here only the for our purpose most important threshold correction of the
Higgs self-coupling,

1
ASM (MSUSY) 21(92 + 9/2) COSQ(QB) + AgtopA + AheavyH/\ + AEWinoA + Aﬁ%ﬁMiS)“ (05)

The individual contributions from stops, non-SM Higgs bosons, electroweakinos and from the
DR to MS conversion are given by

1 N 1 N
Astop)‘ :6y152k { |:yt2 + S <g2 + 9/2) CQB:| Xt2 - mthX;L}

8
Tk (5 + 97) B XE. (C6)
ApeavyHA = — %k‘(gl2 +9°)*sis, (C.7)
AEWino\ :2—14k(c/3 + sﬂ)2 {—5194 —244%g"% — 13¢"
+(39% +9%) [(9% + 9")eas +2(9% — 9”*)s25] } . (C.8)
Apr_ 5= —k Ki - éc%) gt + %gQg'2 + 39'4 ) (C.9)
(C.10)



C. Matching conditions

C.2 Matching the SM+EWinos to the MSSM

The threshold corrections for matching the SM+EWinos to the MSSM are also known (see
e.g. [38]). We extend the known expressions for the effective Higgs—Higgsino—Gaugino couplings
J1u,1d,2u,2d Dy including also terms due to the wave-function renormalization of the external
Higgs, which have been neglected in [38]. We split up the matching expressions into four pieces,

glU(MSUSY) - g 8,3 + Afglu + AHglu + ADR%Mng, (Clla)
G2u(Msusy) = gsg + AfGau + Angou + Apg_ 515920 (C.11b)
g1a(Msusy) = ¢'cs + Afgia + Augia + Apg_5591ds (C.11¢)
g2a(Msusy) = gcg + Afgaa + Apgea + Apr 575924 (C.11d)
The sfermion contributions are given by
A = g'sshk (—2g + 1n2(9 - 2.%2 C.12
fI1u =95\ =59 +Z 19— s5X7) ), (C.12a)
= 39 1.9 2 %2
Afgau = gspk { =597 + 7hi(9 — 55Xy |, (C.12b)
Afgia = —g'cpk ( g+ h2 ) ) (C.12¢)
= 3 2,2 %2
A¢gaa = —gegk g + ht s3 X7 (C.12d)

Note that the new wave-function renormalization contributions proportional to Xf have been
already implemented in FeynHiggs from version 2.13.0 on.

Integrating out the heavy Higgs yields

Apgiu = 1169 sgk (219 g+ g (-2 + 7(%)) , (C.13a)
N - 116935k( P2+ 11e3) +7¢"%¢ ) (C.13b)
Apgia = 1169 cgk (219 sﬁ +9 ( 2+ 735)) (C.13¢)
Apgoa = 116gcﬁk( 22+ 11s%) + 7¢'%s 2) (C.13d)

Changing the regularization scheme from DRED for Q > Mgsysy to DREG for @ < Mgysy
gives rise to

ApRMsItu = *églsﬁk(?’f +g), (C.14a)
Apr_ngd2u = 2149%16(239 —3¢"%), (C.14b)
Aprwsdid = —ég’%k(&ff +9%), (C.14c)
ApRMsY2d = 214906k(239 —3¢"”). (C.144)

The threshold correction of A is equivalent to the expression if matching the SM to the MSSM.
Only the electroweakino contribution AgwinoA has to be removed. It reappears at the matching
scale between SM and SM plus electroweakinos.
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C.3. Matching the SM to the SM+EWinos

C.3 Matching the SM to the SM+EWinos

Integrating out the electroweakinos generates the following one-loop matching condition for the
Higgs self-coupling,

)\SM (MX) :)\SM+EWinos (MX)

Ne)

[ - - - 3. 7
k=D at+ ota) - Jaka+ h) - Sust — Johath

g

o - o - 1,5 . o -
—(FraG5a + GruFou) — = (Fradou + T1udsa)

8. _ . .
—591d91u92d92u 5

3 6
4 .. . .
—g(gwggu + §1u924)(G1d92d + G1uf2u)

2 N - . N -
+§91d91u()\x — 237 — 29%,) + 2G2aG2u (A — 2054 — 233,,)

1. . - - -
St )+ Ao+ ) (©.15)
Also the top-Yukawa coupling is affected,

inos 1 ~ ~ 1 ~ ~
Yo (M) = ypMTEVINOs (AL ) {1 —k [Gglugld + 5 (Gt + 1)

1. 1, . -
+ 592ug2d + Z(ggu + g%d)] } . (C.16)

Assuming that all electroweakinos are mass-degenerate, the matching conditions of the gauge
couplings receive no one-loop correction.

C.4 Matching the SM to the THDM

The SM Higgs self-coupling is obtained in terms of the A; of the THDM by

MMM A) =Agree + AN (C.17)
with
Atree :)\10% + )\25% +2(A3+ Mg+ )\5)0?35% + 4)\60233 + 4/\7c55%, (C.18)
AN = =3k {( X6 + A7)c2g + (A6 — A7)cap
— ()\10% — )\28% —(Ag+ M+ >\5)025) szﬁ}z . (C.19)

Plugging in the tree-level expressions for the \; from the matching of the THDM to the MSSM,
we recover the heavy Higgs contribution to the matching condition of the SM Higgs self-coupling

to the full MSSM given in Eq. (C.7).
The top-Yukawa coupling of the SM y; is obtained from the one of the THDM h; by

3
ySM(M ) =(hysp + heg) |1 — S (s - Wyss)’| . (C.20)

This correction corresponds to the heavy Higgs contribution to the threshold of the top-Yukawa
coupling when matching the SM to the MSSM given in Eq. (24) of [38].

C.5 Matching the THDM to the MSSM

At tree-level the Higgs self-couplings of the THDM are given by

1

Al,tree(MSUSY) = AQ,tree(MSUSY) :Z(QZ + g/2)7 (CQI&)
1

A3 tree(Msusy) :Z(g2 —g'%, (C.21Db)
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C. Matching conditions

1
M tree(Msusy) = — 592, (C.21¢c)
A5 tree(Msusy) = As tree(Msusy) = A7 tree(Msusy) =0. (C.21d)

At one-loop level corrections arise from integrating out the stops, EWinos, as well as from the
transition from DR to MS. We split up the stop contribution into one part originating from
vertex corrections and one part originating from the wave function renormalization (WFR) of
the Higgs fields,

Ai(MSUSY) = )\i,tree + AVer.Cor.Ai + AWFR)\z + AEWinosAi + ADiRﬁMiS)\z (022)

The stop contributions have originally been calculated by [85] but are listed here for complete-
ness. The vertex corrections from box and triangle diagrams are given by

Aver o M = — g KB+ k(g + o3, (C.23a)
Aver.cor. Ny = 6khi A2 (1 - 112121?) - Z(g2 + g'z)hfflf, (C.23Db)
Avercon Na = GHPHE(S — A2) = Skl = g2 — ), (C.250)
Aver con At = RiPhE(3 — A) + Shg? W2 (A7 — i), (C.23d)
Avercon Ns = — g hE 247, (C.230)
Avercon o = KIS, — Sk(g? + o EAAL (C.236)
Aver.Cor A7 = %kh;"ﬂflt(zl? —6) + gk(f + g h2aA, (C.23g)

whereas the WFR corrections read

AWwWFRAL = —2(2/11)\1 + 53112>\6), (C.24a)

AwrrAz = —2(ShoAs + ShoA7), (C.24b)

AwWrrA3 = —( 3 /11 + 2’22))\3 — 2/12()\6 + /\7), (C.24C)

AWFRM = —(2/11 + 2,22))\4 — 2112()\6 + /\7), (024(1)

AWFRA5 = *( 3 /11 + 2,22))\5 - 2112()\6 + )\7), (0246)
1, - 1.

AwFRAg = —5(32/1 +3 )¢ — 52/12()\1 + A3+ A+ Ap), (C.24f)
1 - - 1.

AwrrAr = =5 (211 + 38)Ar = 5 X152 + A3 + Aa + As), (C.24g)

where the f];j = (8%253@.%) |p2—o are given by

~ 1 .

¥ = 5khf 2 (C.25a)
A 1 o

Ny = ikthf, (C.25b)
~ 1 o

Y, = fiktht,;. (C.25¢)

The scheme change from DR to MS yields the additional contributions

1
Aprowishe = — k(79" + 69%g”° + 39", (C.26a)
1 2 4
Aprwishs = — o R(79" = 699" +3¢"), (C.26D)
1 2
Apr s = —3kg* (97 +347), (C.26¢)
Apronstser =0, (C.26d)
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C.5. Matching the THDM to the MSSM

which have already been calculated in [119].

The EWino corrections can be obtained by replacing the effective Higgs—Higgsino—Gaugino
couplings §1yu,1ud,.. in the expression for matching the THDM to the THDM+EWinos given
below by their tree-level values.

Due to the wave-function renormalization, also § receives a threshold correction,

1“/

Brapm = Bmssm — 5 we(0). (C.27)

¥, 1 (0) receives corrections from sfermions and EWinos,

- 1 A N 2 N
hi(0)7 = = khisos(Ar — i/tg) (Ar + jitg), (C.28)
1

6k(392 +g’2)02,3. (C.29)

3 1 (0) Bwino =

Only when taking into account this threshold, the well known one-loop matching condition
of A (when matching the SM to the MSSM, see Eq. (C.5)) can be recovered from Eq. (C.17)
considering the limit M4 — Msysy.

The top-Yukawa couplings are obtained at the one-loop level via

4 A . 1.
h{HPM (Msusy) th{l +k {39:%(1 — Ay) + hi (]:5(M) - ZA%)
+ @ (A -2 ) +4¢7 .F(A)—i (C.30)
g 1K 3 3\ 79 ,
45 1.5+ A )
(R, THPM (M grgy) :htk{ gggu + thAtu + ¢*Fa(ft) + g'2f4(u)}. (C.31)
The appearing functions are given by
AN 3 An2 _and “2rq  an2 .2
Fili) =150 =2 [7 472 — 304 + 27%(8 — 342) In } (C.32a)
s P
N 1 _ao i o~ N -2 VYW ERTTY -2
B0 =t P {(55 324,70+ 5132) (1 — 32) + 232(72 — 16 A, — 197%) In ji2 ],
(C.32¢)
Fali) :L[Ba — )+ (9 +47%) In (C.32d)
1801 — )2 ’
AN 3 _ “2 a4 Adq a2
Bl =5= sy [ 14432 —3p4 + 23t nj ] (C.32¢)
with
21 3
Fi0) =I5 F)=-7, (C.33a)
3
Fo(0) = 22 Fo(1) = — (9 + 44,) (C.33¢)
3 144’ W= 736 th ooe
5
F4(0) =0, Fa(l) = 36 (C.33d)
Fs(0) = —g, Fs(1) =0 (C.33¢)

as limiting values.
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C. Matching conditions

C.6 Matching the THDM to the THDM-+EWinos

We again split up the matching conditions for the Higgs self-couplings into a piece due to vertex
corrections and a piece due to wave-function renormalization,

AJIPM(DL ) = NTHPNMFEWIOS LAy Gor i + AwrrAi- (C.34)

The vertex corrections from box and triangle diagrams read

1 . .3 . . . . P .
Aver.Cor. A1 = — ﬁk [7gildd + 1697 ga91du + 20744(99T 0w + 79540 + 892ddF2du + G5au)

+ 16914d91du (g%du + (g2aa + §2du)2) + To1au
+ 2§%du(§§dd + 8§2dd§2du + 7§§du)

+ 3(G2dd + 92au)? (99540 — 202dad2du + 9@5@)} ) (C.35a)

1 . 3 . . . . . .
AVelf-COI‘-)‘Q = Ek |:7gilud + 169%udgluu + 2g%ud(gg%uu + 7ggud —+ 892ud92uu + gguu)

+ 16§1udg1uu (.‘ﬁuu + (g2ud + gZuu)2) + 7.6411uu

+ 3(G2ud + G2un)” (993ua — 202udd2uu + 9§§uu)} , (C.35b)

1. . . . . - .
AVer.Cor.)\S = - Ek |:g%dd(7g%ud + Sgludgluu + 7g%uu + 1og%ud + 892udg2uu + 4g§uu)

+ 2§1dd (ledu(zg%ud + gludgluu + QQ%uu =+ 2g§ud + g2ud§2uu + 2§§uu)

— 3(J1udG2ddd2ud + Grud92dud2un + J1uud2ddG2un — 3§1uu§2du§2ud))

+ g%du(’?g%ud + Sgludgluu + 7g%uu + 4g§ud + 8§2udg2uu + IOgguu)

- 6gldu(_3g1udg2ddg2uu + gludeduQQud + gluug2ddg2ud + gluuQQdug?uu)
+ 1067 ,q054a + 891 uabodddzan + 49 uaFadn + 891uadtuudadd

+ 401uad1uud2dad2du + 891uddtuudsgn + 49T und3dd + 89T wud2ddd2du

+ 10§%uug§du + 27g§ddg§ud + 24g§ddg2ud§2uu + 27§§dd.§§uu

+ 24G24d92duGawg — 1202dd92du02udd2uu + 2492dd02du T

+ 27§%duggud + 24§Sdu§2udg2uu + 27g§dug%uu:| ’ (C35C)

17, . P . . . .
Aver.Cor. M = — Ek |:g%dd(7g%ud + 8G1ud1uu + 4g%uu - 5g§ud — 4goudFouu — 29%1”1)

2010 (100 (452 0 + 5100100 + 4, — 203 — Fouaun — 258u)
+ 3(910a(292dd + G2du)(202ud + J2uu)

+ 910w (292dd92ud + 4924d920u — J2du2ud + 2§2du92uu)))

+ Glan(A03ua + 891udgrun + 700wy — 20504 — A92udF2un — 533,

+ 691du (Qlud(2§2dd§2ud — 92dd92uu + 4G2dud2ud + 292duG2un)

+ g1uu(G2dd + 2924u) (G2ud + 2§2uu)) — 50% wadsad — 49T wad2dd2du

— 203 ya@3au — 491udd1undBaq — 201udFruud2ddd2du — 401udruudsg,

— 20%wu5dd — 4G5 wud2ddf2du — 59t uusdn + 27034a55ud

+ 2403 44920 2uu + 2402dd92duTrua + 4202d492dud2udd2un

+ 24924a92duF3un + 24030u92udf2un + 2793(1“@%4 : (C.35d)
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C.6. Matching the THDM to the THDM+EWinos

1. . . . . L. .
AVer.Cor.)\E) = - Ek [g%dd(,?g%ud + 8gludgluu - 2g%uu + 2g§ud + 4g2udg2uu - gguu)

+ 20100 910045300 + T Gruadiun + 4530 + 20300 + T020aG200 + 2030,)
+ G1ud(G2dd(5G2ud + 2G2uu) + 2G24u(G2ud + G2uu))

+ G1un (92dd(202ud — J2uu) + 2G2du(G2ud + §2uu)))

+ 9tau (=203 + 801uadtuu + 18wy — Goug + 4G2uaf2uu + 205.)

