ML for particle physics

In the precision era
Henning Bahl




The challenge ahead T —
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* costs for future experiments increasing Year

* new analysis methods

theory precision =~ experimental precision

» Fully exploit the available data! -

in particular: high-precision MC simulation
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The particle physics workflow

Forward

<

Inverse

ML can help with each of these steps by increasing
* accuracy/performance

* speed
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Example: 1st experimental SBI analysis

[ATLAS-CONF-2024-016]

+

* goal: measure off-shell signal strength in
H — ZZ channel

* simulation-based inference (SBI) allows to
exploit full kinematic information

* significant improvement in comparison to
histogram approach

# What is needed to apply ML successfully?
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—— Obs NSBI
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ML for particle physics
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# Key to all these aspects: finding good representations of the data
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Accuracy & speed

fast higher-order amplitude surrogates

' Forward I >

Inverse
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Amplitude surrogates

* evaluating analytic expressions for amplitudes | M'|? can be very expensive due to
* higher-order corrections

* large final-state multiplicities

* idea:
* generate small training sample using full analytic expression
* train a NN to approximate | M|?
* generate events using NN surrogate — fast to evaluate

— fast high-precision event generation
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Comparison to classical interpolation

[Breso, Heinrich, et al., 2412.09534]

Approximation error of fo <« NLO qq — ttH amplitude
10[]

/ classical interpolation
107 techniques
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n

# ML surrogates outperform classical interpolation techniques
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Speed comparison

[JanBen et al.,2301.13562]

~ . 21 — higher is better
99 — e—etggdd Naive [<-

(Z + 4 jets) dipole 16

gg —+ e e'gggdc? naive | 20
(Z + 5 jets) dipole 269

uﬁ—}tfdd_g naive |1.0
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99 — tiggg naive 2.8
(t + 3 jets) dipole 61
ug — tigggu naive | 11
(tf + 4 jets) dipole 354
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effective gain factor feg

SHERPA default with dipole-model surrogate

Process tME [ms] tps [ms] Efull tsurr [ms] Tmax  €lst,surr €2nd,surr fett
gg—)e_e+ggd(f 54 0.40 1411 % 0.14 2.6 1.418% 39% 16
gg—e-etgggdd 16216 570 0.076% 020 3.6 0085% 29% 269
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. Tstandard
Jeff = 7——
surrogate

dipole vs naive:

encode singularity structure of amplitudes

Large speed-ups possible!



Exploiting known symmetries

better

<«

MSE on log-standardized amplitudes

[2505.20280, Spinner et al.]
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Lorentz invariance

B

permutation invariance (g; < g;)

Enforcing symmetries drastically
improves performance!
— physic-informed data representations
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Uncertainties

"All models are wrong, but some — those that know when they can be trusted
— are useful!”

George Box (adapted)
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Regression with uncertainties

Ground Truth [Yi&Bessa, 2505.02743]

20 Training Data ) 20 == Ground Truth ’
| — = Ground Truth / T C_._7 Ground Truth 20 /

~==% Ground Truth +2¢ Predicted Mean
- Statisticalunc +20

10 |

-10 |

Systematicunc +20

-20 | -20 .
0 5 10 0 5 10

« statistical uncertainty = lack of training data

« systematic uncertainty = noise in the data, lack in model expressivity

‘ Can we the NNs encode a representation of their own uncertainties?
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Probabilistic learning

Learn amplitude statistically

NN parameters

/

p(Alx) = f d6 p(6|Dyain) p(Alx, 0) ~ J d6 q(8) p(Alx, 0)

Then, we can calculate the mean prediction and uncertainties as

ANN(X) =
o2 (x)=

syst

T (%) =

J

J

J

-

-

-

dAAp(Alx) = f dO q(0)A(x,0)

d0 q(0)

do q(0)

:E(x, 0)—A(x, 9)2]

A(x, 0) — Any(x)]

with  A(x,0) = f dAAp(Alx, 6)

——

—_—
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vanishes for perfect data: p(4|8) - 6(A — Ap)

vanishes for perfect training: g(8) = §(6 — 0,)
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Modelling the systematic uncertainty

true amplitudes

log-likelihood loss: /

L=- 2 log p(Atrue (xi)lxir 6)

