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The goal of particle physics
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Dark matter

Nature of EWSB

Baryon asymmetry
Neutrino masses

Naturalness

…..

→ Answer the big fundamental questions!

Can ML find answer these questions for us? No!

Can it help us with it? Yes!
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The challenge ahead
• general trend: larger-and-larger experiments 

collecting more-and-more data

• e.g. LHC: already enormous dataset will be further 
enlarged by a factor ∼ 10

• costs for future experiments increasing

• new analysis methods

• theory precision ≃ experimental precision

• in particular: high-precision MC simulation 

Fully exploit the available data!



ML in a nutshell
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Terminology
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• Artificial Intelligence (AI)
• machines performing complex tasks
• e.g. Feynman diagram generators, …

• Machine Learning (ML)
• subfield of AI where machines learn 

from data
• e.g. linear regression, BDTs, …

• Deep Learning (DL)
• subfield of ML using deep neural 

networks



Neural networks
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• activation introduces non-linearity (e.g. 𝑔 𝑥 = max(0, 𝑥))

• adjust weights by minimizing loss



The Universal Approximation Theorem
Theorem (informal): 

“A feedforward neural network with enough neurons can approximate 

any continuous function with arbitrary accuracy.”
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Limitations in practice: 
1) amount of training data, 2) size of NN, and 3) compute spent for training



Types of ML (selection)
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• regression (e.g. calorimeter calibration)
• classification (e.g. jet tagging)
• generation (e.g. event generation)

Tasks

• supervised (e.g. amplitude regression)
• unsupervised (e.g. data clustering)
• semi-supervised (e.g. anomaly detection)

Learning 
types



ML workflow
1. define the problem

2. collect and preprocess the dataset

3. define your ML model

4. training 

5. evaluation
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• ML strategy — multiple ways to approach problem

• loss — what objective do I want to optimize?

• architecture — what is the best structure for my NN?

• encode physics knowledge — symmetries, …



ML for particle physics
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[Iulia Georgescu,2021]



The particle physics workflow
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ML can help with each of these steps by increasing

• accuracy/performance

• speed

Experiment
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Motivating example: simulation-based inference

• simulation-based inference (SBI) allows to 
exploit full kinematic information

• significant improvement in comparison to 
histogram approach

• 1st experimental analysis: measure off-
shell signal strength in 𝐻 → 𝑍𝑍 channel 
[ATLAS-CONF-2024-016]

• also persists in global analyses 
[HB,Plehn,Schmal,2509.05409]
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Motivating example: simulation-based inference

• simulation-based inference (SBI) allows to 
exploit full kinematic information

• significant improvement in comparison to 
histogram approach

• 1st experimental analysis: measure off-
shell signal strength in 𝐻 → 𝑍𝑍 channel 
[ATLAS-CONF-2024-016]

• also persists in global analyses 
[HB,Plehn,Schmal,2509.05409]

What is needed to apply ML successfully? 
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accuracy

speed

uncertainties

interpretability

physics knowledge

Key to all these aspects: finding good representations of the data



Accuracy & speed
fast higher-order amplitude surrogates
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Amplitude surrogates
• evaluating analytic expressions for amplitudes ℳ ! can be very expensive due to

• higher-order corrections
• large final-state multiplicities

 

• idea: 
• generate small training sample using full analytic expression
• train a NN to approximate ℳ ! 
• generate events using NN surrogate → fast to evaluate

→ fast high-precision event generation
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ℳ ! ≈



Comparison to classical interpolation 
[Bresó, Heinrich, et al., 2412.09534]
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ML surrogates

classical interpolation 
techniques

ML surrogates outperform classical interpolation techniques

NLO 𝑞3𝑞 → 𝑡 ̅𝑡𝐻 amplitude



Speed comparison
[Janßen et al.,2301.13562]
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𝑓!"" =
𝑇#$%&'%('
𝑇#)((*+%$!