+ 2914 (glud(QQQdd(QQud + G2uu) — G2du(G2ud — 202uu))

+ G1u (202dd(92ud + J2uu) + G2du(202ua + 5§2uu))) + 207 wad3aa

+ 492 a92aa02du — TruaGadu + 4G01uad1uudagg + 14G1uadiuuGaddd2du

+ 401udd1und5du — Grund3aa + 407 wd2dad2au + 2070

+ 2705 4a05ua + 240304920 2un — 6353405y + 2492dd92duF3ua

+ 5402da92duf2udd2un + 2402dd452du 3w — 6540 Trud

+ 24g§dug2ud§2uu + 2793(1”@%”“ y (0356)

Aver.cor. A6 = — %If [Q?dd(mlud + 4G1uu) + 91aa(12010ud10d + 991dud1un
+ 7G2adGoud + 4G2ddG2uu + 492du2ud + J2duf2un)
+ G1dd (3g%du(3glud + 4G10u) + 8G1du(G2dd + G2du) (G2ud + G2uu)
+ (92dd + G2du) (91ud(TG2dd + G2du) + 4910u(G2dd + §2du)))
+ 9% au(4010d + T91un) + 9700 (92ddF2ud + 492dd92un + 402dud2ud
+ T92duf2un) + G1du(92dd + G2du) (4§1ud(§2dd + 92du)

+ J1uu(Gedd + 7§2du)) + 3(g2dd + J2du) (f]gdd(gﬁzud + 492uu)

+ 302dd92du(G2ud + G2un) + G3au(4G2ud + 9g2uu)):| ; (C.35f)
Aver.Cor. A7 = — %k [chl (7g:1))ud + 1207 yad1uu + 91ua (997w + T5ua + 8G2udfzun + Fouu)

+ 4G1uu (070w + (G2ud + g2uu)2)>

+ J1du (4§]§ud + 937 ua1uu + 4010 (387 wu + (G2ud + G2un)?)

+ 910 (798 uu + Goud + 892udf2uu + 7g%uu)) + 731 wqf2ddf2ud

+ 437y g92ddG2un + 49T wad2dufoud + 0T uaf2dudzun + 801udd1uud2dddzud
+ 8G1udd1uud2dd92uu + 8J1udd1uud2dud2ud + 891udd1und2dud2uu

+ 9t unf2ddf2ud + 497 wud2ddd2un + 497 wud2dufzud + 197 wud2duf2un

+ 27G2dd 950 + 3602da05ua02uu + 2102ddG2uddaue + 1202dd05 0.

+ 12§2duggud + 21g2du§§ud§2uu + 36g2dug2ud§§uu + 27§2dug§uu .

(C.35g)
The WFR corrections are identical to those listed in Egs. (C.24a)-(C.24g), but with
S = —ék [(Qldd + 91du)” + 3(J2da + deu)Z] (C.36a)
Sy = *ék {(gluu + 1ua)” + 3(G2uu + gQud)z} (C.36b)
My = *ék {(Qluu + G1ua)(G1dd + G1du) + 3(G2uu + J2ud) (G2dd + G2du) (C.36¢)

101



C. Matching conditions

The matching conditions of the top-Yukawa coupling are purely due to wave-function renorma-
lization,

inos 1 S 1 3
hi M (D) = B MRS g S5, — B S, (C.37a)
inos 1 - 1 3
(h;)THDM(MX) _ (hi)THDM—O—EW _ §h22’11 _ ihtym (C.37Db)

The threshold correction of 3 reads

1-
Brupm(Ma) = STHDMA+EWinos — 3 e (0) (C.38)
with
ZAJZH(O) = SpCp (2111 - 2/22) - 0262/12 (C.39)

In the limit of M, — Mgysy, we cross-checked the threshold corrections of A 7 against the
expressions given in [119] and found agreement.

C.7 Matching the SM+EWinos to the THDM+EW inos

Matching the SM+EWinos to the THDM-+EWinos, the thresholds for the SM Higgs self-
coupling as well as the top-Yukawa couplings are the same as in the case of matching the
SM to the THDM (see Section C.4), since no corresponding unsuppressed diagrams containing
heavy Higgs as well as EWinos exist.

We split up the matching condition of the effective Higgs—Higgsino—Gaugino couplings into
a part due to vertex corrections and another one due to wave-function renormalization,

Gi(Ma) = Gitree + Aver.cor.§i + AWFRGi- (C.40)

The vertex corrections are given by

~ 1, . .. .
AVer.Cor‘g2u 25(92ud63 - g2dd8B) |:(92dd92uu - glddgluu)c%
+ (G1ad91du — GrudGruu — G2ddd2du + GoudG2uu)SEC3

=+ (glduglud - deuQQud)S%:| ) (C41a)

. 1, N I PO
Aver.Cor.J2d =§(gzuucﬂ - deuSB) [(gzdugzud - 91dug1ud)0%
+ (91dd91du — J1udruu — J2dd92du + J2udd2uu)SBCB

+ (gluugldd - g?ddeuu)S%:| 3 (C41b)

Aver.Cor.J1u :%<gludc,8 — §1ddSp) { — (G1uufrda + 3G2uud2dd)ch

+ (G1dd91du — Grundiud — 392uuf2ud + 3J2ddG2du )55

+ (91dufrua + 3g2dug2ud)5?3:| ) (C.4lc)
Aver.Cor.G1d :%(gluucﬁ — §1duS8) [ — (91aud1ud + 302dufzud)Ch

+ (91dd91du — Grundiud — 392uuf2ud + 3J2ddG2du) 53¢

+ (G1uugrdd + 3g2uug2dd)5%{| . (C.41d)

The wave-function renormalization contributions read

- 1 . R . .
AWFRQQU = T6(92uu55 + deucﬁ) (g%uu =+ 2g§ud + 59%111/,)6123

102



C.8. Matching the THDM+EWinos to the MSSM

- 2(gluu§1du + 2g2ddg2ud + 5g2uu.§2du)5ﬁcﬁ

+ (03 4u + 20540 + 5@%@)%} ) (C.42a)
AwrRrg24 = — %(dedcﬁ + G2udSp) |:(g%ud + 595ua + 205,u)C

— 2(g1dd91ud + 592ddG2ud + 2G2uuf2du)S8C3

+ (9344 + 59304 + 293@)3%} ; (C.42b)
AWFRJ1u = — %(?]mﬁﬁ + J1ducs) [(&@%w + 2074 + 3?]5uu)cg

— 2(291dd91ud + 3G1uuf1du + 392uuf2du)ssCa

+ (20740 + 307au + 3@%@)%} ; (C.42¢)
AwFrg1d = — %(glddcﬁ + G1udsp) [(QQ%W + 307 ua + 303,4)Ch

—2(391dd91ud + 2010ud1du + 392ddG2ud)S5CH

+ (307 aa + 2074, + 3g§dd)sé] : (C.42d)

C.8 Matching the THDM+EWinos to the MSSM

The threshold corrections for § and \; are obtained by taking the respective ones from the
matching of the THDM to the MSSM but removing the EWino contributions.

The matching conditions of the effective Higgs—Higgsino—Gaugino couplings, only receive
corrections due to sfermions, given by the expressions (at the scale Msysy)

1 N
Afﬁmu =g’k (_29/2 + Zh?(Q - A?)) , (C.43a)
A 3, 1.,
~ ’ 5 12 1 242
Afgraa = —g'k 59 + th# ; (C.43c)
. 39, 190
Afg2aa = —gk 59 + th“ ) (C.43d)
and
. 1 P
Agrua =9 - Zktht/h (C.44a)
. 1 ;o
Affoua =g Zkthtu, (C.44b)
. 1 ;o
Afgrau = g ZkhtzAt,U, (C.44c)
. 1 P
A¢godu =g - Zkh%At/i' (C.44d)

In the limit M4 — Mgysy, we recover the corresponding matching conditions of the SM+EWinos
to the MSSM, given in Egs. (C.12a) and (C.12d) only if correctly taking into account the
threshold corrections of tan f3.

The corrections due to the change of the regularization scheme read

. 1

ApRMsiuu = _gglk(392 +g%), (C.45a)
. 1 2

Apr_,wgd2un = ﬂgk(2392 —39"7), (C.45Db)
) 1

Aprwisiiaa = —g9'k(39% + g%, (C.45¢)
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C. Matching conditions

. 1
App_,wgdedd = ﬂgk(%g2 —3¢"%), (C.45d)

Apr_msdide = Apr_3sdiud = Aprwsd2du = Apr_3s92ud = 0. (C.45e)

C.9 Two-loop threshold corrections

C.9.1 Matching the SM to the MSSM

Here, we give the O(asay, a?) threshold corrections valid under the assumption of My =
Mgsysy. Note that these expressions also apply to the matching of the SM plus electroweakinos
to the MSSM, since the additional electroweakino couplings in the low-energy EFT are zero
in the limit of vanishing electroweak gauge couplings. We assume that the one-loop threshold
corrections are expressed in terms of the SM top-Yukawa coupling.

The O(asay) threshold correction is given by [38]

_8

A a A
sttt 3

. N N 1 - N
k2 g2yt (—12Xt —6X7 + 14X} + 5)(;* - Xf) : (C.46)

This expression is valid if Mz = Mgygy. If instead Mz < Mgysy (e.g. in the case of the SM
plus gluino as EFT), the threshold correction reads [38]

A 1.
AR TN = —8k?giyf (3 —2X7 + 6Xt4> : (C.47)
The O(a?) threshold correction is given by [40]

61
Baph =32 5 6 = (54 2R AE) + 302 al) + A12(3) ~
B

+ X7 (=764 +4f1(p%) — 607 fL(f1) — 4fa(f1) — 64° f2(f1))
)

X (1202 — fu(8) + 20 () + o) + o)

13 N 25 - P
+e3] - S 60K + 72 + X2(15 - 24K) — X} - X¥y(12 + 64K)
+ XY (44 16K) — Y2(3 + 16K)
ey (14 e 1
+ X272 (3 + 24K) — X2 (12 + 8K> ] } (C.48)
with
i 2
i) == iz In ii7, (C.49)
) 1 P
= 1 1 C.50
Rl = = (14 T mi?). (©50)
o 1=2p2—2p [72 . . . . .
fa(p) = -2 5 + 2% —Ing?ln (1- ,ug) + Lisy(f?)] (C.51)
L™ detnzeos) (C52)
K=—-—— dzIn(2cosx) ~ —0.1953256. .52
V3 Jo

Lis is the dilogarithm function.

C.9.2 Matching the THDM to the MSSM

For deriving the O(asay) threshold corrections for the quartic couplings \;, we follow the
strategy outlined in [39]. As the authors of [39] pointed out, the O(asa;) threshold corrections
do not depend on tan 8. Therefore, they can be extracted from the threshold correction for
the SM quartic coupling A in the case M4 ~ Mgysy from matching the SM to the MSSM
(see Eq. (C.46)) by selecting the coefficients of the various S-dependent terms according to
Eq. (11.58) and Eq. (11.18).
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C.9. Two-loop threshold corrections

Expressing the one-loop threshold corrections in terms of the MSSM DR renormalized top-
Yukawa coupling h}S\ASSM, the two-loop O(asa;) threshold correction for A at Mgysy given in
Eq. (11.58) is modified,

4 A N N N
Al X = —nggghfngt (24 — 12X, — 4X7 + X}), (C.53)
where we used the superscript “h;” to clarify that this threshold correction is valid, if the cor-
responding O(ay) threshold correction is expressed in terms of the MSSM top-Yukawa coupling
hy.

' 1{inserting X; from Eq. (C.3) and selecting the terms proportional to (cg, s%, c%s%, c%sﬂ, Cgs%)
yields

4

Ap.oy 1 = —§k2g§h§ﬂ4, (C.54a)
Aa.oho = 16k%g2n} ( — 24, + A% + éAf - 112A§), (C.54b)
Aq. o, 315 = 8K2 g2 (12 (1 + A — ;Af), (C.54c)
Aaq.ayde = §k2g§h§ﬂ3 ( —1+ At>, (C.54d)
Aa.a = 4k2g2ht 0 (2 — 24, — A2 + ;AE), (C.54e)

where Azq5 = A3 + A4 + As5. These expressions are valid under assumption of Mz = Mgusy-

In the case My < Msusy, the O(asay) threshold correction of A between the SM and the
MSSM reads (assuming that the one-loop threshold correction is expressed in terms of the
MSSM top-Yukawa coupling),

agot

8 ~ ~
Ahelow M;y _ —§k29§h?s% (9 — 12X, + X}). (C.55)

Selecting again the terms proportional to (c‘é, s?;, c%s%, C%Sﬁ, cﬁsg) yields

AR Moy = —%kzgghf[ﬁ? (C.56a)
Alew Moy, = —%ngghf (9 — 1242 4+ /1;*), (C.56b)
ALY Mi)\s45 = 8k%g3hi i (2 - A%), (C.56¢)
Alew My g = gwgghf&ﬂ?’, (C.56d)
ARV M), = —§k2g§h§ﬂ (6 — A?). (C.56¢)

Using this method, we get only an information about the sum Asy5, leaving thus some some
arbitrariness. We follow the arrangement in [39], assigning

1

Ag,a s = iAaSatAZMSa (C.57a)
1

Ag,ars = iAasatA345a (C.57b)

Aa,ars =0, (C.57c)
1

ALNTAs = SARN M N, (C.57d)

g 1 ow g
Al:?:voszgA‘l = §Alogsafwg)\345a (0576)
AR M N5 = 0. (C.57f)

Other possible distributions yield numerical very similar results.
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Appendix

Difference in field normalization

In this Appendix, we give explicit formulas for the difference of the field normalization between
MSSM and THDM fields valid up to O(Mt/MSUsy), O(MA/MSUsy) and O(Mt/MA) They
are used in Section 11.2 for fixing the finite part of the field renormalization constants.

The contribution from sfermions is given by

1
ASY, = §kth2, (D.1)
1 N
ApXl, = —§kthtﬂ, (D.2)
1 .
A3, = ikthf. (D.3)
The contribution from electroweakinos reads
1 2 M2
/ 1 2 /2
AyXiy = _ék (39 tyg ) . (D.5)
1 2 M?
AT, = —ék (392 +4q ) (1 +31n Q;) . (D.6)

In addition, also all non SUSY particles, i.e. the particles of the THDM, yield a contribution if
the renormalization scales of the THDM and the MSSM are not equal,

/ 1 2 12 @2
ATHDMEH = 7516 (39 + g ) In §, (D7)
ArapmEi, =0, (D.8)
1 2 Q? Q?
ArupnThy = — 3k (392 +g ) In 2+ 3kh? In & (D.9)

with @ being the renormalization scale of the MSSM and @ the scale of the THDM.
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Appendix

Scheme conversion of stop parameters:
full one-loop formulas

In this Appendix, we list the formulas necessary to convert the parameters of the stop sector
from the OS to the DR scheme. Building upon the expressions given in [17, 37], we extend
those to the case of M4 # Mg.

