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The challenge ahead
• general trend: larger-and-larger experiments 

collecting more-and-more data

• e.g. LHC: already enormous dataset will be further 
enlarged by a factor ∼ 10

• costs for future experiments increasing

• new analysis methods

• theory precision ≃ experimental precision

• in particular: high-precision MC simulation 

Fully exploit the available data!
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The particle physics workflow
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ML can help with each of these steps by increasing

• accuracy/performance

• speed

Experiment
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Example: 1st experimental SBI analysis
[ATLAS-CONF-2024-016]

• goal: measure off-shell signal strength in 
𝐻 → 𝑍𝑍 channel

• simulation-based inference (SBI) allows to 
exploit full kinematic information

• significant improvement in comparison to 
histogram approach

What is needed to apply ML successfully? 
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ML for particle physics
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Key to all these aspects: finding good representations of the data



Accuracy & speed
fast higher-order amplitude surrogates
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Amplitude surrogates

• evaluating analytic expressions for amplitudes ℳ 2 can be very expensive due to
• higher-order corrections
• large final-state multiplicities

 

• idea: 
• generate small training sample using full analytic expression
• train a NN to approximate ℳ 2 
• generate events using NN surrogate → fast to evaluate

→ fast high-precision event generation
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ℳ 2 ≈
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Comparison to classical interpolation 
[Bresó, Heinrich, et al., 2412.09534]
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ML surrogates

classical interpolation 
techniques

ML surrogates outperform classical interpolation techniques

NLO 𝑞 ത𝑞 → 𝑡 ҧ𝑡𝐻 amplitude
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Speed comparison
[Janßen et al.,2301.13562]
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𝑓eff =
𝑇standard

𝑇surrogate

Large speed-ups possible!

dipole vs naïve: 
encode singularity structure of amplitudes
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Exploiting known symmetries
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be
tt

er

Lorentz invariance

permutation invariance (𝑔𝑖 𝑔𝑗)

[2505.20280, Spinner et al.]

Enforcing symmetries drastically 
improves performance!
→ physic-informed data representations
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"All models are wrong, but some — those that know when they can be trusted 
— are useful!"

George Box (adapted)
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Uncertainties
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Regression with uncertainties
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Statistical unc ±2𝜎

Systematic unc ±2𝜎

• statistical uncertainty ෝ= lack of training data 

• systematic uncertainty ෝ= noise in the data, lack in model expressivity

[Yi&Bessa, 2505.02743]
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Can we the NNs encode a representation of their own uncertainties?



Probabilistic learning
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Learn amplitude statistically

Then, we can calculate the mean prediction and uncertainties as

NN parameters

vanishes for perfect data: 𝑝 𝐴 𝜃 → 𝛿(𝐴 − 𝐴0)

vanishes for perfect training: 𝑞(𝜃) → 𝛿(𝜃 − 𝜃0)
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Modelling the systematic uncertainty
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• log-likelihood loss:

ℒ = − ෍

𝑥𝑖,𝐴𝑖∈𝐷train

log 𝑝 𝐴true(𝑥𝑖) 𝑥𝑖 , 𝜃

• assume Gaussian likelihood: 𝑝 𝐴|𝑥 = 𝒩(𝐴 𝑥 , 𝜎syst
2 𝑥 )

• NN learns both: 𝐴(𝑥) and 𝜎syst(𝑥)

⇒ heteroskedastic loss:  ℒ = ෍

𝑖

቏቎
𝐴 𝑥𝑖 − 𝐴true 𝑥𝑖

2

2𝜎syst
2 𝑥𝑖

+ log ൯൫𝜎syst 𝑥𝑖

• if needed: replace by Gaussian mixture model

true amplitudes

phase-space point
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Modelling the statistical uncertainty
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• variational approximation: 𝑝 𝜃 𝐷train ≃ 𝑞(𝜃)

• promote each NN parameter to Gaussian distribution

• train by minimizing KL divergence: 

𝑞(𝜃)

…

Bayes’ theorem
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• can describe NN training via ODE or continuity equation:

• choose                                               → solution:

• estimate density via NN ensemble:

• NN parameter update rule

           

 

              NN ensemble with repulsive force ensuring

Alternative: repulsive ensembles
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Behavior of uncertainties 
[HB et al.,2412.12069]
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test: apply Gaussian noise to 𝑔𝑔 → 𝛾𝛾𝑔 amplitudes

• statistical unc. decreases with more training data

• systematic unc. converges to level of applied noise

𝐴train ∼ 𝒩(𝐴true, 𝜎train
2 ) 

 𝜎train = 𝑓smear𝐴true

→ reliable uncertainty estimate
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Are these uncertainties calibrated?
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• statistical uncertainties play minor 
role for amplitude regression

• define systematic pull:

𝑡syst =
𝐴 𝑥 − 𝐴train(𝑥)

𝜎syst(𝑥)

• if calibrated, 𝑡syst distribution should 
follow 𝒩(0, 1)

Almost perfectly calibration → reliable uncertainty estimate
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Localized noise
[HB et al., 2509.00155]
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Same techniques also applicable to all kind of other regression problems!