Xi,Ai€Dtrain \

phase-space point

assume Gaussian likelihood: p(4|x) = N (A(x), aszyst(x))

NN learns both: A(x) and Osyst (X) )
— 2
(A(xi) - Atrue(xi))

2O-szyst(xi)

= heteroskedastic loss: £ = Z + log(Usyst(xi))
i .

if needed: replace by Gaussian mixture model

Henning Bahl

14



Modelling the statistical uncertainty

0
« variational approximation: p(6|Dyrain) = q(0) /\ 10
/> AN
 promote each NN parameter to Gaussian distribution x |— output

* train by minimizing KL divergence:

~ r q(6)
KL[q(Q),P(QlDtrain)] - ] d6 q(@)log P(9|Dtrain)

Bayes’theorem i Np(D....
\= dg q(e)log q( )p( tram)

J p(e)p(Dtrain|9)

=KL[q(6),p(6)] —J d6 q(6)10g p(Dirain|0) + ...

| |

prior log likelihood
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Alternative: repulsive ensembles

can describe NN training via ODE or continuity equation:

%=V(9,t) or apc,(ﬁ’t)=—V9[v(9,t)p(9,t)]
+ choose v(6,t)=—V,log p;?é;) - solution: p(6) = 7(6) = p(6|Dyir)
« estimate density via NN ensemble: p(0')~ %Zk(et,ef) — 8>( A6, )
i=1 \ X \ O/ Osyst (61)
kernel

NN parameter update rule

" g>< 4 (0,) )

Usyst (92)

do

I =—V, |:10g(%zi:k(9,Qi))—logp(elx)] % M N Q/

=Y. g>< 4 (6) )

asyst (93)
‘ NN ensemble with repulsive force ensuring 6 ~ p(8|Diain) A O
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Behavior of uncertainties

[HB et al.,2412.12069]
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Atrain ~ N(Atrue: Gtrain)

Otrain = fsmearAtrue
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test: apply Gaussian noise to gg — yyg amplitudes

* statistical unc. decreases with more training data

* systematic unc. converges to level of applied noise

Henning Bahl

— — reliable uncertainty estimate
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Are these uncertainties calibrated?

statistical uncertainties play minor

role for amplitude regression 0.41
define systematic pull: 0.3
=
. (A)(x) — Atrain () < 0.2
Syst Usyst(x) 01
if calibrated, ¢,y distribution should 0.0
follow V' (0, 1)

Henning Bahl

— 0 -
fsmear_S/O 1

‘ Almost perfectly calibration — reliable uncertainty estimate
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| ocalized noise

[HB et al., 2509.00155]

10°
,| RE ¢ e=10"
10% © e=10"
101 i i * £= 10_5
®* no smearing
10°; — prediction

--- expected

Atrain(x ) =N (Atrue (x ): € Mihresh Atrue (x ))

|myyg(x) - mthreshl

* emulates numerical noise close to threshold
* well captured by systematic uncertainties
* NN effectively finds the mean prediction

* uncertainties still well calibrated

Same techniques also applicable to all kind of other regression problems!

Henning Bahl 19



Controlling generative ML

[HB etal., 2509.08048]

training dataset true distribution generated dataset learned distribution
rain Noen ?
Dyia® ~ Prrye() @m) D5 ~pn(xX)~ Pue(x)

How can we quantify the performance of the generative NN?

Nequiv Nequiv

o nen
— determine neCluiV such that M( true thrue(X)) (Dgegn ’ptrue(X)) with Dtrue Nptrue(x)

B mplification factor G = —"
comparison metric amplification tactor G =

Mirain

Henning Bahl 20



Controlling generative ML

one option for M: Kolmogorov-Smirnov test comparing Diy,i, and Dgep

known asymptotic if

asympoticKS «— Pgen = Ptrue
network
10—1 ]
2
=
10~2-
intrain i nequiv
10! 102 10° 10* 10° 106

gen

‘ systematic approach to assess quality of generative NNs

Henning Bahl



Controlling generative ML

one option for M: Kolmogorov-Smirnov test comparing Diy,i, and Dgep

Lorentz-equivariant ' _ o
Cf@ & R [—-'—-- LLoCa-Tr.]