First, we give expression for calculating the DR top-quark mass of the MSSM in terms of
the OS top-quark mass,

__\2 8 2 M2 .
(mP™) (@ :Mf{l ~ Skg} {5 + 3111% oS Xt]
t

Q2
3.y 5(1 M3 5 (8 Q?
MZ 1 .
—anf+2—u2f2(u)}}. (E.1)

with Mg being the stop mass scale (M2 = mg mgz,). For the conversion of this stop mass scale,
we obtain

(J\Qﬁ)2 Q) = (MS5)° {1 = %Gkgg [2 ~In Mg]

QQ
+ 32 2 M§+2M2 1-1 Mg
S| Erz i s L 2 1 Ms
gl a Tty Tt Q2
1o/ ~o. M2 . . M?2
+ Y2 Miln—5 + (4= M3)fa(Ma)+4—2In—=2
t2 M? Q
. 1, M?2
2 S
2 ~4 ~2 ~2 Mg
+5%<u In 2 + (1 u)(3 QIn@)
—(1-p*%m(1 - ﬂz)ﬂ } (E.2)

and for the conversion of the stop mixing parameter,

~ 4 N ~ ~
XPHQ) =MsOS{X?S + kol |8+ 5%, — X7 +3X,L

1 2
+ ikyt Q2

6 (o M2 . . M?2
t%Yt(MfllnM%+(4—Mj)fA(MA)+2ln5—4)
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E. Scheme conversion of stop parameters: full one-loop formulas

3. M2 o1, M2 M2 24 M2
6 R 1, . N R N N

- S (1- 2 G0 AT+ (1 ) )

B

3 &4 - ~ M2 - -
+ X2 (0= SB) g - G- MRA0L) - 2)
B A

X M?2 N
+X?<31n§—41n2—61n|Xt|> : (E.3)
my

The appearing loop function f4 depending on My = M4 /Mg is defined by

- T )4 N2
fa(My) = _Ma [arctan <M> - ﬂ] (E.4)

with the limiting values
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Appendix

Renormalization group equations

We use the following abbreviations,

t =1n(Q?), (F.1)
1
k= 62 (F.2)

k is used to keep track of the loop order. For the convention used for the normalization of \;
and v;, see Egs. (2.3) and (2.5). All RGEs are given at the two-loop order! in the form

dgi
dt
with g; being a generic coupling. The notation (a;b) indicates that a is used for @) < Mj; and
b for Q > M.
All RGEs have been derived using the Mathematica package SARAH [111].

= By, = kBY + k*B2, (F.3)

F.1 Standard Model

The beta functions of the SM are given by

M4, 27, 199 , 17
4" ) 2 g2 2L
by = k[ i k<5g3+10 T 309 T % )]

19 35 3 3
By =g’k {—12 + 5k <12932, + E92 + 59/2 - 23/?)} ; (F.4b)

(F.4a)

9 11
75+k( —26;+22)g2 2ﬁ+2f+6yﬂ}, (F .4c)

N)M—l

y? — 82 — 92_%/2

N)M—l
N ©

k{
25 131 3 284

+k |y? [ =12y — 6) + 3692 + —92 +=—g?) + =22 - (108; —) g
16 16 2

23, 1187

19 3 9 1
et gt + = ° F.4d
19 916 9939 9 939" — 199 ; ( )

9, 3 9, 3., 3
Br=k {6 (W + g7 —wi) = A (292 + 29’2) +59" 39"+ 19%0"

156 54
+k? [ 22 <—)\ 72y? + 54g° +§g )

3 145 , 85 73, 629 ,, 39
)\2 4 =Y /2 A 4 ped 4 o2 12
+yt(2yt+03+49+12 )+ (16 AT

1For the SM, we list also the three-loop RGEs in the limit of vanishing electroweak gauge couplings.
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F. Renormalization group equations

4 9 19
+2y} (15%2 — 1692 — g’2> + 292 (—94 g* + A g’ ’2>

3 g9 — 9 T I
305 6 379 i 289 4 559 5

_ 28 a2 207 . F4
167 T wgd T w99 T w9 (F.de)

As explained in Section 8.3, in case of O(as, ;) NNLL resummation also the three-loop RGEs
in the limit of vanishing electroweak gauge couplings have to be taken into account. The
corresponding three-loop beta-functions are given by

65
B —593 { 7 (1557 — 40g3) + <05 4] , (F.5a)

15
) _fylt [yt (58.6028y7 + 99\ — 15743) + Ayt (

AT 1Gg§>

9
+353.765g3y7 — 5)\3 — 619.3593] , (F.5b)

1, (6011, 1
O Ly <60 34 873yt) + S A%y? (1768.26y7 + 160.77¢7)

— \y; (223.382y7 + 662.86693) + 356.968\y; g5
— 2y (243.149y7 — 250.49443) — 100.402y; g5. (F.5¢)

Note that these three-loop beta-functions are only valid for ) < Mj.

F.2 Split model

The one and two-loop beta functions of the split model (see effective Lagrangian in Eq. (8.3))
are given by

By = pha1+ G | @ )+ B~ o iR
%gg %9/2 _ % 2} (F.6a)

By = - 15k + 30 |1 @t B+ e~ LG+ iR
+12¢3 + 24" — zyf] : (F.6b)
Bgy = — %<7; 5)kg3 + %kzgi’ [392 — (26;-22)¢5 + %9’2 - 2y3] : (F.6¢)

9 17 9., 1., i i
By, =5 kyf {49 =895 — 1597 + v + 5 (G + 51, + 3550+ 3g§u)]

9 , 5,4 9., 17T, 9, ., 45,

+ §k2yt {—12y? — g0t = 79tadte — 1501 — 79" — 391ad24 — 1592
~Baddaion — ST — STad — o0 — (108 )}

, (15 15 165 165 _,
+9 (1691d + 1691u T G5+ 16 % T 993>

5 /(3 3 9 9 9 19 2\ 138 4 3,
39 (1691d 169~ 509+ g% T 160+ 59 ) 569 T

9 225 , 27 131
+y; ( g @la+91) + T4 9" — 5 (320 + F5.) + 3693 + 797 - 6/\> } . (F.6d)

1.0 o ., 9 i o i e
By =5k {gi‘d = Gtu+ 39" = 5530 — AGragiudoaon — 533 — 2 + 54)(GTa + 53)
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F.2. Split model

3 3 L . i
+50%9" + 39" - 12y + 2(14 + F1u + 3054 + 3T5,)A

1
-9 (92 + 39’2> A+ 12920 + 12)2

8 2
+755495u (G3q + 30) + 17(3140%, + 91ad1e + G1ad3a + G1uF30)
F11(F3 4930 + Grudaa) + A7(G5a + Gou)
+G1a01ud2a920(42(Frg + 1) + 38(G34 + G5))]

1.,(209 « 1. .
+ 5k { T+ < [5(384 + F50) + 21(G30 + Gru)T2aT5u + 1971491 (F54 + F3u)

137 16
—§g’6 — 6493y} — 39’211? + 60y}
3 . N N 385 9
+g* _i(g%d + Gt + 5135, + 5133,) — ﬂglz - 23/3]
25 9 . ) 3 171
—1—59’4 [—100(9:%(1 + G1u + 3054 + 305,) — 501%2]
197 o N o . N
+g° —?9’4 — (G395, + 5Gaq + 2014910024020 + Trud3e + 2050050 + 5Gay)
5 3 . N N 63
+§g’2 (—w(gfcz + 9t — 21354 — 2135,) + 5y?>}
47 223
+ﬂ8¢+8yﬁ&%ﬁ@?

1, i L _
= (0l + 9ty + 5924 + 2574(F50 — 631.)

—80§1ad1uG2dd2u + 201050 + 4453455, + 5Ta)

5 /3 i i 17
+§g’2 <4(g?d + 1w + 3034 + 303,) + 2y?)

15 . i i 39 45
+¢° ( 1 (0 + 91+ 11330 +1193,) + 79 + y2>}

4 27t
+2% [549% —12(g7, + g1, + 3354 + 395,) + 18¢” — 7257 ] — T8N}, (F.6e)
1.7 . . (5. Y 9. 3. 9 3
B :§k [391d92d92u + G1u (49%11, + 2354 + Zggu + §9§d - 192 - 1912 + 32%2)]
1 3. 9. o 51. . 33 .
+ 5162 {—49fu — Zg?dg2d92u — 671471, G2d92u + Zgldg2d92u92 - Zguggdgzu

9. _ 3. . . .. I
—§gldgzdg§u + 191d92d92u9/2 — 9149249207 — 3G1dF24F2u\
15 165 27 9 103 27
~3 ~2 2 ~2 ~2 12 2
= i S - = % 22 3

+d1u ( TTat 559 — 159~ 15920+ 359 g Vi 3 )

~ 9. 17 75 o . 45 . 75 o 21 ., 99 _
+91u [49412 - 192 - Eg%dggd - Egéd - Eg%dg%u - gg%dggu - Eggu

v (ot Tedha+ Gy ) + 30° (e 300 + 578+ 1ot
8 16 32 3 40 20 16 160
+§g’4 +u7 (—2415}?(1 + %592 — %égu +20g3 + 229’2>
R AR (F.61)
Bara :%k |:3§1u§2d§]2u + 14 <i§%d + 243, + %g%d + gﬁu — 292 — %ga + 3y,52)]
+ %kz {igi’d — 6474910024920 — Zﬁugadm + %g%mgzdf]zu - gnugé’dffzu
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F. Renormalization group equations

1.7, . (1. 3.
Banu =5k |:gldglug2u + G2d <gfu + g1+ Gay +

33

- 3 0. . . . -
1 G1uG2dds, + Zg/ZgluQngZu — 9G1uG2aG2uY; — 3F1u2dd2u

o 15, 165, 9 _, 27, 103, 27
+3i4 (—4yfu + 9 = 0 ; 7y - 3A)

32 16724 7 1692« T 309 T g
T 9., 1T, 5. .. 99, T5. . 21 .  45_
+§1a [—49‘12 -9 Eg%uggd - Tﬁgé*d - nguggu - gggdggu - Egéﬁt

+g2(39~2 549 _, 165~2) 13,4 27,

g Jiu + 39 J2d + 16 J2u 39 1Y
5 (3 o 20 5 189, 9 2, a2 3.2
O - B B JR A I At oA
+39 <4091u 209 + 16092 + 16 %2u (91 + G2a) X + 5

21 _ 45 27 _ 85
+y7 <—49%u + §92 — g Y2 + 2093 + 249/2)] } ,

1.7 /1. 3. . 11., 33 3
Basu =5k |:gldglug2d + Gou (QQfd + ngu + Gag + 1 Gay — 1 9 - 19’2 + Syf)]
1 5... 3. .. 9. _ 9. _
+ §k2 {—4gi”dg1ugzd — §g1d9i”ugzd + 191d91u92d92 - 1415

7. 1. _ o o
-5 S + Zgldglug2dgl2 — 3G1401uG2aYF — G1a91uF2a\ — 431491uG2a05,
15 59 875 27 145 45
~3 ~2 ~2 2 ~2 12 2
25 S0 2 02 2202 5
+95, ( 1691d 1691u + 32 g 3 Gaq + 32 g 3 Yi )

[ 9.4 3,5 5., 409, 13, , 31, , 11_
+92u|: %d_722 4 VY4 2 ~2 2 ~2 4

_Eg 2gldglu - Eglu D) g — EgldQQd - Egmgw - ggzd

15 _ 111 _ 17 _ 5 3 . 63 _ 9 3 .
+g° (wg%d + 31 Gt + 49§d) + 59/2 (169%d + Gt + 59"+ mggd)

160 207
13 4 of 9.0 45 5 3, 2, 89 27 4
- _Z = 2 20 > -z
+5 0" v | g0t + g 97+ 05+ 2003 + 59 Vi

N _ 3
—MGt, + Foa) + 2>\2] } ;

11 _ 33 3
Zggd - 192 - 19/2 + 3%2)]

1 7. 3.4 _ b . 9
oL {_Qggd = 591ad1ud2u = 791450920 + 1G10G109209" = 4G14F1u 2020

2 4

9_ . 1. _ - I
—Zgldgmgéu + Zgldgmgzug’Q — 3G1401uG20Y; — Gradrufou)

59 15 875 27 145 45
=3 ~2 ~2 2 ~2 2 2
+g g 91y T+ g g g 5\
Qd( 1671 167 7 32 872w T 32 8 Y )

. 5 . 3.5 . 9 _ 409 31, _ 13 ., _ 11 _
+924 [—mg‘fd — S Tradt — 176911111, - 594 - Eg%dggu - Eg%uggu - gggu

2
111 15 17 b) 63 3 9 3
2 ([ 271 ~2 Y2 S 2 <2 P ~2 2 -2 72 2 =2
@ 2 3 2

13 9 i 85
+§9’4 +y7 (895(1 + g0 (%t 2095 + 249’2)

27 . _ 3
—ny — XNGiu + o) + 2)\2] } .

F.3 THDM type III

(F.6g)

(F.6h)

(F.61)

The Higgs potential of the employed THDM is specified in Eq. (11.1) , the Yukawa couplings
in Eq. (11.21).
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F.3. THDM type 111

Gauge couplings

The one-loop beta functions of the gauge couplings are given by

ﬁ,(;l) =- 2937 (F.7a)
By =gg’37 (F.7b)
B0 =~ 5Tl (F.7c)
the two-loop beta functions by
BR) =4¢° + ¢g° {69§ - thz - §h22 + 9'2}7 (F.8a)
8Ly 7@ Ptg” {23295 - %ht - Eh’Q +3g ] (F.8b)
B{H) = — (13;-11)g5 — g3 {hﬂ + R - % 2 Egﬂ} ) (F.8¢)

Top Yukawa couplings

The one-loop beta functions of the top Yukawa couplings read

9 9 17

By ;h 3 hy {493 - fh’2 + 89 + 549 2}, (F.9a)
9 17

ﬂ}%) :Zhgg — h {4g§ - th + gg2 - 249’2} : (F.9b)

The corresponding two-loop beta functions are given by
B =~ 6h,° — 6hih," — 9h Ry Ar — 3R, A
3 2 2 225 g — 131 2
— -1 12
hs [3/\2 8g3 + 12h;" — 399 399

225 131
— hyhl” [3()\3 s+ X)) — 18¢2 — 59 g2 — 329’2}

1 3 1 1 3 9
+ hy [2/\3)\4 + 722”5 A%+ g+ 452 + A+

142 9, 19 ,2) 21 , 3,0 1267 .4
s9 7399 T Y

= (54 =7)g5 + 63 (29 + 159
+ %h; [A1A6 o+ Ag ()\6 + >\7> Y (Aﬁ + /\7> 4 s </\6 n Mﬂ : (F.10a)

N == 6h;” = 6hihy* = 9hhdg — 3hy*Ar
30 - 182 2 225 0 131 2
hy [3)\1 1895 + 12h; 5 g 9 g

225 131 o
— R 3(Ns + As+ X5) —18g2 — g% — ¢/
tt|:3(3+ 4+ As) — 183 29 339

1 3 1 1 3 9 3
+ h; |:2>\3)\4 + Z)\12 + *)\32 + *)\42 + *)\52 + *)\62 + */\72

142 92,19 2y 20 4 B0 126
— (B4 2V gh 2 AN N 2y
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Quartic couplings

The one-loop beta functions of the quartic couplings are given by
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The corresponding two-loop beta functions are given by
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F.4 THDM with EWinos

L8
16

The Lagrangian of the THDM with electroweakinos is specified in Eq. (11.22).

