ML for particle physics

In the precision era
Henning Bahl




The goal of particle physics
— Answer the big fundamental questions!

Nature of EWSB Neutrino masses

Baryon asymmetry

Dark matter Naturalness

Can ML find answer these questions for us? No!

Can it help us with it? Yes!
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The challenge ahead

* general trend: larger-and-larger experiments
collecting more-and-more data
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 e.g. LHC: already enormous dataset will be further

enlarged by a factor ~ 10

* costs for future experiments increasing

» Fully exploit the available data! -
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ML In a nutshell
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Terminology

* Artificial Intelligence (Al)
* machines performing complex tasks
* e.g. Feynman diagram generators, ...

e Machine Learning (M L) Artificial Intelligence VL ECILERREET LT Deep Learning
* subfield of Al where machines learn
from data
* e.g. linearregression, BDTs, ...

7y (ML) (DL)

* Deep Learning (DL)
* subfield of ML using deep neural
networks
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Neural networks

Input layer Hidden layer Output layer

\ - N
x’

 activation introduces non-linearity (e.g. g(x) = max(0, x))

* adjust weights by minimizing loss
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The Universal Approximation Theorem

Theorem (informal):

“A feedforward neural network with enough neurons can approximate

any continuous function with arbitrary accuracy.”

Limitations in practice:
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- Approximation
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1) amount of training data, 2) size of NN, and 3) compute spent for training
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Types of ML (selection)

e regression (e.g. calorimeter calibration)
e classification (e.g. jet tagging)
e generation (e.g. event generation)

| ea rning e supervised (e.g. amplitude regression)
* unsupervised (e.g. data clustering)

types e semi-supervised (e.g. anomaly detection)
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ML workflow

1. define the problem

2. collect and preprocess the dataset
3. define your ML model

4. training

5. evaluation
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ML workflow

1. define the problem

2. collect and preprocess the dataset ML strategy — multiple ways to approach problem

* loss — what objective do | want to optimize?
3. define your ML model —

* architecture — what is the best structure for my NN?

4. training
* encode physics knowledge — symmetries, ...

5. evaluation

Henning Bahl 9



ML for particle physics

[lulia Georgescu,2021]
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The particle physics workflow

Forward

_—

-— - s

Inverse

ML can help with each of these steps by increasing
* accuracy/performance

* speed
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Motivating example: simulation-based inference

* simulation-based inference (SBI) allows to
exploit full kinematic information

* significant improvement in comparison to
histogram approach

Henning Bahl
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Motivating example: simulation-based inference

~ Y
. ATLAS Preliminary i

- : . ol Vs=13Tev, 140"~ OPS NS -
 simulation-based inference (SBI) allows to O -—— Exp NSBI ]
exploit full kinematic information - 40-only —= Obs Histogram ]
8l --—- Exp Histogram ]

* significant improvement in comparison to ! _:
histogram approach ]

/f

7

* 1stexperimental analysis: measure off- B
shell signal strengthin H =- ZZ channel ) ' _
[ATLAS-CONF-2024-016] <\ ° i e e, |

3.0

SM
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Motivating example: simulation-based inference

* simulation-based inference (SBI) allows to

exploit full kinematic information

* significant improvement in comparison
histogram approach

* 1stexperimental analysis: measure off-

shell signal strength in H - ZZ channel
[ATLAS-CONF-2024-016]

* also persistsin global analyses
[HB,Plehn,Schmal,2509.05409]

to

Henning Bahl

—— SBI

histo

Combination profiled
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Motivating example: simulation-based inference

* simulation-based inference (SBI) allows to —— SBI histo

exploit full kinematic information _
of - Combination profiled

* significant improvement in comparison to » : | ,
histogram approach S Ot I ---------------- { B

* 1stexperimental analysis: measure off- _5:_ L
shell signal strength in H - ZZ channel

[ATLAS-CONF-2024-016] i, . c(3) s,

* also persistsin global analyses
[HB,Plehn,Schmal,2509.05409]

# What is needed to apply ML successfully?
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ML for particle physics

r/g\\

\ accuracy

G speed
C
uncertainties

@ interpretability
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ML for particle physics

r/g\\

\ accuracy

G speed
=

@ interpretability

uncertainties
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physics knowledge
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ML for particle physics
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@ interpretability
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ML for particle physics

@ interpretability

—

—

—

N

physics knowledge

# Key to all these aspects: finding good representations of the data
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Accuracy & speed

fast higher-order amplitude surrogates

I Forward I
>

Inverse

€

Henning Bahl
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Amplitude surrogates

« evaluating analytic expressions for amplitudes | M |? can be very expensive due to
* higher-order corrections
* large final-state multiplicities

* idea:

* generate small training sample using full analytic expression
« train a NN to approximate | M |?