. ) ) cear@ e L_GATI-
permutation-invariant

train

| 10-24 — Asymptotic KS e
10 10! 102 10° 10*
Ngen

‘ systematic approach to assess quality of generative NNs

Henning Bahl
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Interpretable ML

looking under the hood
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Back to the formula — symbolic regression

* many ways to make ML interpretable

 goal: find most relevant representation/observables

describing the data

— maximal interpretability: analytic equation!

* construct them dynamically using symbolic regression

[Schmidt&Lipson 09, Udrescu&Tegmark™ 19, Cranmer et al. " 19, 20, 23]

* build upon genetic algorithm successively forming equation

* interplay between goodness-of-fit and complexity of

equation

Henning Bahl

2x +siny
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Example: Higgs CP test for VBF

[HBetal., 2507.05858]

o CHWl: 1 CHI:V —1= CHW’ =04
0.08}
. . HW a apuv M
* consider dim-6 operator A2 ST OWy, W H
£ 0.067 | f
* unambiguous CP test - CP-odd observables :g
S 0.04
e
e construct optimal reco-level CP-odd obs. by 0.00l
training a classifier on ¢y = +1 samples '
0.00-= - ' '
: : —0.5 0.0 0.5
* analytic equation — ensure learned observable @ PYSR Wep_odd
is indeed CP-odd
|o(cyir =1 vs. SM)
Pr,j,P1j, SINAQ;; 6.76
1.8566sinA¢;, b sl
JPYSR — : trained on ¢, = 1 |
0.3080x;, log An;; +1log Anj; sinh(x;, —2.5977) + 0.3080sinh x;,
o +0.6047 PySR 6.98
Xj, 108 A1) jj + SN Xp, SymbolNet 7.07
BDT 6.71

with x = py/my,

Henning Bahl 24



Conclusions
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Conclusions .

E uncertainties
© U
— —x 4
e particle physicsis inthe precision era \| Q speed

— large amounts of multidimensional data

3

: . D%
* ML methods excel in such an environment NP
@ mterpretablllty

* important requirements: uncertainties and interpretability

* keyingredient: representation learning based on particle theory

‘ ML is an essential tool for the future of particle physics

Henning Bahl 26



Appendix
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The goal of particle physics
— Answer the big fundamental questions!

Nature of EWSB Neutrino masses

Baryon asymmetry

Dark matter Naturalness

Can ML find answer these questions for us? No!

Canit help us with it? Yes!

Henning Bahl
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Modelling the statistical uncertainty

Fi \-, .-/. .l'".
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train ensemble of networks

each networks leads to slightly different result

spread of network predictions ~ statistical uncertainty

less data — higher spread

Henning Bahl
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Modelling the statistical uncertainty

Rough picture

w ~ 1/\/ Ntrain

individual NNs

train ensemble of networks

each networks leads to slightly different result
spread of network predictions ~ statistical uncertainty

less data — higher spread

Henning Bahl 29



Bringing it all together 700\

/
|n2ut N ( )
AN

/

—

N

Input
X

I/

( A (63)

C’-syst (93 )

)

A (62)
CJ-syst (92)

)

2 _ 2 2
Otot = Osyst T Ostat

‘ Combined learnable modelling of systematic and statistical uncertainties!

Alternative approaches: Bayesian neural networks, evidential regression

Henning Bahl
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Gaussian mixture model

30 1.
—
Wy
90 N, =128
=
S
10
0 i
0.0 0.2 0.4 0.6 0.8 1.0
Wi

K K
pGMM(Alxs 9) =Zwk(x,9)N(A|Ek(x, 9)3 O'i(xs 9))5 with Zwk(xa 9)= 1
k=1 k=1
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Controlling generative ML

10—1_

< 1073

| tT+0jets

rel. dewv.
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Simulation-Based Inference

fully exploiting high-dimensional data

Forward

>

@R =2 3c

<

l Inverse '
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Classical parameter inference

[Elmer et al.,2312.12502]