Gauge couplings

The one-loop beta functions of the gauge couplings are given by
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the two-loop beta functions by
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Top Yukawa couplings

The one-loop beta functions of the top Yukawa couplings read
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The corresponding two-loop beta functions are given by
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Effective Higgs-Higgsino-Gaugino couplings
The one-loop beta functions of the effective Higgs-Higgsino-Gaugino couplings read
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The corresponding two-loop beta functions are given by
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1 P P P
~ 339 (2491du91ud92ud — 250244 92uuf2ud — 3991dud1uufouu

- 3g1dd(12gldu92dd + 2Og1uu§2ud + 5g1ud§2uu)>

1 o7 . . . e A A
+ 339/ (491dd91dug2dd + 11G2udG2und2dd + 4G1dd91uud2ud

+ 5g1ddg1udg2uu + 5g1dugluu.§2uu)

3 3 3 3
—MA6G2un + = A2 A70200 + = A3A6020u + = A3 A7 G200
+41692 +427g2 +43692 +43792

3 3 3 3
7)\)\ Auu 7)\>\ Auu 7>\5)\ Auu 7A)\ Auu
+44692 +44792 +4 692 +45792

1. . . 1 . . R N N R
- 5)\191dd91du92dd + §>\3 (gzddgzudgzuu - g1dd91uug2ud)

)\4 (292ddg2udg2uu + gldu (gludg2ud + gluug2uu))

)‘ (gludgluug2dd + g2uu (gldugluu + g2dd§2ud>)

A6 (Qmﬂ%du + Grdu (91udf2dd + G1ddG2ud) + G2da(G1dadrun + QQddQQuu))

>

M\)—‘I\D\)—‘[\DM—‘[\DM—‘

4
gl-
— 3

(gludgluuQQud + J2uu (gluu + gZud + 5g2uu))

uu (2§2dd§72ud - 17g1dugluu)

>
o

— 493, (391da91duf2dd + 391uaf1uud2dd + Grdufiudfoud + 391ddd1undzud)
= G2uu (9§1ud9?dd + 91aq (1010w druu — 3G2dad2ua)
+ 91ad91ud (10930 + 997 4q + 1087 + 98540 + G3ua) + G gubiun
— 801 qud2ddd2ud + 91dudtun (1037 ug + 91w — 833ud)
+ 0244920 (591 wa + Gaa + qud))

— 4(G1d4ub2dd + G1und2ud) (591?'6161 + 01dd (6974 + 59T ua + 281 wu + 99540 + 393ua)

+ 40100 G 1 wd 010 + Ggludggddggud)} : (F.18f)
5;24 == Zggud
312 (1091dd + 59,4 + 1562, + 11203, + 21934, + 54g2w)}
+ G3ua { - ?Mﬁwd - %hthgﬁzdd

1

~ 3 (8191dd91ud92dd + 3091dud1uuf2dd + 6892dud2unf2dd

+ 48g1ddg1uug2du + 64§1ud§1uug2uu):|

27 27 50 127, 3, 0 43 .4
ua | 1003 0" — Zohet = Zohe Py — == id
+92d|:093t t t 89+8 "‘489
45 85 2 9 3
h2< 2 / )
+ t 16 +48 61ud+892uu

ghth <3gldd91ud + 292du92uu) - 16hl2 (gldd + 59540 + 2g2du)

1
+ 9% (380%00 + 111570 + 3033, + 8750310 + 86334, +13633,.,)
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1 ,2 . . . R . R

+ 519 (1191dd + 21370 + 1097, + 1453344 — 14034, + 89§uu)
3 1 1 1 3 3 9

+ *)\22 + *)\32 + */\3/\4 + 5)\42 + 1/\52 + 1/\62 + 1/\72

1 ~ R . 1 R .
5)\3 (g%dd + 50340 + 2g%du) + S\ (ggdu - 59§dd)

1
2>‘2 (glud + gQuu) - 9

5, . .. A
- 5)\59§dd — A7 (91dd91ud + G2dufzun)

1
~ 33 (4gldd + 0%aq (497 g + 99T ua + 703w + 420544 + 399544
+ 2gldd (7g1dug1ud91uu + 6g2dd§2uugluu
=+ 18g1dug2dd92du + 35g1ud§]2dug2uu)
+ 24g%udg%uu + 27g%udggdd + 10§1uu§2du + 56§%dd.§%du
+ 93uu (3108 ua + 1357 + 1993400 + 43934,)
+ 4g1udgluug2ddg2du + 4g1dug2uu (lggludQde + gluuﬁQdu)
+ gldu(7glud + ggluu + 1592dd + 7g2du =+ 6@%uu)):|
R 27 . 27 3.
+ 1093 b} G2da — §g2ddht3h; - ghthg J2dd
- *ht2 (glddgluug2du — 92dd92uu92du + 91ud91uu92uu)
, 85 3 .9 .. A oa
+ hihy (169 92dd + @g 2 Godd + = 5 (92ddP3aqu — G1dd91dufodu — g1dug1ud92uu))
1
+ = 329 (3991dd91ud92dd + 15§1du1uud2dd + 2592duF2uuf2dd — 2491duf1udG2du
+ 60g1ddg1uu92du + 36g1ud91uug2uu)
1
32 <5gldd91ud92dd + 591duf1uuf2dd + 11G2dud2uug2dd
+ 4g1ddg1uug2du + 4gludg1uug2uu)

3 . 3 . 3 . 3 .
+ 1)\1)\692(1(1 + 1)\2)\792@1 + 1/\3)\692dd + 1)\3/\792dd

+

. 3 . 3 . 3 R
A4A6G2dd + Z)\4)\792dd + 1/\5)\692dd + Z>\5A792dd

A 1,7 . . A
Aleudgluug2uu + 5)\3 (gdedeug2uu - glddgluug2du)

AdJ1ud (deﬁzdd + J1dufedu — §2dd§2du§2uu)

As (dedgzduﬁzuu + G1dd (Grudf2ad + §1du§2uu))

>
/N

6 92ddG1aq + 91daud2audiaa + G2da (59544 + ggdu))

[ T I N I O N U

A (g2dd.§%ud + glud (gluug2du + glduéQuu) + g?uu (glddgluu + g?dd.@?uu))

gl=

aa(G1udd2aa + 891uud2an)

+ 20744 (51audruudzaa + 891audiuadzdu + 491uddruudzun)

+ G1dd (g2dd9§ud + 24810ub2dudtua + Grudf2dd (1093, + 170530 — 834u)

+ 1087 g (G1udf2da + 201uuf2du) + 491dud2un (497 wa + 33540 + 63544
+ 4g1uud2du (597 yu + 3(93aa + F3au + 3g§uu)))

+ 99 guG1uud2dd + 591 audzuu (491uddrun + G2ddF2du)
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+ G1du <1Ogluu92ddglud + 401udf2du (9334 + 6030.)
+ G1uud2ad (997w + Goau + 9§§uu))
+ J2uu (24g1uugz1))ud — 802daf2dudtud
+ 4910uad1un (597 un + 3(934d + Fodu + 355uu))

— G2dad2au (39 wu + 20340 — Goau — gguu)):| )

5. 875 , 145 , 45
~3 _ Y 2 I N
[ TR A TR AR T

1
32 <logldu + 15glud + 5991uu + 21g2dd + 112g2du + 5492ud>:|

+ G [ - ?)\7g2du ~ 3 htthQdu

1
33 (4891du91ud92dd + 6892duG2udf2dd + 3091ddd1udF2du

+ 81g1du.§1uug2du + 64g1udg1uug2ud):|

27 27 3 43
+ Jouu [1093ht - *h ‘- 7ht h? - =9 T égzgl2 Z89/4
45 , 8 ,2 9, 3.9 )

16 + ZSQ 16 luu + 892ud

+ht(

3 . . N
- ghth (391dud1uu + 292dd92ud) — 16h/ (g%du + 20344 + 5g§du)

1
+ 579 (33920, + 30320 + 11152, + 86330 + 875330, + 1363300
1 ,2 . . .
+ — 64 q ( 19300 + 1097 ,q + 2197, — 14ggdd+145ggdu+89§ud>
3 9
f/\ 42 f)\)\ 42 42 X6+ SN2
+42+23+234+24+45+46+47

1 R . 1 R R . 1 R .
- 5/\2 (9Fuu + G5ud) — 5/\3 (97 du + 20540 + 593au) + 5/\4 (9540 — 593au)
5
“X505qu — M (§1duftun + §2d492ud)

2
(400 + B (8 + 90+ 398300+ 4203)
32

+ 202uad1du (359 1uud2dd + 6J1udd2du)

+ 991 ua + 51w + 210540 + 56334, + 220544

+ 2407007 w0 + 100700030 + 2708 w0 Goau + 560504954

+ G3ua (1357 ua + 319700 + 435304 + 1993au) + A01uad1uu2aigodn

+ 29144 (T91dudruad1uu + 26G2dud2uddrun

+ 18§1duf2dadzdu + 201udf2ddd2ud)

(A + s+ T+ Tihaa + 15080+ 60300)) |

. 27 27 R
+ 10g3hehy G — g he*hidaa — ghthggggdu

3 n A O A
- iht2 (gldugmdgzdd — 92dug2udfedd + g1ud91uugzud)
45 5, 85 3, .9 a A A A A
+ hth (169 G2du + @g gzdu + 5 (QQdugzdd — 91dd91du92dd — glddgluugzud)>
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+ 3%92 (60§1duﬁ1ud§2dd — 24G1ad91uu92dd + 25G2duG2udg2dd + 1591dd91udJ2du
+ 3991d4ud1uug2du + 36§1ud§1uu§2ud>

+ 3*129/2 (4§1du§1ud§2dd + 11G2qu92udF2dd + 591ddG1udJ2du
+ 5G1audtuudadu + a1z

3 R 3 . 3 . 3 .
+ 1)\1)\692@ + 1A2A792du + 1)\3)\692@ + 1)\3)\7g2du

3 R 3 . 3 R 3 .
+ 1)\4)\69201” + 1)\4)\792du + Z)\E))\Gdeu + 1/\5)\792@

1. . . 1 . R R . R

- 5)\291udgluug2ud + 5)\3 (gzddgzdug2ud - g1du91ud92dd)
1, . . I

— A (591% (91da92dd + 91duf2au) + g2ddg2dug2ud)

1 A A . S .
-5 (g2ddg2du92ud + G1du (J1uudzdu + glddg2ud))

X6 (§1dd§1du§2dd + 92au (9iau + 93aq + 5§§du))

N~ DN~ N

)\7 (g2duggud + g2ud (glduglud + glddgluu) + gluu (gludQde + gluug2du)>

gl

|:9glud§2dug%dd

+ 507 44 (491dud10df2dd + G2dud2udfzdd + 201dudtuudzdu + 491ud1uud2ud)

+ J1dd <9§2du§§ud + G1udf2du (1007 + G5ga + 9930a)
+ 267 3 (891uub2dd + 5d1udd2du) + 401duG2ud (49700 + 69544 + 35344
+ 4G1uuf2dd (G5qu + 6§§ud))

+ 3340 (891uad2dd + J1uubzdu) + 89 qudtuddtuudzud

+ G2 (200103 — 39200020050 + 1200 an (20 + Gaa + G+ 3030a)
— G2daf2du (83 wu — F3aa + 2054u — g%m))

+ J1du (20§2dd§i’ud + 10§10uf2dudtua + 12010a02ad (20700 + G5aa + Gogu + 305ua)

+ gluug2du (g%uu - 8g§dd + 17g%du)):| . (FlSh)

Quartic couplings

The one-loop beta functions of the quartic couplings are given by

B =602 + 2257 + 2230 + A + A% + 12062

+ A (6%2 - 392 - ;9/2 + Gaq + Olau + 30300 + 393@)

+ X6 (Ghth; + 91dd91ud + 91dufiue + 392ddd2ud + 3§2du§72uu)

—6h;" + 294 + 2929’2 + 29’4 - %gildd — Giaa(Bau + G2aa) — 2014091005240

- %gildu = Glaudoau — ngldd — G3aa03au — gggdw (F.19a)

5&12) =69 + 2037 + 2030 + A%+ A% 4 1207

9, 3
NS (Gth _ipl

2 2
+ )\7 (6hth; + glddglud + gldugluu + 3g2ddg2ud + 3g2du92uu)

2 ~ ~ ~ ~
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9, 3.0 3.4 1. Y ) .
— 6hy* + §g4 +59%" + 9 - 5912(1 — 91ud (0w + $oua) — 201uad1uudzuadzun
1. o 5 o 5.
- igiluu - g%uugguu - 5 gud - g%udgguu - §g§uuv (Flgb)

B X1 (BAs + Ar) + Ao (3hs + Aa) £ 2207 + A% + A% 42067 + 86 A7 + 207
+ %)\3 (6ht2 +6hy% — 997 = 39" + Gaq + Fan + Fua + T
+ 3(54a + Doau + Foud + g%uu))
+ %)\6 (Ghthi + 91dd91ud + 91dud1uu + 392ddg2ud + 3§2du§2uu>

1 F P . P
+ 5)\7 (6hth; + 91dd91ud + G1dudiuu + 3G2ddFoud + 392du92uu>

2 9 3 o 3 4 1. . . N

— 6h R, + §g4 - 1929/ + ggl - ggiid(gfud + OFuu + 29§ud)

. P . A SN 1, . . N
+ G1dd (gmdgzddgzud + Gruu (G2ddf2un — 292du92ud)) - 59%@ (g%ud + Otuu + 2g§uu)

. . O A A A A A2 A2 ~2 A2
+ 91du (glud <g2dug2ud - 292dd92uu) + gluug2dug2uu) — 91ud92dd — 91uu92du

5. . . . 5. . )
- 5 gdd (ggud + g%uu) + 492dd92du92ud92uu - iggdu (g%ud + g%uu)? (Flgc)

B =X+ Aods + A A + 2207 + 405 4 BA6Y + 206A7 + BAL
+ %)\4 (3ht2 + 3057 — 997 = 39" + G + i + Gua + Gun
(600 + Bau + B+ )
+ %)\6 (3hth2 + 91dd91ud + J1dufruu + 392d4dG2ud + 3§2du§2uu)
+ %)\7 (6hth2 + 91dd91ud + J1dufruu + 392ddG2ud + 3§2du§2uu)

2 3 2 1, R ~
— 6hh” + S99 + St <9§ud - g%ud)

2 2
— J1dd (Qldu§1ud§1uu + 201uaf2ddd2ud — J1uu (G2duf2ud — 2§2dd§2uu)>
b 2B B~ ) + 100 (Dt (D2, — o) — Wnndianion)
+ %g%udggdd + %g%uuggdu + %Q%dd(‘lﬁguu — 5054a) — BG2ddG2dud2udd2un
3B a — ) (F.194)

W =MAs + A2ds + 4AA3h5 + 6Aads + 5A62 + 26 A7 + HAL?
1 2 2 . . .
+ 52 (6ht2 +6h;" —99° — 39" + G744 + Grau + Grua + un

+ 3(g§dd + g%du + ggud + gguu))