Large speed-ups possible!

dipole vs naïve: 
encode singularity structure of amplitudes



Exploiting known symmetries
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be
tt

er

Lorentz invariance

permutation invariance (𝑔" ↔ 𝑔#)

[2505.20280, Spinner et al.]

Enforcing symmetries drastically 
improves performance!
→ physic-informed data representations



Uncertainties
"All models are wrong, but some — those that know when they can be trusted 
— are useful!"

George Box (adapted)
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Regression with uncertainties
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Statistical unc ±2𝜎

Systematic unc ±2𝜎

• statistical uncertainty 7= lack of training data 

• systematic uncertainty 7= noise in the data, lack in model expressivity

[Yi&Bessa, 2505.02743]

Can we the NNs encode a representation of their own uncertainties?



Probabilistic learning
Learn amplitude statistically

Then, we can calculate the mean prediction and uncertainties as
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NN parameters

vanishes for perfect data: 𝑝 𝐴 𝜃 → 𝛿(𝐴 − 𝐴,)

vanishes for perfect training: 𝑞(𝜃) → 𝛿(𝜃 − 𝜃,)



Modelling the systematic uncertainty
• log-likelihood loss:

ℒ = − :
$!,&!∈("#$%&

log	𝑝 𝐴)*+,(𝑥") 𝑥", 𝜃

• assume Gaussian likelihood: 𝑝 𝐴|𝑥 = 𝒩(𝐴 𝑥 , 𝜎-.-)! 𝑥 )

• NN learns both: 𝐴(𝑥) and 𝜎-.-)(𝑥)

⇒ heteroskedastic	loss: 	ℒ =:
"

PQ 𝐴 𝑥" − 𝐴)*+, 𝑥"
!

2𝜎-.-)! 𝑥"
+ log TU𝜎-.-) 𝑥"

• if needed: replace by Gaussian mixture model
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true amplitudes

phase-space point



Modelling the statistical uncertainty
• variational approximation: 𝑝 𝜃 𝐷)*/01 ≃ 𝑞(𝜃)

• promote each NN parameter to Gaussian distribution

• train by minimizing KL divergence: 
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𝑞(𝜃)

…

Bayes’ theorem

prior log likelihood



Alternative: repulsive ensembles
• can describe NN training via ODE or continuity equation:

• choose                                               → solution:

• estimate density via NN ensemble:

• NN parameter update rule
           
 

              NN ensemble with repulsive force ensuring
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kernel



Behavior of uncertainties 
[HB,Elmer,Favaro,...,2412.12069]
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test: apply Gaussian noise to 𝑔𝑔 → 𝛾𝛾𝑔 amplitudes

• statistical unc. decreases with more training data

• systematic unc. converges to level of applied noise

𝐴$(%-& ∼ 𝒩(𝐴$()!, 𝜎$(%-&. ) 
	𝜎$(%-& = 𝑓#/!%(𝐴$()!

→ reliable uncertainty estimate



Are these uncertainties calibrated?
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• statistical uncertainties play minor 
role for amplitude regression

• define systematic pull:

𝑡-.-) =
𝐴 𝑥 − 𝐴)*/01(𝑥)

𝜎-.-)(𝑥)

• if calibrated, 𝑡-.-) distribution should 
follow 𝒩(0, 1)

Almost perfectly calibration → reliable uncertainty estimate



Localized noise
[HB,Elmer,Plehn,Winterhalder, 2509.00155]

Henning Bahl 27

Same techniques also applicable to all kind of other regression problems!

• emulates numerical noise close to threshold

• well captured by systematic uncertainties

• NN effectively finds the mean prediction

• uncertainties still well calibrated



How can we quantify the performance of the generative NN?

→ determine  𝑛,2+03  such that                                                                                   with

Controlling generative ML
[HB,Diefenbacher,Elmer,..., 2509.08048]
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training dataset true distribution generated dataset learned distribution

comparison metric amplification factor



Controlling generative ML

one option for 𝑀: Kolmogorov-Smirnov test comparing 𝐷)*/01 and 𝐷4,1
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systematic approach to assess quality of generative NNs

known asymptotic if 
𝑝+!& = 𝑝$()!