* reduce dimension of phase space - | [ 1 SM prediction
summary statistics = 10-3 ' Co) = 5.5
2 - 8) _
= Cog =45
* bin summary statistics 3 o 1 data +/- (stat-rsyst)
%10—4
« compare resulting histogram to SM/BSM 3
N ) 3
predictions —
10—5,
I
: : W
Advantage: humanly digestible plots £ Y P S
7 0.5
Disadvantage: loss of information 500 1000 1500 2000
My [GGV]
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theory

7
N

Full likelihood \ perameters

/

* Monte-Carlo simulation chain allows us to sample full likelihood p(x|8). But cannot directly
compute it.

. . _ p(x|6) . -
* Neyman-Pearson lemma: likelihood ratio r(x|6,6,) = p(x160) Is most powerful statistical test
0

* butwe can regress to reco-level r(x|6, 6,) using known parton-level r(z, |6, 6,):

2
L= <[r(zp|9, 0p) —r,(x|6, 90)] >
\ . J ‘x,zp~p(x|zp)p(zp|9);9~q(9)'

1
NN average over event sample

- unbinned multi-dimensional inference without information loss
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Encoding amplitude structure ‘5=mc=|

[Schofbeck etal., 2107.10859, 2205.12976] I

Theory structure for e.g. SMEFT:

Lovierr = Lo+ D25 0= Lo+ D00, IM(2,10)1 = [Map(2,)1 + 61 M, (2,)I? + 6,6, M;;(z,)
\ : ¢ J
Y
‘ encode into likelihood
| : |
_ do(x]0)/dx _ o(0)p(x|6) | _ 3 do(z]0)/dsz, _ 0pIM(z,10)I?
R0 0= G5 (x18)/dx ~ o(@0)p(xI00) M) = 6 oyl |y, IMGIOP |,
9% do(z,l0)/dz, | 99,06 M(z,]0)
R(x19, 80) = 1+ (8 — 60)iRy(x) + (6 — 65);(6 — p);Ry;(x) RCe)= 30,06, do(z, 00/ dz, |,y IMGIOE |,

‘ learn coefficients R; ;; separately — theory parameter dependence fully factored out
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Parton-level cross-check: W*Z production

* consider effects of three SMEFT operators

W=*Z parton-level: —— truth ~ ——- SBI (RE)
Cly =0 cwwiy =0 cowp =0
0.4 = - 0.3 , - 0.3 - : ‘
0.01 0.01 0.01
0.005 0.2 0.2r
0.2+ 1
0.001 0.1t
£ .
= 0.0f &g 0.0}
Q
—0.1
—0.2¢
—0.2
B — 0 7 —0.37 5 0 9 0304 =02 00 02 04
Cow B CoOW B CWWw

[HB et al.,2410.07315]

‘ almost perfectly learns high-dimensional likelihood
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Reco-level: VBF with H — 4¢

[Brehmer et al., 1805.00013]

q
— ——
e+
7
W, Z _h_ -
+
W, Z 7 ¢
—— — ¢
/

(D*¢) 0 DV WO

N~
N

L)

q
q
fwl ig
A O L
SM T2 2
Ow

We Whve

pv

W
Oww

-2 log r(x|, Osu)

10

-0.8

\ Histogram
\ -== RaScAL

-0.6 -0.4 -0.2 0.0

fw VP//\? - fww V?/A:’

# Huge potential to improve sensitivity of a wide variety of measurements/searches

Butis SBI also viable in a realistic analysis including uncertainties etc.?
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1st experimental SBI analysis

[ATLAS-CONF-2024-016]

I 2001 ATLAS —— Obs NSBI
. B ff-shell si l h 3 - V5=13TeV, 140 fb S
goal: measure off-shell signal strengt =" 175K -~ Exp NSBI
in H - ZZ channel - —-= Obs Histogram
15-0:_ --—+ Exp Histogram
12.5

 full treatment of statistical and

Ak

-----

systematic uncertainties 10.0
7.5
* large sensitivity improvement for low soBN\ e
Hoff—shell AN
0.0 0.5 1.0 15 2.0 P

# proves potential of SBI for full experimental analysis

Henning Bahl
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