1 P R N N N N .
+ §>\6 (6hthtglddglud + J1duftuu + 392dd92ud + 392du92uu>
1 . S .. P 2
§>\7 (6hth2 + 91dd91ud + J1dufruu + 392ddG2ud + 392dug2uu> — 6h>h,
Lo . . A A A Lo o
- 5 1dd91ud — 91dd (gldu (gludgluu + gQudQZuu) + gludQQddQQud> - §gldu91uu

- gldugluug2dug2uu - gludgluuQdeQQdu - §g§ddg§ud - g2ddg2dug2udg2uu
D9 .o
- 5 2du92uus (Flge)

B =6M1 26 + 3A3(A6 + A7) + 2A4(2X6 + A7) + As(5A + A7)
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1 . . . L
+3 (A1 4 A3+ Mg+ As) (6hth;, + 91dd91ud + G1dudiuu + 392ddJ2ud + 3g2dug2uu)

1 . . ) )
+ 4 (Ght2 +18h;° —18¢% — 69" + 33204 + 30340 + Frud + Fruu

3 1.3 1, S .
— 6hthi” — 59 gadrud — 5G1ad (91dufrun + G2ddG2ud)

2 2
1, o . R A . . R .
~ 591dd (g%duglud + G1du (g2ddg2uu + 92du92ud) + G1udf3aq + gluuQQddQQdu)
1., . 1, . . 1., . 5.4 .
- igldugluu - iglduQZdug%Au - igldu (gludQQddQQdu + gluug2du) - 592dd92ud

1, 1. ., . 5.
- 592dd92du92uu - 592dd92dug2ud - 592du92uua

B =6X227 + 3A3( A6 + A7) + 20a(Ag + 247) + As(Ag + 5A7)

(F.19f)

1 S . L .
+ 1 (A2 4+ A3 + Ay + As) (6hth2 + 1dd91ud + J1dugruu + 392dd92ud + 392du92uu)

1
+ 1)\7(18]%2 +6h;? — 187 — 69" + §3aq + Glan

1. R A . PO
— 6ht3h2 - ggldd (gi)ud + G1ud (g%uu + ggud) + gluuQQudg2uu)

_EA 22 o A ~3 o ~2 _}Az P
2gldu (gludgluu + G1ud92ud92uu + G1uy + gluuQQuu) 291ud92dd92ud
1, . A . 1. . .

- §g1ud91uu (g2ddg2uu + 92du92ud) - §g1uu92du92uu

1. . . 1. o . R
- 592dd (5g§’ud + g2udg§uu) - ngdu (ggudg%tu + 5gguu)

We split up the two-loop beta functions into four pieces,

2 2),A% 2),\2 2),A! 2),A°
;i) _ 5/(\3 +5§i) +B§i) *B,(\i) )

The A piece contains all contributions proportional to i quartic couplings.

The A3 pieces are given by

5@“3 = —3901° — 10A1 A32 — 10A1 A3 hs — 6A1 A2 — TAiAs2 — 15901 M2 + 31 A72
— 8A3% — 120320\ — 16A3A42 — 20352 — 663062 — 36A3 6 A7 — 18AgA7>
— 6M4% — 2204057 — TOM A2 — 28X\ 4 A6 A7 — 14N\ 72 — TAAs Ag”
— 20A5 A6 A7 — 10A5A72,
O = 300,% — 100sAs% — 1000230 — 632X — TAads? + BAade? — 159M\7% — 8
— 1223205 — 16X304% — 2003052 — 183062 — 36A3A6 A7 — 66A3A72 — 6A,°
— 220405 — 1404067 — 28 4 A6 A7 — TOAA72 — 10A5)62

— 2075\ A7 — T4As A2,
a— ?)q?)\g = 201° Ay — 18A1A3% — 8A1 A Ay — TALA® — 9A A% — B1A A
— 220 Mg A7 — 11A M2 — %AQ% — 2002\ — 18X0A3% — 8Ap A3y — TAo N2
— 9o A5% — 1100062 — 2200 X6 A7 — 31A0A72 — 6A3° — 22324 — 8A3 4>
— 30A3072 — 6)4% — 2204057 — 34Mu 062 — 44N A6 A7 — A3 A52
— 30362 — 88A3 A6 A7 — 34X A% — 34A5 067 — 36A5 M6 A7 — 345072,
[ g/\12>\4 — 20\ A3 — 10A A% — 12X 0% — 3TA1 067 — 10A A6 A7 — BALA7?

— gAgm — 20M2X3 s — 10Aa 042 — 12200052 — BAagZ — 10X 6 A7 — 3TA2A7°

(F.19¢)

(F.20)

(F.21a)
As?

(F.21b)

(F.21c)
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— 1457\ — 1403042 — 2403257 — 3603062 — 40A3A6 A7 — 363072 — 13X 052
— 34067 — 80As A6 A7 — 34N A% — 405067 — 48X5 A6 A7 — 4057, (F.21d)

BN = - g/\12>\5 — 20010305 — 22M1 0005 — 3TA1A6% — 10A Ag A7 — BAL AT — gAQ%

— 20M0 A3 05 — 2220 405 — BAagZ — 10Aa g A7 — 3TAo 72 — 14032 N5 — 38 A3\ )5
— 36A362 — 40A306 A7 — 36A3072 — 160425 — 384 h62 — 4404 A6\ 7

— 38)\4)\72 + 3)\53 — 36/\5/\62 — 84A5 6 \7 — 36)\5/\72, (F.Qle)
s 159
BN = — M6 = 33A1aAe — 9AAA7 — 35A1AaAe — TAIAaAT — 3TA1AsAs — 51 AsAr

3
+ ZAfAG — 936 — N3 A7 — TAsAadg — TAads s — BAadsAg — HBAaAs Ay
—16A3% X6 — 18X32 A7 — 34A3AuXg — 28 3Auh7 — 36A3 A5 06 — 203 A5 07
— 17A* X6 — 17227 — 38 uds5h6 — 220u 507 — 185206
111
— 2122\ — 7)\63 — 63X \7 — %AGM — 21X\, (F.21f)

3
A 2A7 — 90 A he — 9N A 7 — TAAads — TA AT — 5AAsAs — SAAs A7

4
159
- TAQ% — 9o dsds — 33N X3 Ay — Thadads — 35X ad7 — BAeds g

(2).%°
B,

— 37X A5 A7 — 18232 X6 — 16327 — 28 3 4 — 34X3 4 A7 — 20A3A5 M6
—36X3 507 — 17042 X6 — 17TA4% A7 — 22040506 — 38 A5 A7 — 21052 g

33X N7 111
2

— 1852 M7 — 2106° — — 63\g\7° — -

A2 (F.21g)
The A2 pieces are given by

B,(\lez =— 6\ (th - 392 - 29/2 + 9taa + Otau + 303q + 3g§du)

— 12\ %6 (12hth2 + 91dd91ud + 91duf1uu + 392ddJ2ud + 3§2du§2uu)

—2X3(A3 + \4) (6ht2 —6g° — 29" + 0%ud + Tt + 303ua + 3g§uu)

— 6Xa\o (6heh} + 1dadiua + G1audiun + 392000200 + 3iaauizun

— A2 (6h% = 3% = 20° + 3.+ G + 30300 + 3030

—2(2X1 + A5) A6 (6hth2 + 91dd91ud + J1dufiuu + 392ddG2ud + 3§2du§2uu)

= 25 (61" + 9% + g + G + 35+ 3350

— 606% (6h” + 61 — 997 = 39/ + 540 + G4+ ua + T

+ 30300 + 3954u + 305ua + 3§§uu)7 (F.22a)

BN =~ 62 (60,7 + 292 - ;g’z G+ G+ 3030+ 3030 )

—12X2A7 (12hth§ + 91dd91ud + J1dufruu + 392ddG2ud + 3G2dud2uu

)
)

—2(3X3 +2X1 + As5) A7 (Ghth; + 91dd91ud + J1dufruu + 392ddG2ud + 3§2du§2uu)

=225 (N + M) (61 = 69% = 20/ + G20 + G, + 300 + 303

2 2 . . . .
-\ (6}12 —39% =297 + §14a + Otan + 30340 + 395@)
2 2 N ~ ~ N
— 52 (6% + 97 + Giga + GTau + 33540 39§du)
2 2 ~ ~ N ~
— 63 (68, + 6h1” = 997 = 39" + G4+ G + Gt + G
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+ 3030 + 3300 + 3580 + 303 ) (1.220)
Bf\?x == 3MA3 (6%2 — 697 — 29 + G4 + P + 3034 + 3g§du>
— Ay <6h22 —99% = 29" + g+ Fau + 3030 + 3§§du)
—4(A A7 + A2 )e) (6hth2 + 91dd91ud + Graufruu + 3G2ddJ2ud + 3§2du§2uu>
(35 + M) (617 — 66 = 20 + 00 + G + 30300 + 30300
- A3° (Ght2 + 60" =397 — 0 + GRaa + Fhan + Gua + T + 30304
+ 3040+ 30300 + 30300 )
— 6A3A49”
= 5Xs(A6 + A7) (el + Graadiud + G1audiun + 3Gzdadau + 3zdudzun
= 52 (61 + 607 — 607 + 20 + g B+ Pt +
+ 80340 + 3030, + 30800 + 305 )
—2X1 (X6 + A7) (6hth7/5 + 91dd91ud + J1dufruu + 392ddG2ud + 3§2du§2uu>
- %ASQ (6ht2 +6h," — 49" + G + G+ Frua + Gun
+ 3034a + 3030 + 305ua + 3g§uu)
— A (A6 + Ae) (6eh] + Gtdagiua + G1audiun + 392a092ud + 3izaufzun
—2(X6” + A7%) (61122 - %9/2 + Grda + Grau + 30340 + 393@)
— o (64, + 61" = 99° = 49" + oy + G + Fua + T
+3034a + 3034y + 395ua + 3g§uu)7 (F.22¢)
5,(\24)’A2 =— (A1 4+ X))\ (6%2 —2¢” + 0%aa + 0%au + 30344 + 3?]5@)
— (A A7 + A2)g) (Ghth; + J1ddG1ud + J1dudiuu + 392ddJ2ud + 3§2du§2uu)
— 2xa\a (6he” + 641 = 99 = g + Gag + 2 + Fhua + T
+3034a + 30300 + 305ua + 3g§uu>
—2X3(X6 + A7) <6hth:5 + G1dd91ud + G1audiue + 3G2ddG2ud + 3§2du§2uu)
= A2 (6h” + 68, = 997 = 49 + a0 + G + Fhua + T
+ 30340 + 3034y + 395ua + 3§§uu)
— 54 (X6 + A7) (Ghthé + G1dd91ud + G1dudiue + 3G2ddG2ud + 3§2du§/2uu)
22 (632 + 6% — 267 — 46+ B+ P+ P+
+ 3034a + 3030 + 303ua + 3g§uu>
—4X5(X6 + A7) (6hth; + 91dd91ud + J1dufruu + 3924dG2ud + 3§2du§2uu>
7, T

2 ~ ~ ~ ~
=0 =29+ 0%aa + O1au + 30300 + 3g§du)

2 2 ~ ~ ~ ~
- )‘6>\7 <6ht2 + Gh; - 49/ + g%dd + g%du + g%ud + g%uu

500 + A% (601 -

+ 80340 + 3030, + 30800 + 305 ) (F.22d)
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5,(\25)’/\2 =— (M A7+ A2)) (Ghthé + J1dd91ud + G1audiue + 3G2ddG2ud + 3§2du§2uu>
= (1 A2)As (607 + '+ G + G+ 30ua + 305
—2XA3X5 <6ht2 + 6% — 992 — 49" + G + Fan + Fua + Guu
80300 + 3030, + 3080 + 3530 )
—2X3(X6 + A7) (6hth,/5 + 91dd91ud + J1dufruu + 392ddG2ud + 3§2du§2uu)
— 345 <6ht2 + 6% —129% — 49" + Gaq + Graw + Frua + Frun
+ 80300 + 3030, + 3080 + 3530 )
=31 (X6 + A7) (6hth,/5 + 91dd91ud + J1dufruu + 392ddG2ud + 3Q2du§2uu)
?92 ~ 29" + Gaq + au + 30300 + 3@%@)

2 2 . . .
— As A7 <6ht2 +6h; 429" + §ga + Trau + Frua + Fun

500 + A7%) (601 -

+ 30340 + 3030 + 305ua + 3g§uu)
— 6X5(X6 + A7) (6hth,/5 + 91ddG1ud + G1dufiuu + 3G2ddJ2ud + 3g2du92uu)v (F.22e)
ﬁ,(\i”z =— %)\3 (31 4+ A3+ 3M\g) (6hth; + G1dd91ud + G1duruu + 392dd92ud + 3Q2du§2uu)
- g)\a/\(s <6ht2 + 6% = 692 + Gaq + Graw + Trua + Frun
+ 3034 + 3034y + 305ua + 303uu — 29/2>
= 3097 (6h:% — 697 + 5P + G, + 30300 + 35— 29°)
—2(A1As + Ashs) (6hth; + J1dd91ud + Graudiua + 3G2ddG2ud + 3§2du§2uu>
— 616 (6%2 - 292 + Gaq + 0w + 30300 + 3554u — 29/2)
— 20X (6heh} + G1aafiud + Graudion + 3dedadaud + 32z
- %MQ (6hth; + 91dd91ud + J1dufruu + 3924d92ud + 3?]2du§2uu)
—2X\ 6 <6ht2 +6h;° —9g% — ggﬂ + 0Taa + Grau + 0ud + 9tun
+3034q + 3034y + 395ua + 3g§uu>
— 20407 <6ht2 - ggz ~ 29" 4 Gya + G + 3030+ 3g§uu)
- gM)\s <6hth2 + 91dd91ud + J1audiuu + 392ddG2ud + 3§2du§72uu)
— 66 (X6 + A7) (6hth; + 91dd91ud + J1dufruu + 392d4dG2ud + 3§2du§2uu)
- gAE))\G (6th +6hy” — %92 — 49" + GRag + Gl + P + P
+ 30304 + 395 4u + 395ua + 3§§uu)
+ A7 (61 4+ 9° + Gua + G + 330 + 3530 ). (F.22)
5,(\27)’A2 =- g)\z (As + §>\4) <6hth:: + G1dd91ud + G1dufruu + 392ddJ2ud + 3§2du§2uu)
- gA2A5 (Ghth; + G1ddJ1ud + G1dudruu + 392dd92ud + 3§2du§2uu)

9 3 2 . R R N
- 6)\2)\7 (Ght2 - 592 - ig/ + g%ud + g%uu + 3g%ud + Sgguu)
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- 5/\3 (A3 + 3\4) (6hth;, + 91dd91ud + J1dufiuu + 392ddG2ud + 3g2dug2uu)
— 2055 (6heh] + Graadiua + Graudiun + 32aad2ud + 32audeun )

2 2 . . .
— 33X (6/12 —69° — 29" + G1ga + Olau + 30540 + 3g§du)
3 2 2 . R R R
- 5)\3)\7 <6ht2 +6h;” — 697 — 29" + G1gq + Frgu + Trud + Gruu