Controlling generative ML

one option for 𝑀: Kolmogorov-Smirnov test comparing 𝐷)*/01 and 𝐷4,1
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systematic approach to assess quality of generative NNs

Lorentz-equivariant 
&

 permutation-invariant 



Interpretable ML
looking under the hood
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• many ways to make ML interpretable

• goal: find most relevant representation/observables 
describing the data

→ maximal interpretability: analytic equation! 

• construct them dynamically using symbolic regression 
[Schmidt&Lipson`09, Udrescu&Tegmark`19, Cranmer et al.`19,`20,`23]

• build upon genetic algorithm successively forming equation

• interplay between goodness-of-fit and complexity of 
equation

⇒ symbolic regression → 𝑃 ggF2j ∼ Sigmoid(𝑝5,#'log(|Δ𝜂##|))

Back to the formula – symbolic regression
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Example: Higgs CP test for VBF
[HB,Menen,Fuchs,Plehn,2507.05858]

• consider dim-6 operator 

• unambiguous CP test → CP-odd observables

• construct optimal reco-level CP-odd obs. by 
training a classifier on	𝑐6 78 = ±1 samples

• analytic equation → ensure learned observable        
is indeed CP-odd

with 𝑥 = 𝑝!/𝑚"



Conclusions
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Conclusions
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• particle physics is in the precision era                                                                             
→ large amounts of multidimensional data

• ML methods excel in such an environment

• important requirements: uncertainties and interpretability

• key ingredient: representation learning based on particle theory

• methods widely applicable

ML is an essential tool for the future of particle physics

accuracy speed

uncertainties

interpretability



Appendix
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Thanks for your attention!



Modelling the statistical uncertainty

• train ensemble of networks
• each networks leads to slightly different result
• spread of network predictions ∼ statistical uncertainty
• less data → higher spread
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individual NNs

𝑤 ∼ 1/ 𝑁$(%-&

Rough  picture



Bringing it all together
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𝜎#$#% = 𝜎&'&#% + 𝜎&#(#%

Combined learnable modelling of systematic and statistical uncertainties!

Alternative approaches: Bayesian neural networks, evidential regression



Gaussian mixture model
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Controlling generative ML
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Simulation-Based Inference
fully exploiting high-dimensional data
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Classical parameter inference 
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• reduce dimension of phase space                             → 
summary statistics

• bin summary statistics

• compare resulting histogram to SM/BSM 
predictions

Advantage: humanly digestible plots

Disadvantage: loss of information

[Elmer et al.,2312.12502]



Full likelihood
• Monte-Carlo simulation chain allows us to sample full likelihood 𝑝(𝑥|𝜃). But cannot directly 

compute it.

• Neyman-Pearson lemma: likelihood ratio                                         is most powerful statistical test

• but we can regress to reco-level 𝑟(𝑥|𝜃, 𝜃9) using known parton-level 𝑟(𝑧:|𝜃, 𝜃9):
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unbinned multi-dimensional inference without information loss

phase space 
point

theory 
parameters

NN average over event sample



Encoding amplitude structure
[Schöfbeck et al., 2107.10859, 2205.12976]
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Theory structure for e.g. SMEFT:

encode into likelihood

learn coefficients 𝑅","# separately → theory parameter dependence fully factored out



Parton-level cross-check: 𝑊±𝑍 production
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[HB et al.,2410.07315]

• consider effects of three SMEFT operators

almost perfectly learns high-dimensional likelihood



Reco-level: VBF with 𝐻 → 4ℓ
[Brehmer et al., 1805.00013]
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Huge potential to improve sensitivity of a wide variety of measurements/searches

But is SBI also viable in a realistic analysis including uncertainties etc.?
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