* generate events using NN surrogate — fast to evaluate

— fast high-precision event generation
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Comparison to classical interpolation

[Breso, Heinrich, et al., 2412.09534]

Approximation error of fo « NLO gqq — ttH amplitude

/ classical interpolation
107" techniques

10~

1077
e ——

10~
MLsurrogates,/l(VJO 10" 10° 10° 10* 10° 10°

n

‘ ML surrogates outperform classical interpolation techniques
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Speed comparison

[JanBen et al.,2301.13562]

~ ve 2.1 — higher is better
99 — e—etggdd naive |Z.
(Z + 4jets) dipole 16
99 = c“c*gggdci naive | 26
(Z +5jets) dipole 269
uii — tfdd—g naive [1.0
(t + 3jets) dipole | 20
99 - tiggg naive 2.8
(8t + 3 jets) dipole 61
ug — tigggu naive 11
(tE + 4 jets) dipole 354
0 5lo 160 150 260 250 360 3;,0
effective gain factor feg
SHERPA default with dipole-model surrogate
Process tMe[ms] tps[ms]  €nn fsurr[MS]  Tmax  €lstsur  €2ndsurr  feff
g9 — e et ggdd 54 040 1.411%  0.14 26 1418% 39% 16
gg— e etgggdd 16216 570  0.076 % 0.20 3.6 0.085% 29% 269
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Tstandard

feff =

Tsurrogate

dipole vs naive:

encode singularity structure of amplitudes

Large speed-ups possible!
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Exploiting known symmetries

better

<«

MSE on log-standardized amplitudes

[2505.20280, Spinner et al.]

10°
| "N MLP-I -
10~ \\Y\ L-GATr % </
\ Transformer --¥-- -
10724 & \ DA-Transf. —- <
“LLoCa-Transf. —+— 4
1072 .
10—4_
10_53
| Z+ag —>
10_6 I T T T T T
102 10* 10° 10® 107 108

Number of training samples
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Lorentz invariance

B

permutation invariance (g; < g;)

Enforcing symmetries drastically
improves performance!
— physic-informed data representations

18



Uncertainties

"All models are wrong, but some — those that know when they can be trusted
— are useful!”

George Box (adapted)
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Regression with uncertainties

Ground Truth [Yi&Bessa, 2505.02743]
20 Training Data , 20 :_—_ Ground Truth
i — = Ground Truth . — Grou_nd Truth +20
==7 Ground Truth +20 ; — Predicted Mean '
o~ / Statistical unc +20 l,’ k
10 . ///-f % /I, II 10 _ ! X
/-F:'v-{_\\ !
b - A ! /
,35‘?‘@,:\‘ 1
-~ N /’/" "-,: = i \\ l’ ! l/ 0 ’
AR W By ‘4 :’/ \y&" I’ [ // i
0 -‘///’/ \» - ‘\\"“—}liﬁl “‘ ‘ \\ ’I II ’I |
y p . \ % ;
NI R | /]
_10 i \\ \ / II = 10 n
T \ N/ ]
NS Systematic unc +20
'20 o —20 T
0 ) 10 0 5 10

« statistical uncertainty = lack of training data

* systematic uncertainty = noise in the data, lack in model expressivity

‘ Can we the NNs encode a representation of their own uncertainties?
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Probabilistic learning

Learn amplitude statistically

NN parameters

/

p(Alx) = J d6 p(6|Dyain) p(Alx, 0) ~ f d6 q(6) p(Alx,6)

Then, we can calculate the mean prediction and uncertainties as

Ann(x) =
O (%) =

2 —
Gstat(x) T

J

J

J

-

-

-

dAAp(Alx) = J d0 q(0)A(x,0)

d6 q(6)

d6 q(6)

:E(x, 0) —A(x, 9)2]

A(x, 0) —Aw(x) ]’

with Z(x,@)szAAp(Alx,G)