1 . . . .
- 5)\42 <6hth; + 91dd91ud + G1dud1uu + 3G2ddG2ud + 3g2du92uu)

3 2 . . . .
- §>\4 (As + §>\7) (6hthi + 91dd91ud + J1dufiuu + 392ddG2ud + 392du92uu)

—2X\4 )6 (6%2 - %92 — 29" + Gaq + B + 30300 + 357%@)

— 27 (6/%2 +6hy” — 9g% — ggﬂ + Gaq + Glaw + 0Fud + 0tun
+ 30304 + 395 4u + 395ua + 3g§uu>

Egz — 49" + GRag + Gl + P + P

+ 30304 + 3054y + 305ua + 392uu>

5
~ S Xshe (ﬁhf +6h2

—6(X6 + A7) A7 <6hth2 + 91dd91ud + 91dud1uu + 392dd2ud + 3§2du§2uu)- (F.22g)

The A! pieces are given by

27 3 69 39 691 17
6 (2), Al o {4og§h/2 . ?ht2h22 . §h24 17694 + §g2g/2 + = 48 /4 h/2 |:9 + 39/2:|

15 R . . A
+ §92 |:g%dd + 9tau + 11(3540 + g%du):l

9 2. R R N
+ ég/ |:g%dd + 0tau + 3<g§dd + g%du)]
1

_S[Eﬁdd 91dd(1291du 991ud 691uu 2§§dd_9§7§ud)

+ 8g1dd (gldugludgluu - 10?]1du§2dd§2du + 3g1uu§2dug2ud) + gildu
+ g%du (6g§ud + gg%uu + QQ%du + ggguu) + 24g1du§1udg2ddg2uu

+ 99Fwad3aa + 997 wudsau + 592aa + 4495049300 + 45934495 ua

+ 1803100500 — 2402daG2dud2udd2un + DGqy

183580+ 4505, }

15 O 4 SN S F
+ A3 [94 + 59" + 201aa910u (J10ud1ud + 392duf2ud)

2 2
+ 6g2ddg2uu (glduglud - g2dug2ud):|

) 2 D O PO
2 ' + g + 2(glddgluu + g2ddg2uu) (glduglud + deug2ud)

4
9399 *3

15
+ A4 [4

2 ~ ~ N ~ ~ ~ ~ ~
+ A5 |:12ht2h; + glddg%ud + 291dd91ud92ddG2ud + g%dug%uu
+ 2gldug1uu§2dug2uu + 5g§ddg§ud + 5g§dugguu:|
3 ~ ~ ~ ~ ~ ~ ~
+2X¢ [12}%}12 + 93 gadtud + 93aa(201duftun + G2dd2ua)
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+ G1da (QQ%duglud + 4G1du (G2daG2un + J2dudzud)

+ 92dd (G1udf2da + 4§1uu§2du))
+ gil))dugluu + g%dug2dug2uu + gldug2du(4glud§2dd + gluu.QQdu)

+ 593 3a02ud — 2053492dud2un — 202dd 05 gud2ud + 5§§du§2uu] , (F.23a)
(2)7/\1 =\ 40 th—gh 2h12—*h 69 4 @ 2 12 @ 14 §h2 9 2 L7 12
B, 2{ 93 /v 5 +16 +8 +489 +4t 9+39

15 . . N N
§ 12| A2 ~2 3(52 ~2

+ 89 91ud + Iluu + (QQud =+ gQuu)

-3 [3gfdd (Sg%ud + 2gfuu + Sggud) + 8G1ddJ1uu (glduglud + 3g2dug2ud)

+ 3g%du <2g%ud + 3<g%uu + g%uu)) + 24gldug1udg2ddg2uu + gilud
- 12gludg1uu + 9g%ud§§dd + 2g%ud§§ud - 80g1Udg1uug2udg2uu
+ gluu + 9gluug§du + QQ%uugguu + 45g§ddg§ud + 18g§ddg§uu

- 24§2ddg2dug2udg2uu + 18g§du.§§ud + 45g§dug§uu

15 5
3| =gt + 20" + 2G10ad10u (91dufrud + 392duf2ud)

2 2

+ 62dad2uu (91dudiud — deugZud):|

15 5 2 b 4 . .. .. A
+ )\4 [494 + 59291 + Zgl + 2(glddgluu + g2ddg2uu) (glduglud + deuQQud):|
2 .9 . n A A A 2
+ A5 [12ht2h; + gfddgfud + 291dd91ud92dd92ud + g%dug%uu
~ ~ ~ ~ A2 A2 ~2 ~2

+ 201duf1uu92dud2un + 59244920 + 592du92uu]

+ 2)\7 |:12ht3h; + gldd (g%ud + glud (Qg%uu + g%ud) + 4g1uug2udg2uu>

+ gldu (2g%udgluu + 4g1udg2udg2uu + glfuu + gluugguu) + g%udeddQQud
+ 4§1ud§1uug2dd§2uu + 4§1udgluu§2dug2ud + g%uuQQdufbuu + 592dd§§ud

— 202dd92udF3u — 202dudsuadzun + 5§2du§§uu] , (F.23b)
1 45 5 o 156 4 . P oA
5,(\?’A =M+ X2) [894 - 1929’ + §9/ + 91dad1uu (91dufiud + 5G2dufoud)

+ gdeQQuu (5g1dug1ud - 7g2dug2ud):|

27 3 2 27 4 9 11 2 631 4
)\ 2 2h2 h/2 _7h —*h,2h,/ h/ 4 72/ /
+ 3{ Ogg(t + t) t t Ny 169 +8 +748
51 2 12 17 /2
—(h h 9
+ 5 (b + 1 )[ +39
15 9.9 .2 2 2 2 .2 .2 .2
+ 169" |9iaa + 0Fau + 9tua + Gruu + 11(930q + 93au + Foua + Goun)
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5 2. . . . . . . .
1. . . . . . . .
16 {99%@ +20744(207 40 + 93ud — 207w + 99340 — T050ua)
+ 16G14d (91dudrudfrun — 391duf2ddd2du + 291udd2ddd2ud
+ 2gluug2ddg2uu + 3g1uug2dug2ud)

+ gg%du - 2g%du (zg%ud - g%uu - 9g§du + 7§§uu)
+ 16g1du (3g1ud92dd92uu + 2g1udg2dug2ud + 2g1uu§2dug2uu)
+ ggzllud - 4§%udg%uu - 14g%udg§dd + 18g%udg§ud
- 48§1udg1uug2udg2uu + ggiluu - 14g%uu§§du + 189%uug§uu
+ 453344 + 6095449540 + 10954095ua — 4495049300
- 48§2dd§2dug2udg2uu + 45g%du - 44g§dug§ud
OB 5 O+ 155

2 15 3 2 ) 4 ~ ~ ~
A [12ht2h; +0" = 59%0" + 70" + 3laa(9fua — 5ua)

+ 4G1dag2dd (G1auf2du + G1uaf2ud) + 9tau (0Tue — Toun)
+ 401 du 1 und2dudoun — 03uad3aa + 401udd1und2uddow — 0uu o
+ f]gdd(@gud - 4Q§du) + 503405 — 4g§ud§%uu:|
—2X5 [ﬁlddﬁmu (92udd2un — Gruddruu) + J2ddF2du (J1uddrue — 5g2ud§2uu):|
+ X6 [12hth23 + §aq01ud + 7aa(G1audru + G2dagoud)
+ J1dd (f]%dugmd — G1du (92ddf2uu + §2du§2ud))
+ J1dd (Qlud (91w + 93aa) — D1uuf2ddF2du + 5§1uu§2ud§2uu) + §gudruu

+ g%du§2dug2uu + gldu (g%udgluu - glud,@deQZdu + 5§1ud92ud§72uu + gluuggdu)

+ 5gludg1uu (QQddQQuu + deug?ud) + 5ggddg2ud + 5g§ddg2dug2uu
+ 92ad92ud (3P40 — T95un) + 5I5qud2un — 7g2du§§udg2uu:|

+ A7 [12ht3h; + 91 aa91dudiun + G1dd (g%duglud + 5§1du (§2dd92uu + §2du§2ud))
+ J1dd (Qifud + G1ud (9Fuu + G3ua) + Grun (PG2dad2du — ﬁzudﬁzuu)>

+ gldu (g%ud‘gluu + 5§1ud§2dd§2du - glud§2udg2uu + g:fuu + gluu.@%uu)

+ g%udQQdd§2ud - gludgluu (denguu + g2dug2ud) + g%uug2du§2uu
— T3audaudon + Goad (59200 (33ua + Fun) = T8ani2ua)
+ 5g2dug2uu (ggud + quu)} ) (F23C)
2), A 5 2 .. P P . P ..
ng :(/\1 + )\2) [292,9/ + 91ddG1un (glduglud - g2du92ud) + 92ddG2uu (592du92ud - glduglud):l
2 2 N ~ ~ ~ ~ ~ ~ ~ ~
+ A3 [12ht2h; + %9 + 514407 ud — 93ua) + 491049244 (91udF2ud + Gruudoun)
+ g%du (g%uu - gguu) + 4g1dug2du (gludQQud + gluuQQuu)

A2 A2 A2 A2 ~2 ~2 ~2 ~2 ~2 ~2
— 91ud92dd — 91uuY2du + 92dd <5g2ud - 492uu) + 92du (592uu - 4g2ud):|
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_x
1

3

2
ht — iht%f _x

27 11, 51 5 0 511 4
4

9 +=99 +-29

Bt —
¢ 16 ] 48

+ A4{2()g§ (he® + 1)
5 17

+ 2+ 1) |9 + =g

8 3

15,

5 2. . . . . . N )
+ 159 [gfdd + 0tau + GFud + Gruw T 39304 + 3034u + 305ua + 3g§uu]

17 R . . . . .
16 |:9gildd + 20744 (207 4 + 9Tua — 207 wu + 99304 — "93ua)

+ 16g144 (91dud1uadiun + 591dud2ddd2au + 201udd2ddd2ua
— 691uuf2ddd2uu + 301uuf2dud2ud)
= 991an — 20%au (20T ud — 9tun — 993au + T53uu)
+ 16§14 (391uad2ddG2uu — 691udd2duf2ud + 201uud2du2un)
+ 991 ua + 403 uadtun — 1403 0ad5aa + 1897 uad3ua
+ 8091 uddruud2uadoun + 991 uu — 1497 yuG3au + 1807403
— 450544 — 68054050, + 10030095 ua + 84034405
— 48024a02duf2udd2un + 4554y + 849540 T3ud

+ 2)\5 |:glddgldu (gludgluu + 5g2ud.§2uu) + g2ddg2du (5g1udgluu - 7g2udg2uu):|

3 .3 . 2 (a a L
+ X6 [12hth§ + 9t aaf1ud + 91aa(91audruu + G2ddf2ud)

+ G1dd (g%duglud + 5G1du (J2ddF2uu + J2dufzud)

+ G1ud (93w + 034a) + 91w (592dad2du — QQudﬁzuu))
+ g%dugluu + g%duQZdquuu
+ gldu (g%ud.@luu + 5g1udg2ddg2du - gludg2udg2uu + gluuggdu)

— J1uadtuu (92da920u + G2dufoud) + 595aq02ud — T93da02duf2un
~ ~ ~92 ~2 A ~3 A ~ ~2 A
+ §2dd (5920d03uu — T950ud2ud) + 59540 d2uu + 5g2du92ud92uu:|
+ A7 [12ht3hg + Gaadiaudru
s (2 4 S (Ao A ~3 S (2 ~2
+ J1dd (glduglud — J1du (gzddgzuu + gzdug2ud) t Y1ud t J1lud (gluu + Qzud)

- gluugdedeu + 5§1uug2ud§2uu)

+ gldu (g%udgluu - glud.@?dd.@2du + 5g1udg2udg2uu + g:%uu + gluugguu)
+ g%ud§2dd§2ud + 5g1udg1uu (dedQQuu + deug2ud) + §%uug2du§72uu
+ 535 4q92dud2uu + §2ddd2ud (5954u + 595ua — T03uu)

+ 000 (0 = i) (F.234)
2), ! 2 1,5 . e . 9 .
6&5) :(/\1 + )\2) 6ht2h; + 5 (g%ddg%ud + 291dd91ud92dd92ud + g%dug%uu
~ ~ ~ ~ A2 A2 ~2 ~2
+ 2gldugluug2du92uu + 592dd92ud + 592du92uu)

+ 2X3(91ad91du + G2dad2du) (Grudfruu + J2udfzun)
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+ A\ [2§1dd§1du (91udGruu + 3G2udd2un) + 692da92du (G1uddiuu — ﬁzudgzuu)]

17114 LQZQ/Q

3 27 2 3,4
2002 (h,2 12\ 9,4 409442 94
+)\5{ 0g3 (ht + ht ) 4ht 9 ht ht 4ht 16 g 3

511 4 9, 5 2 o, 17 12
el Z(h h -
+ 59 +8(t+t)9g+3g

15 . R R R . . . R
+ 159 [gfdd + Grgu + Glud + Fruw + 113300 + 11354, + 1155,4 + 11954
5 2. . . . . N N .
1. . . . . . .
16 [de + 2g%dd(109%du + 997 0a — 1037 + G540 + 99§ud)
+ 16G1dd (91dud1uafron + 391dud2ddd2du
- Sgluu§2dd,§2uu + 3g1uu§2dug2ud)
— 16G14ud1ud (8G2dufoud — 3G2da92uu) + G1ua + 2007 waftun
+ 18g%ud§§dd + 2g%udggud + 48§1udg1uu§2udg2uu + gélluu
+ 18§%uug§du + Qg%uugguu + 5g§dd + 12g%ddggdu + 90g§ddg§ud
+ 68§§ddgguu - 48g2ddg2dug2ud§2uu + 5§3du + 68@%@!7%@
B+ 5k 12+ 5] }
+ X6 |:]-2ht3h;5 + 207 4491dudruu

+ G1dd (QQ%duglud + 4G1du (J2ddF2uu + J2dufzud)
+ 03 uq + G1uddrua + 4§1uu§2dd§2du>

+ 1au (401udF2ddad2du + G1uu + 10und3un) + Gt uad2dadoud

+ Gt uwd2dudoun — 2053002dud2un — 202dd054u02ud + 5G2dddsud
+ 5§2du§§’uu]
3 .3 . o . . . . . F
+ A7 [12hth2 + 93 10G1ud + Graa2dad2ud + 914 (gmd (2gfw + g%dd) + 4gluu92ud92uu)

+ g%dugluu + g%dqudu.@Quu + gldu (2g%ud§1uu + 4g1udg2udg2uu + gluuﬁ%du)

+ 401 0dd1uwnd2ddG2un + 491 ud1uud2dud2ud + 5Gagq02ud — 202dd92ud G

+ 5g§du§2uu - 2§2du§§udg2uu:| ) (F23e)

a1 3, .3 4 . . S
5,(\26)7 :5)\1 [12}%}12 + 3 gadrud + 9taa (201dudrue + G2ddd2ud)

+ G1da <2g%du§1ud + 4914 (§2ddf2un + J2dudzua) + G2da(91udfeda + 4§71uu§2du))

+ Glaudtun + Giaud2dudzun + Graufodu (4G1uddadd + Gruudzdu)