• emulates numerical noise close to threshold

• well captured by systematic uncertainties

• NN effectively finds the mean prediction

• uncertainties still well calibrated
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How can we quantify the performance of the generative NN?

→ determine  𝑛equiv   such that                                                                                   with

Controlling generative ML
[HB et al., 2509.08048]
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training dataset true distribution generated dataset learned distribution

comparison metric amplification factor
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Controlling generative ML
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one option for 𝑀: Kolmogorov-Smirnov test comparing 𝐷train and 𝐷gen

systematic approach to assess quality of generative NNs
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known asymptotic if 
𝑝gen = 𝑝true



Controlling generative ML
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one option for 𝑀: Kolmogorov-Smirnov test comparing 𝐷train and 𝐷gen

systematic approach to assess quality of generative NNs

Lorentz-equivariant 
&

 permutation-invariant 
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looking under the hood
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Interpretable ML

22



• many ways to make ML interpretable

• goal: find most relevant representation/observables 
describing the data

→ maximal interpretability: analytic equation! 

• construct them dynamically using symbolic regression 
[Schmidt&Lipson`09, Udrescu&Tegmark`19, Cranmer et al.`19,`20,`23]

• build upon genetic algorithm successively forming equation

• interplay between goodness-of-fit and complexity of 
equation

Back to the formula – symbolic regression
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Example: Higgs CP test for VBF
[HB et al., 2507.05858]

• consider dim-6 operator 

• unambiguous CP test → CP-odd observables

• construct optimal reco-level CP-odd obs. by 
training a classifier on 𝑐𝐻 ෩𝑊 = ±1 samples

• analytic equation → ensure learned observable        
is indeed CP-odd

with 𝑥 = 𝑝𝑇/𝑚ℎ
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Conclusions
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Conclusions

• particle physics is in the precision era                                                                             
→ large amounts of multidimensional data

• ML methods excel in such an environment

• important requirements: uncertainties and interpretability

• key ingredient: representation learning based on particle theory
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ML is an essential tool for the future of particle physics

accuracy speed

uncertainties

interpretability
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Appendix
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The goal of particle physics
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Dark matter

Nature of EWSB

Baryon asymmetry
Neutrino masses

Naturalness

…..

→ Answer the big fundamental questions!

Can ML find answer these questions for us? No!

Can it help us with it? Yes!
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Modelling the statistical uncertainty
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• train ensemble of networks

• each networks leads to slightly different result

• spread of network predictions ∼ statistical uncertainty

• less data → higher spread
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Modelling the statistical uncertainty
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• train ensemble of networks

• each networks leads to slightly different result

• spread of network predictions ∼ statistical uncertainty

• less data → higher spread

individual NNs

𝑤 ∼ 1/ 𝑁train

Rough  picture
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Bringing it all together
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𝜎tot
2 = 𝜎syst

2 + 𝜎stat
2

Combined learnable modelling of systematic and statistical uncertainties!

Alternative approaches: Bayesian neural networks, evidential regression
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Gaussian mixture model
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Controlling generative ML
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Simulation-Based Inference
fully exploiting high-dimensional data
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Classical parameter inference 
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• reduce dimension of phase space                             → 
summary statistics

• bin summary statistics

• compare resulting histogram to SM/BSM 
predictions

Advantage: humanly digestible plots

Disadvantage: loss of information

[Elmer et al.,2312.12502]
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Full likelihood
• Monte-Carlo simulation chain allows us to sample full likelihood 𝑝(𝑥|𝜃). But cannot directly 

compute it.

• Neyman-Pearson lemma: likelihood ratio                                         is most powerful statistical test

• but we can regress to reco-level 𝑟(𝑥|𝜃, 𝜃0) using known parton-level 𝑟(𝑧𝑝|𝜃, 𝜃0):

Henning Bahl

unbinned multi-dimensional inference without information loss

phase space 
point

theory 
parameters

NN average over event sample
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Encoding amplitude structure
[Schöfbeck et al., 2107.10859, 2205.12976]
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Theory structure for e.g. SMEFT:

encode into likelihood

learn coefficients 𝑅𝑖,𝑖𝑗  separately → theory parameter dependence fully factored out
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Parton-level cross-check: 𝑊±𝑍 production
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[HB et al.,2410.07315]

• consider effects of three SMEFT operators

almost perfectly learns high-dimensional likelihood
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Reco-level: VBF with 𝐻 → 4ℓ
[Brehmer et al., 1805.00013]
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Huge potential to improve sensitivity of a wide variety of measurements/searches

But is SBI also viable in a realistic analysis including uncertainties etc.?
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1st experimental SBI analysis
[ATLAS-CONF-2024-016]

• goal: measure off-shell signal strength 
in 𝐻 → 𝑍𝑍 channel

• full treatment of statistical and 
systematic uncertainties

• large sensitivity improvement for low 
𝜇off−shell

proves potential of SBI for full experimental analysis
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