—_—

———

Henning Bahl

vanishes for perfect data: p(4|6) — 6(4 — Ap)

vanishes for perfect training: g(0) = 6(6 — 6,)

21



Modelling the systematic uncertainty

true amplitudes

log-likelihood loss: /

L=- z log p(Atrue(x)|x;, 6)

Xi»Ai€Dtrain \

phase-space point

assume Gaussian likelihood: p(4]x) = NV (4(x), aszyst(x))

NN learns both: A(x) and Osyst (X) )
_ 2
(A(xi) — Atrue(xi))

= heteroskedastic loss: £ = z + log(USyst(xi))
i |

if needed: replace by Gaussian mixture model

Henning Bahl
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Modelling the statistical uncertainty

* variational approximation: p(0|Dirain) = q(6)

 promote each NN parameter to Gaussian distribution

* train by minimizing KL divergence:

KL[q(8), p(61Duu)] = | 6 q(8)1og —I&
’ e J p (9 |Dtrain)
Bayes’ theorem " _

p(e)p(Dtrainle)

= KL[q(6),p(6)] —J d6 q(6)10og p(Dyrain|6

)+ ..

|

prior

Henning Bahl

|

log likelihood
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Alternative: repulsive ensembles

e can describe NN training via ODE or continuity equation:

do 8p(6,t)

E=v(9,t) or 3 =—Vg[v(6,t)p(6,1)]
_ p(6,t) S _ _
e choose v(6,t)=—V,log (0) — solution: p(6) = n(0) = p(0|Dyin)
1 n
* estimate density via NN ensemble: p(6°)~ ;Zk(Gt,Git) Z Q\:( A(6) )
i=1 \ X \ O/ Usyst (01)
NN parameter update rule kernel Y (O~
° | § e
= ==V, |log| = > Kk(6,6)) | ~logp(6]x) G o
t n 4
/ (O~

® A(65)
- < (Usyst (303))
‘ NN ensemble with repulsive force ensuring 6 ~ p(60|Dyain) ol

Henning Bahl 24
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Behavior of uncertainties

[HB,Elmer,Favaro,...,2412.12069]

0.10

o/A

(1

0.1001

0.075

o/A

0.025

0.000+

2
Atrain ~ N(Atrue' O-train)

Otrain = fsmearAtrue

0.050+

¢ O syst 0.081 ° ® O syst
L] O gat ¢ ® O stat
° O ot 0.061 o ° O ot
fimear=2% | < .’ fomear = 0%
smear E0.0 41 o . : smear
S s 000000 0.02- .. LY .
e .. * ®oe 0 5 4 0,
. 0.00- , e .
10° 10° 104 10° 10°
Ntrain Ntrain

test: apply Gaussian noise to gg — yyg amplitudes

» statistical unc. decreases with more training data

* systematic unc. converges to level of applied noise

Henning Bahl

— — reliable uncertainty estimate
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Are these uncertainties calibrated?

* statistical uncertainties play minor

role for amplitude regression 0.4
fsmear — 5% BNN
* define systematic pull: 0.31 RE
Det
=
t _ (A)(x) — Atrain (%) < 0.2 A0, 1)
syst —
Usyst(x) 011
* if calibrated, sy distribution should 0.0 , | , |
follow V'(0, 1) —50 —-25 00 25 5.0

tsyst

‘ Almost perfectly calibration — reliable uncertainty estimate
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| ocalized noise

[HB,Elmer,Plehn,Winterhalder, 2509.00155]

103
102

10!+

RE

e=1073

e o o o
m
Il
-
9
w

no smearing
— prediction
--- expected

Atrain(x) = N (Atrue(x ), © Tihresh Agrpe(x ))

|myyg (X) _ mthreshl

* emulates numerical noise close to threshold
* well captured by systematic uncertainties
* NN effectively finds the mean prediction

e uncertainties still well calibrated

Same techniques also applicable to all kind of other regression problems!
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Controlling generative ML

[HB,Diefenbacher,Elmer,..., 2509.08048]

training dataset true distribution generated dataset learned distribution
rain n en
D trile ~p true(x ) ﬁ Dgegn pgen(x ) Ptrue (x)

How can we quantify the performance of the generative NN?