+ 595 1002ud — 20530G2dud2un — 202ad05 40 02ud + DTa g I2un

1 3, .3 A "2 (s S
=+ 5)\3 |:12hth; + g‘;’ddgmd + g%dd (gldugluu + 92dd92ud)

+ 91dd (93 gu1ud + Jrduf2dadzue + J1dufzdufzud + Gruddiuw

+ glud.@%dd + gluu.&QddQQdu + 3g1uug2udg2uu)
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+ g?du.@luu + g%dqudug%Lu
+ gldu (g%udgluu + gludQQddQQdu + 3§1udg2udg2uu + gluuggdu)
+ 301udd1uub2ddf2uu + 391udd1uud2dudzud + 59544920 + Gagadedufoun

+ G2dd 5 qud2ud — 302ddG2udFaun + DIaqufoun — 3§2du§§ud§2uu]
1 3 .3 . R PO .
+ §>\4 |:]-2hth:5 + 93 aa91ud + 91aq (91audiua + G2ddad2ud)

+ G1dd (g%duglud + 301du (§2daG2uu + J2dufzud)

+ deﬁ%uu + gludggdd + Sgluug2dd92du + gluug2udg2uu>
+ g%dugluu + g%dug2du92uu
+ 91au (9T uadrun + 391udf2dadedn + Grudfzudfzun + Gruuds)

+ Jrudfruud2dadzun + Gruadiuufzdudzud + 593qad2ud — 3G5gad2dud2un
— 302da03qud2ud + §2dad2udPaun + D9agud2uu + g2dug§udg2uu:|
+ %Af; {12ht3h; + 20t aafrau g1
+ G1da <2g%dug1ud + 4910u (92daG2uu + J2dufzud)
+ 03 uq + 91uaf3uaq + 4§1uu§2dd§2du)
+ 91du (491ua2ddf2du + e + Puwwdsun) + 9tuad2dadzud + 91uuf2dudzun

— 203 4402du92uu — 202ddFrquG2ud + DG2ddauq + 5g2dugguu:|

27 3 2 33,14 21 29 2
by 1 2h2 h/2 77h477h2hl 77]1/ et 4 g2
+ 6{ 093( ¢+ 3 t) 3 t B t Ny gt 169 + 3 g
601 ,4 ) 9 2 o 17 )2
+ g9+ e (307 |99° + S

15 . . . . . . A .
+ 559 [391@ + 8G%au + GTua + GTuu + 339500 + 33950, + 1195ua + ngéuu}

5 2|, . ) ) . . . .
+ 359 [3gfdd + 30740 + Grud + Truu + 99540 + 9954w + 35ua + 3g§uu]

1 . . . . . . .
~ 33 |:119?lldd — G140 (49T 4w — 497 ua + 851 uu — 220540 — 2093,a)
- lﬁgldd (gldu (2§1udg1uu =+ 7g2ddg2du + 8g2udg2uu)

+ 291udg2dd92ud + 8G1uud2dd2uu — 6§1uu§2du§2ud)
+ Wiigy — i (89T ua = 407w — 22030 — 2093,)
+ 320100 (391udF2dad2un — 491udd2dud2ud — Jruud2dud2un)
+ 991 ug + 2007 uaftu + 2007 uad3aa + 18 uadBua
— 12801 uad1uud2dafzdu + 4891uadtuud2uddzun + 99wy + 2087 vy 3au
+ 189744 0300 + 559200 + 10005309500 + 20934095 ua + 104954493
— 3202dd92dud2udf2uu + 55g§du + 104g§du§§ud + 20g%dug§uu

1 2 45 5 2 15 4 .o .
—|—§)\7 12ht2h; +Zg4+5929/ +Zg/ +g%dd‘g%ud

+ 20144 (201dud1uddrun + Grudfadadoud + 4G1uud2dudzud)
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+ g%dug%uu + ledu§2uu (4g1udg2dd + gluqudu)

+ 58594030 — 402dd02dud2udf2un + 5g§dug§uu:| ; (F.23f)

1 1 R R R R . R R .
5&27))\ :Q)\Q |:]-2ht3h;§ + G1dd (gilsud + J1ud (2g%uu + g%ud) + 4gluu92udg2uu)

+ gldu (2§]%udg1uu + 4g1ud§2ud§2uu + gzl))uu + gluug%uu) + g%udg2ddg2ud
+ 4g1udg1uug2ddg2uu + 4g1udg1uug2dug2ud + g%uuﬁQdu@Quu + 5g2ddggud

— 202dd02udF3un — 202dufsugf2un + 5§2du§guu:|
1 2 A A
+ 5)\3 |:12ht3h; + g%ddgldugluu
+ J1dd (ﬁ%duﬁlud + 3G1du (G2daf2uu + G2dudoud) + Grug + G1uddiun

+ gludggud + 3g1uu92ddg2du + gluqu'udeuu>
+ gldu (g%ud.@luu + 3§1ud§2dd§2du + gludg2ud§2uu + gzl))uu + gluugguu)

+ g%udQdeQQud + gludgluuQdeQZuu + gludgluuQZdug2ud

+ g%uqudug%Lu - 3g%ddg2dug2uu - 3g2ddggdug2ud + 5g2ddggud

+ G2ddG2uddsun + G2dulsugdoun + 5g2dugguu:|
1 . R R R
+ 5)\4 120 b}, + 434491dud1un

+ 91dd (9T audrud + Grdufzddfoun + Ddud2dudoud + G3ua + G1uddiu

+ J1uafrua + Gruudedadodn + 391uudzuddzun)
+ 91du (93 wad1uu + Grudfzddfadu + 3G1udd2uddzun + Fun + J1undon)
+ 9tudf2ddd2ud + 391uddrund2dddzuen + 391udfruud2dudoud

+ 03 vu2dud2un + G3aqG2dulzun + G2dddaqud2ud + 592dddauq

— 302d492udG5uu — 3G2dudsuafzun + 5?]2@@3%}
1 3. .3 . A
+ §>\5 [12hth2 + 33 4401ud + 91aqf2da92ud

+ gldd <§1ud (2§%uu + ggdd) + 4g1uug2udg2uu) + gi‘))dugluu

+ g%duQQduQQuu + gldu (2g%udg1uu + 4g1udg2ud92uu + gluuggdu)
+ 491uad1uud2dadzue + 401uad1uud2dudzud + 593g492ud

— 202dd92ud @3 + 5P G2un — 2g2du§§udg2uu:|

1 o 45 5 2 15 4 .5 .
+ X6 [ 12007 + — g + 5070 + 0" + §aatua
2 4 2 2
A A A A A A A A A A2 A2
+ 20144 (201dufruddtun + J1udf2ddf2ud + 401uud2dudzud) + Graudtun

+ ledu.éQuu (4§1udg2dd + gluug2du) + 5g§ddg§ud

— 4G94a02dud2udF2un + 5g§du§§w]

33 3 9 27 ,4 21 29 . o
)\ 1023h2 hl2 _7h4_7hl _7h/ _74 72/
+7{93(t+t)8t gt T g T 1Y TR
601 4 5 o 2 5 17 2
= = (3h h -
+ 59 +16(3t + t)9g+3g

15 . . . . . . . .
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5 2. . . . . . . .
1

~ 33 |:9g1dd + 20744 (10934 + 2070 — 497 wu + 99544 + 1035,4)

— 16g1d4 (Qmu (2010910 — 392ddG2du + 892udf2uu) + 201udf2ddd2ud
+ 8§1uug2ddg2uu - 6§1uu§72dug2ud)

+ ggzlldu - 2g%du (4g%ud - 2g%uu - gggdu - 1Ogguu)

+ 32g1du (ggludQQddQQuu - 4g1udg2dug2ud - gluuQQduQQuu)

+ 11.64111“1 - 4g%ud§%uu + 2Og%udggdd + 22g%ud§§ud

- 128§1udg1uug2ddg2du - 112§1ud.§71uu§2ud.§72uu + 11giluu

+ 104g%ddg%uu - 32g2dd§72dug2ud§2uu + 45g3du + 104g§du§%ud

+ 20954930 + 5593ua + 100930493, + 55?13%] } (F.23g)

The A° pieces are given by

679 "6 T as? TR
1 12 4 2 /2 /4 3 4 A2 ~2 ~2 ~2
- th (99 —42g°g"" +19g ) 39 (gldd + §F g + 519340 + g2du))

8 133 195 o 425 605
ggf%” = — 32¢21," + 30h 2K, + 30m,° — gh;‘*g’z — 22y 20 R

1 2/, . . R 1 ,4/. N . .
- 1929/ (g%dd + 0Fau — 21(G54a + g%du)) - ggl (g%dd + 9% au + 3(554a + ggdu))
—2¢° (ﬁddf]gdd + 2010a91auf2ddf2du + Gauaau + 5934a + 2054a3d4u + 5!73@)
1. . . . . . .
+ 1 {59&(1 + 91aa (170300 + 59%ua + 208 uu + 170544 + 30304
+ 20300 (401dud1uddrun + 2191aud2ddf2du + 201udf2ddd2ud + 69 1uud2dufzud)
0300 (1708 + 03 (190 + 70 + 190800 + 19530, + 35300 + 3531.)
+ 4§1du (4g1udg2ddg2uu + glud?]Zdug2ud + gluu?]Qdd?]Qud)
+ IOg%udggdd =+ 4gludg1uug2ddg2du + QQ%uuggdd =+ 6g%uug§du
+ 119540 + 213540950 + 1095 4a03ua + 2034a95uu
- 4g2dd§2dug2ud§72uu + ].Oggdug%ud)
+ 2G1dd (ﬁ?du (401udd1uu + 2192dd92du)
+ 207 4u (91uaf2duf2un + J1uuf2dadzun + 4910uf2dud2ud)
+ G1au (39T uad2ddd2du + 2010a1uu (G50 + Gogu) + 3G;uud2ddd2du
+ 1993 1002du — 203 4qG2ud92uu + 1992da 054,
+ 5G2dad2dudsua + DG2dad2dudsun — 2054ud2udi2un)
— 201ud93aq (92dd92ud — 392duf2un)
+ 2g1uug2du (4ggddg2ud - g2ddg2dug2uu + 5§%du.@2ud))
+ 5g?du + gildu (2_@%“(1 + 5g%uu =+ 17g§du + 3§§uu)
+ 4§§dug2uu (3glud92dd + gluug2du)
.9 .9 .9 .9 L 9 .2
+ G1du (291ud(392dd + Ghau) + 4910ad1uuf2daf2du + 109700500
+ 219530054 + 1003049300 — 492dd92dud2udf2u + 11334,
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+ 44140 (Qludgzdd (5034a92uu — 92dd492duf2ud + 49540 G2un)
+ 91uuf3au (392da92ud — g2dug2uu>)
+ Gt uadBaa(593aa + 95au) + Truudsan (93aa + 5954u) + 470544
+ G3ga (T8 au + 47050a + 1035,,) — 2493 4492du2udF2un
+ 7034493du (ﬁ%du + 3(G5uq + quu)) — 24424403 g G2ud2uu
+ 478500 + G20 (109304 + 4795, ) } ; (F.23h)

195 ¢ 133 , 2 605 , 4 425
67 1697 T8 T
1 2 4 3 N . N .

— 1 (99" —420%° +19¢"") = 6" (3hua + G + 51 (3B + )

Lo 2. . . . L ojayf. R . .
— 190 (a3 = 21 (Fa + B3) ) = 59" (3 P+ 3000 + 530))

8
ﬁg))‘o = — 32g32)ht4 + 30ht6 + 3Oht4h;2 - ght4g/2 +

- 292 (g%udggud + 2.@1ud§1uu§2ud§2uu + g%uugguu + 5g§ud + 2§§ud§7§uu + 5g§uu>

L . R R R L N
+ 1 |:g%dd (5gilud + g%ud (7g%uu + 109§ud) + 691udgluug2udg2uu + 2giluu

N N .3 . IS BP PO .2 .92 .92
+ 4gldd (gldu (2gludgluu + gludg2udg2uu + gludgluu(zgluu + g2ud + g2uu)
+ g%uu@2ud§2uu)
+ 43 waf2ddf2ud + 9tuadtun (G2da920u + 4G2dud2ud)
+ glud <g2dug2uu (.g%uu + Sggud) - g?ddﬁ;ud)
+ gluuQQud (3g%uu92du - g2dd§2udg2uu + 5g2dug§ud + 4g2dug§uu)>
+ g%du (2gilud + g%ud (7g%uu + 2g§ud + 6g§uu) + 6g1ud§1uug2ud§2uu
+ 4gldu (gg?udQQddQQwu + g%udgluu.éQddeud
+ 91ud (97 u (402dd920u + G20dud2ud)
+ gQuu (4g2dd.§§ud + 5g2ddg%uu - g2du§2ud§2uu))
+ gluuQQuu (g%uqudu + g2uu(3g2ddg2ud - g2dug2uu)) )
+ 5g?ud + gzllud(r?g%uu + 3ggdd + 17g§ud) + 42gz1))udg1uu92udg2uu
4 ~2 17'~4 4 ~2 (3'~2 4 3A2 4 19(’*2 4 ~2 ))
J1ud J1uu T J1uu\992dd 92du, 92ud T J2uu
+ 1Oggdd (g%ud + g%uu) - 4g2dd§2dug2udg2uu
03 (2080, + 11030 + 2133,
+ 2g1udg1uu (g2udg2uu (21g%uu + 5g§du + 19(g§ud + gguu))
+ 505 4q02udf2un — 202d492du (G5uq + quu))
+ g%uu (gguu (2§§dd + zlggud + llgguu) - 492dd92dug2udg2uu
.2 4 L2 .9 4 A 22 22
+ 9300 (47020a + 2103449500 + 100240) — 24G2d492duG2ud G20 (20 + T3
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195¢°  4254'°
16 48

1
3 (he* + 1) (994 +42¢%g" + 199’4>

0 8
BEN = — 32g20,%1,% + 30h,*h}? + 30m; " h,? — ghfhgzg'z +
43 4,2 335 4 4
1699 t g9

3 4. . . . . R . R
— gt (030 + 9 + G G+ 515300 + 5150 + 51030 + 5103,

+

16
1 2/. . . . . . . .

= ggzg’ (gfdd + 0lau + Grud + Grun — 218540 — 21950, — 210300 — 219§uu)
1 4. . . . . . R .