. equiv —_— Ngen . Nequiv
— determine neqyjy Such that M(Dtruqe :ptrue(x)) = M( gen :Ptrue(x)) With Diye ~ Prrue()

lificati fact G — nequiv
comparison metric ‘ amplification tactor G =

NMirain

Henning Bahl 28



Controlling generative ML

one option for M: Kolmogorov-Smirnov test comparing Diyain @and Dgep

known asymptotic if
—

Pgen = Ptrue

asympotic KS <
network

10—1 J

MKS

10_2 -

10!

‘ systematic approach to assess quality of generative NNs

Henning Bahl



Controlling generative ML

one option for M: Kolmogorov-Smirnov test comparing Diyain @and Dgep

train

L g .
. . -1 - : .
Lorentz-equivariant =10 Transh
@ & ) [—-*-- LLoCa-Tr.]
permutation-invariant o . Tes 3
i 102+ Asymptotic KS i Tl
10° 100 10  10®  10¢
Ngen

‘ systematic approach to assess quality of generative NNs

Henning Bahl
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S

Interpretable ML

looking under the hood
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Back to the formula — symbolic regression

* many ways to make ML interpretable

* goal: find most relevant representation/observables

describing the data

— maximal interpretability: analytic equation!

* construct them dynamically using symbolic regression

[Schmidt&Lipson 09, Udrescu&Tegmark™ 19, Cranmer etal.” 19, 20, 23]

* build upon genetic algorithm successively forming equation

* interplay between goodness-of-fit and complexity of

equation

Henning Bahl

2x + siny
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Example: Higgs CP test for VBF

[HB,Menen,Fuchs,Plehn,2507.05858]

0.08}
. . HW
« consider dim-6 operator A2 CI’TCI)WG Wers
£ 0.06]
: s
* unambiguous CP test - CP-odd observables <
£ 0.04
g
e construct optimal reco-level CP-odd obs. by 0.0l
training a classifier on cyy = 1 samples '
. . 0.00 ~05 0.0 05
* analytic equation — ensure learned observable @ PYSR wepodd
isindeed CP-odd
|o(cyir =1 vs. SM)
; PP, SiInAj; | 6.76
1.8566sinA¢;; -
dPySR = , trained on ¢, = %1 |
0.3080x;, log An;; +1og An;; sinh(x;, —2.5977) + 0.3080sinh x,
+0.6047 PySR 6.98
x;, log Anjj + sinh x;, SymbolNet 7.07
BDT 6.71

with x = pr/my,
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Conclusions
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Conclusions .
g.j@‘ uncertainties

* particle physicsisin the precision era —C@%)B— — Q —{b speed

— large amounts of multidimensional data
* ML methods excel in such an environment Q]é
@ mterpretablllty
* important requirements: uncertainties and interpretability

* key ingredient: representation learning based on particle theory

* methods widely applicable

‘ ML is an essential tool for the future of particle physics
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Appendix
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methods/itools
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methods/itools

Thanks for your attention!

Henning Bahl
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Modelling the statistical uncertainty

* train ensemble of networks
* each networks leads to slightly different result

* spread of network predictions ~ statistical uncertainty

* less data — higher spread

Henning Bahl
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Modelling the statistical uncertainty

Rough picture

V4 P 4
‘%@\@a‘%\w&
‘ ‘4 i‘%‘%

» V'f ~ 1/\/ Ntrajn
\w/'m\i“o’ ‘ '

individual NNs

train ensemble of networks

each networks leads to slightly different result
spread of network predictions ~ statistical uncertainty

less data — higher spread

Henning Bahl 37



Bringing it all together i

A(6)

O _
v Lo
Q/

Usyst (91 )

Input Z:
—\

)
§< A (6) ) 2 _ %fy 0)
)

Usyst (92)

Y

—

N\

Input
X

( A (63)

2 _ 2 2
Osyst (03) Ofot = Osyst T Ostat

I/

‘ Combined learnable modelling of systematic and statistical uncertainties!

Alternative approaches: Bayesian neural networks, evidential regression
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Gaussian mixture model

30
. .
Wy
201 N, =128
=
«
101
O n
0.0 0.2 0.4 0.6 0.8 1.0
Wi

K K
pGMM(Alx: 9) =ZO)k(X,9)N(A|Zk(x,9), O-]%(x: 9))3 Wlth Zwk(X, 9)= 1
k=1 k=1
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Controlling generative ML

10—L
10—2.
< 1073

10—4.

107°

| tf+0jets

rel. dev.

10° tt + 0 jets i train

4, ;

A 10 T0-0-9-0-0-0-0-0.0-0-0-
X I
= | --®-- Transf. e !

10—2_ o olline ]_L C -T . e "'.--......g.............q

3 ’ C(})AI'a : *."*-o}-o--o—o—c
........ 2 r i
. ] - . '

10 ; Asymptotic KS | Murain
10° 102 10* 106

Henning Bahl
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Simulation-Based Inference

fully exploiting high-dimensional data

Henning Bahl
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Classical parameter inference

* reduce dimension of phase space -

summary statistics
* bin summary statistics

* compare resulting histogram to SM/BSM
predictions

Advantage: humanly digestible plots

Disadvantage: loss of information

Henning Bahl
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3
w

1/ o doy/dmy; [1/GeV]
3

—_
3
ot

o L5

~—

[Elmer et al.,2312.12502]

£ 101
0.54

SS i 1 SM prediction

8

= CH) =55
f 8

1 Co) = 45

bexe | data +/- (stat-+syst)
I
| ]
500 1000 1500 2000

myz [GeV]
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theory

7
N

Full likelihood Phase pace  porameters

/

* Monte-Carlo simulation chain allows us to sample full likelihood p(x|8). But cannot directly
compute it.

o : _ p(x[0) . -
« Neyman-Pearson lemma: likelihood ratio r(x[0,6,) = p(x100) iIs most powerful statistical test
0

* but we can regress to reco-level r(x|6, 8y) using known parton-level r(z, |6, 6,):

2
c=<[r(zp|9,eo)—r¢(x|9,90)] >
L J ‘X,ZpNP(Xlzp)P(Zp|9);¢9NQ(9)'

{

1
NN average over event sample

‘ unbinned multi-dimensional inference without information loss
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Encoding amplitude structure |5=mcz\

[Schofbeck et al., 2107.10859, 2205.12976]

Theory structure for e.g. SMEFT:

Loverr = Zou+ ), 15 0= Lowi+ D6, 0, IM(2,10)1? = [Maw(z,) 12 + 61 M;(2,)I? + 6,6;|M;(z,) 2
\ ; ; ;
v
' encode into likelihood
{ : \
_ do(x]6)/dx _ o(8)p(x|6) | _ 8 do(z]0)/dsz, 9| M(z,]0)
Rx10,00)= G o (xlBoydx — o(6,)p(x10) ) = 6 Qo 00y gy, IMGIODE |,
32 do(z,)0)/dz, 86,991 M(3,10)]*
R(x[0, 86) = 1+ (6 — 8)Ri(x) + (8 — 06);(6 — 0p);R;(x) RCr)= 50,36, dotz,100)/dz, |,y IMGIOE |,

‘ learn coefficients R; ;; separately — theory parameter dependence fully factored out
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Parton-level cross-check: W*Z production

* consider effects of three SMEFT operators

W=*Z parton-leve: ~ —— truth ~ ——- SBI (RE)
3)
ce. =0 —
0.4 g, 0.3 0.3 ~Cowp=0_
0.01 0.01
ol py”~ | 0.2} 0.2
' 0.001 0.1} 0.1
5
§ 0.0 =< 0.0 £ 0.0
—0.1 —0.1}
—0.2}
—0.2 —0.2
—04—3 0 2 —0.3—/3 0 5 0307 =03 00 02 04
CowWB CoOW B CWWWwW

[HB et al.,2410.07315]

‘ almost perfectly learns high-dimensional likelihood
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Reco-level: VBF with H — 4£

[Brehmer et al., 1805.00013]

q

q
fwl ig
L=Lom+ A2] 2

(D*¢) o

v

> 4

*DY¢ W2, —|:

Be. .83
Ow

2
(

N

[z

’1 (ot ) We, whva

o

C)u'u'

-2 10gr(x|8, Osu)

0

\\ Histogram
\\ -== RaScAL
\
\
\
\
\
1.16x larger A reach
A}
\
\.
1.9x more luminosity
\
\
\
\
\
\
\
\
\
\
N\
N\ /7
\ 7
N\ s
\\ ,I
-0.8 -0.6 -0.4 -0.2 0.0 0.2

fu V3N = fuu v3IN?

# Huge potential to improve sensitivity of a wide variety of measurements/searches

But is SBIl also viable in a realistic analysis including uncertainties etc.?

Henning Bahl
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300fb~1, 20 only

L=
SBI histo
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