— 159" (Faa + G+ ua + G+ 3030+ 35300+ 30300 + 3000

- 2g° (g%ddggud — G1ud (91dd92dd92ud — 201duf2ddd2un + Jrduf2dudzud)
— 91w (91da92da92uu — 201dd92dud2ud + Graud2dudzun) + audsun
+ G uadbaa + 0Tuudan + 5950a05ua + 5954405
— 892ddf2duf2udf2un + DGaguirug + 5g%dug§uu)
+ % |:§ledd(10g%ud + TG + 2§§ud))
+ 20340 (401aud1uddrun + 1692dud2uadtun — 592ddf2uudtuu — 201udd2ddd2ud)
+ i (10§ilud + 03ud (199700 + 24(830q + G3ua))
+ 491uafruu (G2daf2du + T92udd2un) + T01uu + 260344
+ 997 4u03aa + 1553 wuG3au + 1507 40d3ud + 32050a95ua + 33954 05ud
+ 93} wuTun + Ta55uu — 205uaPoun — 2892ddd2dui2udd2un
+ 201du (201 0u2ddd2ud — 391udF2dui2ud
+ 18§1uad2ddd2un — 691uud2duzun)
3 (199800 + 1953, + 18(3800 + G300)) )
+ 20100 (49100910
— 0140 (661048244820 — 1891uub2dudoud
+ 3G1uuf2dddzue — 201ud2dufzun)
+ 20140 (20100 dtua + Gua(T92da92du + J2uaf2un)
+ G1udd1un (20w + 9540 + 03au + Goua + )
+ 17424a92dud5ua + 1702dd02du 300 — 9954a92uad2un
— 995 4 02ud92un + 01y (79244920 + G2udd2un))
— 20%ua92da02ud + 39T uadrun (692aufoud — G2dad2un)
— 201ud (9920af3aq — 11G2duf2uudsia + 392ddG2ud(Fau + 393ua + Fuu)
— 1 g2auf3yadzun + Gy (392dd92ud — G2duf2un))
— G1uu (3020uf3aq — 1402dud2udFsaq + 392dd92uu (79540 + T03ua + Foun)
— tuu(1692duf2ud — 52ddF2un)
~ 202009201630, + 16330 + T53,.)) )
+ 1401403 + 1401 wuGau — 96954092dud2uaG2un
— 203 3 (5G10uad2duf2ud — 16G1udf2ddf2un + 201uud2dud2un)
— 96924492duG2udd2uu (G5du + Goud + Touu)
+ Gau (70 ua + 1003 + 14930) + 9340 (9493 0a + 5705,0)
+ G200 (57G3ua + 9453un) + Gau (57G2ua + 530300 G3ua + 94020
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+ 4G1udd1un (17920a0200030q — 992da92du(G3ua + Goun) + 170540 G2udd2un)
+ G3aa (949504 + 5383 unB3ua + 5700w + 535300 (93ua + Fun)
+ 3o (T91ud + G1ua (19970 + 159344 + 9934u + 993ua + 153340
+ 4G1ua1uu (G2ddf2du + T92udf2un) + 105140 + 260340 + T030u05ua
+ 33034a95uu + 32030uG3un — 203uadun — 28924492dug2ud 2w
+ 2403, (93au + F3uu))
+ G (050a(7950 — 20300) — 2802aud2udd2undadd
+ G500 (263340 + 338500 + 3203,))
+ 0104 (268200 — G300 (20300 — 320300 — 3393uu) — 2802auf2uafzuuizid
+ "0 u03ua + 185w (95aa + Foau))
— 201du (Q?ud(5§2du§2ud — 16§2ad02uu) + 9tuadiue (692dud2un — 202da92ua)
— G1ud (32020095 4q — 2192duf2ud3aq
+ 2§2dd§]2uu(7g§du + 7g§ud + 16§§uu)
— 3% uu(92dud2ud — 692da92uu)
= 3G2auf2ud (Frau + Gud + T93u))
+ 20100 (392auf20uf3aa — 1102da920d (F3au + o)

2)2° _ 9, 272 4,12 2,04 8, 9,522 21,5 49 40
B)\4 = — 3293ht ht +30h,t ht +30ht ht — ght h‘t g + ?ht g g
21 o 9 9 235 4
+Shig’" — gl — S0’

+ 2929/2 (Q%dd + GFau + Grud + Gruw — 219500 — 21030, — 2103,4 — 21g%uu)
+¢° (g%ddggud — 91ud (401dd92dd02ud — 201duf2ddd2uu + 491 duf2dudzud)
— 20100 (201da92dd92uu — G1dad2auf2ud + 2G1duf2dufzun) + Gaudsun
+ 0Tuaf3aa + Gruudian — 10954493ud + 892d492uu
— 2092ddd2duf2ud2un + 8554y I3ud — 10§Sdu§§uu)

+ |:gildd (5g%ud - 2g§ud)

+ g%dd(llgldugludgluu - 5g2dug2udgluu + 1092dd§2uu§1uu + 16g1udg2dd92ud)

e

+ 91aa (5§11ud + 301 0q (20T uu + 9344 + G5ua) + 891uadiun (92dd92du + G2udf2un)
— 803ud — 30t uudrdu — 39t uuTud — 3aaTrua — 995audua + 205345 uu
+ 503 uadzun + 1992d492dud2udd2un
+ Grau (891und2dadoud + 1891udd2dudzud
+ 301udd2dd92un + 1201 uud2du2un)

030 (600 + 603 — 303 + $Bu)))
+ J1dd (1 191udd1uudiau

+ 03 40 (12010a02d4920a + 391uud2dud2ua
+ ]-Sgluquddeuu + 8.@1ud§2du§2uu)

+ gldu (llgluug%ud + 8(g2ddg2du + g2udg2uu)g%ud
+ 8(§%uu (g2dd§2du + §2ud.§2uu) + 3@%dd§2ud§2uu + 3§§dug2udg2uu
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— Goadf2du(Gauq + g%uu)))
+ 1693 yad2ddf2ud + 39T uadtuu (J2duf2ud + 6§2dad2u )
+ 49104 (692uad3 04 — 202duf2uwudsaa + 392dad2ud(Fau + 205ua + Touu)
— 200aud5uad2un + Gtuu (302dd92ud + 202dud2un))
+ Gru (6920u3aq + D92dud2udF3aq + 692ddG2uu (5T 4y + 593ud + Touu)
— 59F wu(G2dufoud — 202ddF2un)
— paubud (19334, + 19330 — 533,.)) )
— 201 waF5ad — 201 wud5du + 4595 4ad2dud2udfzun
+ 03 4 (10910ad2duf2ud — DG1udfedafzun + 1691uud2dufzun )
~ G2au (18530 — 4753uu) + G20 (4753ua — 1893u) + Gau (59T — 20300)
+ 45G2da92dud2udd2un (F3au + Toud + Ioun)
= G5 (1893ua + 2003 uF3ua — 4702uu)
— 801 udGrun (G2udb2undsga — 392du(G5ud + Goun)d2dd + Gaguiouddoun)
+ G500 (475504 — 200308500 — 18850 — 2054 (93ua + G3u)
+ Tt (33005 du + 2030u) + 1992aud2udf2uuf2dd
— G3au (80340 + 993ua + 553uu))
— 0704 (80340 — 9544(5954u — 555ua — I55uu) — 1992du2ud2uud2dd
~ 205 u95ua + 39%un (930 + G3au)
+ 0tau (5giluu + 301 wu (93du + Frun) + 891uadiuu (92d492du + G2uddzun)
— 805 + 20300 05ud — 993da93uu — DI3auTouu + 5Truad3uu
+ 19920492duG2udf2uu + 91ua (6910 — 3(934q + gguu)))
+ G1du (5§§’ud (202aud2ud — J2dad2un) + 457 uad1un (202dd92ud + 392duf2un)
— G1ud (19920095 a — 3092duf2uadsaq — G2dad2un(593ay + 595ua — 1993,
— 30Fuu (692dud2ud + G2ddf2un)
— 602dub2ud(Gaqu + Frua + 5T3uu))
+ 4910 (392dud2uud30q — 292da92ud(T5du + Fuu)
+ G2duf2un (457 + 6950y + 30504 + 6g§uu))):| ) (F.23Kk)
2 = 3agheh 4+ 30 B + 3020 — Sheh”
— 26 (G (G10ad1 uoua + G1audiun o + 53420

+ G1udfdd (§1dad2ud + Gruufoan) + 5954a05ua + 2§2dd§2du§2ud§2uu)
1+ M50+ 30 (11G1dui10ad 501 duf2udd 12§1uag244d
4 91dd91ud T gldd( JdudiudFiuu + 991dud2udG2uu + g1ud92dd92ud)

+ g%dd (GQ%du (g%ud + g%uu)
+ gldu (8gludg2ddg2uu + 8g1ud§2dug2ud + 8gluug2ddg2ud + 6g1uu§2dug2uu)
+ gludgluu(13g2ddg2du + 8g2ud§2uu) + ded{]Qud(3g2dd.§2ud + 7§2dug2uu))

+ gldd (giidu(llgludgluu + 5g2ud.§2uu)
+ g%du (6g1udg2ddg2ud + 8@1ud§2du§2uu + 8Q1uu§2dd§2uu + 8§1uug2du§2ud)

+ 91du (1137 yaGru + G1ua(892da2du + 1392uad2uu)
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+ G1uddrun (1157 4y + 5(93aa + Fogu + Foua + Foun))
+ 9tuu(892dd92du + 1392uadzun) + 113544920 2uu
+ 802dd§2dudrua + 892ddF2dudrun + 119504 02udd2uu
+ 303 ua92uu + 392udd3u)
+ 1203 yad2dd2ud + 89T uadtuu(92ddd2un + J2dud2ud)
+ 91ud (91w (692da92ud + 8G2dudoun) + 8954a02ud + 83 4a92dudzun
+ 024 (60540, G2ud + 8934 + 6G2ud3un) + 802dudryualdzu)
+ 8G1uu (933a92duf2ud + G2dd920u(Frqu + Goua) + deuﬁmdﬁ;uu))
+ 50 auGtun + 1201 ud1unG2duf2un
+ 01w (637 wa 7w + Grudfiue(1392dd92du + 8G2udf2uu) + 531
+ 50w (D + G3un) + G2duf2un(792dd92ud + 3G2dufzun))
+ 2G1du (qudgmu(‘lézddémd + 3G2dud2un)
+ 4G1ud (9T 0w (92dd9200 + G2aub20d) + G3ga92duf2ud
+ 92ddf2un(G3gu + Goua) + 92dufzudF3un)
+ G1uu (92duf2un (697 + 49300 + 303ua + 4950)
+ 35 1002du2uu + 402da920d (G54, + quu)))
+ 57 wad1uud2dadodu + Giuad2dadzud (392dad2ud + T92dufzun)
+ G1udJ1uu (5§%uug2ddg2du + 305 4402du + 803ga02udd2un
+ G2dd92du (3§§du + 11(G3uq + ﬁguu)) + 8§§du§2ud§2uu)
+ 9t uub2duboun (792dd92ud + 392dud2un) + 47930405uq + 995 4a92duf2udf2un
— 0344 (2ggdu(§%ud + G3un) — 470500 + Zg%udgguu)
+ 992da02auf2uadzun (G3au + Foud + Foun) + 4705405

8
B = — 32020, + 300, i, + 300, h}” — ghm;?’g'2
1
— Shil, (994 — 42hhg?g? + 19hth;g’4)
3 4l . . A .
- T69 (glddglud + 91du9iluu +51 (g2dd92ud + g2dug2uu))
1 2 12( A ~ ~ N N o N N
—399 (glddglud + J1audrun — 21(2dad2ud + g2dug2uu))
1

4 ~ ~ ~ ~ ~ ~ ~ ~
- TGgl (glddglud + J1audrun + 3(J2dadzua + deug2uu))

-g (g%ddedd.gQud + 91dd (91dud2dadzun + G1aufzdudzud + G1udfga + Nuudzdddadu)
+ Ot aud2dufoue + Jrdaufodu(G1uadzdd + Gruufodu)
+ 2(568 gqG2ud + 934492duf2un + G2dd05quG2ud + 5g§dug2uu))

+

| —

|:10g1ud§7fdd + 9tag (11 910udrun + 12024a92ua)

+ 5740 (1037 0 + 2307 4uG1ud + 807 uud1ud + 220544910 + 803yad1ud
+ 13g1uug2ddg2du + 6§1uug2ud§2uu + 1391du(g2du.§2ud + g?dd.@?uu))
+ g%dd (23§1uugzlsdu + 14?]%@ (g2dd§2ud + g2du§2uu)

+ G100 (199100 G 0g + 5910 (982449240 + 202udG2un)
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+ 10 (793w + 138500 + 119300 + 5930 + 303u))
+ 1092dd950a + 1495 4a92ud + 13G2da934u92ud + 1697 ,492ddG2ud
+ 497w G2da92ud + 8G2dud3uad2un + 691 wud2dufzun + 15954492dud2un
+ 201ud91uu(11G2dug2ud + 5§2dd§2uu)>

+ G1dd (11g1udgildu + 136 4 (92auf2ud + G2da92uu)
+ 5200 (76800 + G10a (195200 + 115200 + 130200 + 303uq + 55%0)
+ 591uu(992ddG2du + 202udF2uu))
+ 91au (1192008540 + 4392d4ud2udraq + 595uud2dd + 430540 G2uud2dd
+ Guafzuudzdd + DG2audiug + G2dud2udFsuy + 11950, 92ud
+ 03 uu(1992au820a + T92d4920u) + Grua(T92dub2ud + 19G2da92uu)
+ 891udf1uu(92ddG2ud + G2dud2un))
+ 1037 yad544 + 01 wad1uud2dadzdu
+ G1uw (110240 d54q + 692uaf2uudsga + 391 wul2dud2da
+ G2daf2au (110540 + 210500 + G3uu) + 268544 92udf2un )
+ 2010 (40304 + 934d(T93aqu + 20500 + 46500) + 4G2duG2udf2unf2dd
+ 59300 05ua + 201w (G5aq + 2573@)))
+ 105 guitun + 949304092ud + 949300 G20 + 1201 auG2auf2un + 992aa924u G20
+ 91uad2dd (8G2udfaq + Ti2duf2und2dd + F3qudzud)
+ 9tunf2au (G2uud3aq + T92aufzuadzda + 8354u2un)
+ 201udd1un (5920ud5dq + 392auf2udFaq + 393qud2undzdd + 595 gui2ud)
+ 30244954 92ud (3550w + T03ud — 595uu) + G3aad2ud (5550, + 9405ua + 895uu)
+ G3aa02du2un (5930u — 15954 + 21030.)
+ 50 (1043, + 893 ad1un + 22034, 91un + 8334 G1un
+ 13¢1uaf2dd2du + 691udd2udfzun )
+ 20300 (47030 + 403 0aG20n)
+ 07 g0 (01 ua(692da92ua + 492auf2un) + 2010ad1un (592dud2ud + 1192445200 )
+ 1333 4a92aug2un + 202du2un (89T un + T93au + DJ2un)
+ 92da2ud (15954, + 8G3,0))
+ G1du (3§2dd92dug?ud + 437 w910 (20544 + G3au)
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8 1
B = = 8208, M, + 30hh + 30h i — Shhig” = Sl (99" — 4209 +19")

3 .. .. . FOA
- EQA‘ (glddglud + G1dufruu + 51(J2ddd2ud + gzdu92uu))
1 20 . F A A a
- ggzgl (glddglud + G1dufrun — 21(J2ddd2ud + gZduQZuu))

1

i, . S L L
- T69/ (glddglud + G1dufrun + 3(J2dad2ud + 92du92uu))

- 92 (glud (glddggud + gldu.@ZudﬁQuu + gluquddeuu + gluugZdug2ud)
+ 92uu (glddgluug?ud + gldugluquuu + g%uqudu + 2g2dug§ud + 10g2dug§uu)
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F.4. THDM with EWinos
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