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The challenge ahead
• general trend: larger-and-larger experiments 

collecting more-and-more data

• e.g. LHC: already enormous dataset will be further 
enlarged by a factor ∼ 10

• costs for future experiments increasing

• new analysis methods

• theory precision ≃ experimental precision

• in particular: high-precision MC simulation 

Fully exploit the available data!



The particle physics workflow
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ML can help with each of these steps by increasing

• accuracy/performance and/or

• increase speed

Experiment



ML for particle physics
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precision speed

control physics



Amplitude surrogates
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ℳ ! ≈



Case study for amplitude surrogates
• evaluating analytic expressions for amplitudes ℳ ! can be very expensive due to

• higher-order corrections
• large final-state multiplicities

• possible solution: 
• generate small training sample using full analytic expression
• train a NN to approximate ℳ ! 
• generate events using NN surrogate, which is much faster to evaluate
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Does this work?



Comparison to classical interpolation 
[Bresó et al., 2412.09534]
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ML surrogates

classical interpolation 
techniques

ML surrogates outperform classical interpolation techniques

NLO 𝑞'𝑞 → 𝑡 ̅𝑡𝐻 amplitude



Speed comparison
[Janßen et al.,2301.13562]
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𝑓!"" =
𝑇#$%&'%('
𝑇#)((*+%$!

Large speed-ups possible!

dipole vs naïve: 
encode singularity structure of amplitudes

Can we also control the uncertainties?



Learning uncertainties
"All models are wrong, but some — those that know when they can be trusted — 
are useful!"
— George Box (adapted)
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Regression with uncertainties
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Statistical unc ±2𝜎

Systematic unc ±2𝜎

• statistical or epistemic uncertainty ,= lack of training data 

• systematic or aleatoric uncertainty ,= noise in the data, lack in model expressivity

[Yi&Bessa, 2505.02743]



Systematic uncertainty: heteroskedastic loss
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• log-likelihood loss:

ℒ = − 0
"!,$!∈&"#$%&

log	𝑝 𝐴'()*(𝑥+) 𝑥+, 𝜃

• assume Gaussian likelihood: 𝑝 𝐴|𝑥, 𝜃 = 𝒩(𝐴 𝑥 , 𝜎,-,'! 𝑥 )

• NN learns both: 𝐴(𝑥) and 𝜎,-,'(𝑥)

⇒ heteroskedastic	loss: 	ℒ =0
+

KL 𝐴 𝑥+ − 𝐴'()* 𝑥+
!

2𝜎,-,'! 𝑥+
+ log OP𝜎,-,' 𝑥+

• constant 𝜎,-,' → recovers MSE loss

true amplitudessum over training dataset

phase-space point

NN parameters



Statistical uncertainty: repulsive ensemble
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• train ensemble of networks 

• ensure convergence to correct posterior via repulsive 
interaction between ensemble members

• each networks leads to slightly different result

• spread of network predictions ∼ statistical uncertainty

• less data → higher spread



Repulsive ensemble + heteroskedastic loss
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𝜎!"!# = 𝜎$%$!# + 𝜎$!&!#

Combined learnable modelling of systematic and statistical uncertainties!



Alternative: Bayesian NNs

Henning Bahl 14

• promote NN parameters 
to Gaussians 𝑞(𝜃)

• for each evaluation, 
sample from Gaussians

• learn means and widths

prior



𝑔𝑔 → 𝛾𝛾𝑔 dataset

Henning Bahl 15

• generated using Sherpa+Njet

• 1.1 million events, 70% used for training

• preprocessing: 
• learn logarithm of amplitude
• rescale inputs and log-amplitudes to have 

zero mean and unit standard deviation

• amplitude symmetries
• Lorentz-invariant 
• permutation-invariance w.r.t. identical 

particles



Behavior of learned uncertainties 
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Test: apply different levels of Gaussian noise to amplitudes

• statistical uncertainty decreases with more training data

• systematic uncertainty converges to level of applied noise

𝐴$(%,& ∼ 𝒩(𝐴$()!, 𝜎$(%,&- ) 
	𝜎$(%,& = 𝑓#.!%(𝐴$()!



with                                          and                   being the systematic unc. due to limited NN expressivity.

Extracting the noise level
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Able to reliably extract noise level!

only heteroskedastic loss, no 𝜎#$%$



Are these uncertainties calibrated?
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• statistical uncertainties play minor 
role for amplitude regression

• define systematic pull:

𝑡,-,' =
𝐴 𝑥 − 𝐴'(./0(𝑥)

𝜎,-,'(𝑥)

• if calibrated, 𝑡,-,' distribution should 
follow 𝒩(0, 1)

Almost perfectly calibration → reliable uncertainty estimate



Dependence on smearing
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• BNN and deterministic models                                                                                            
→ well calibrated for different smearing levels

• repulsive ensemble overestimates uncertainty for low smearing                          
→ see below



Pushing for precision
activations, layers, and domain knowledge
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Enhancing NN expressivity
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Can we improve accuracy for low smearing?

Improve NN expressivity:
• different activations, NN structures
• more layers,
• exploit symmetries



Activation functions and NN structure
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learned activation 
functions

static activation 
functions

Kolmogorov-Arnold Network

well-chosen activation function can significantly improve performance

relative deviation: Δ = $''1$"#()
$"#()



Adding more layers

Henning Bahl 23

adding more layers 

convergence towards noise level



Encoding our physics knowledge
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permutation 
invariance

Lorentz 
invariance

Large gain in NN accuracy! Also found uncertainties still to be well calibrated.

relative deviation: Δ = $''1$"#()
$"#()



Ensembling and biases
The wisdom (and biases) of the crowd.
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[HB, Elmer, Plehn, Winterhalder, to appear]



Ensembling and biases
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• ensembling averages out noise → widely used

• but, their can be systematic biases



Extracting the biases
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ensembling increases precision, but gains level off for 𝑁*0, ≳ 100



Miscalibration of ensemble systematic
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• averaging systematic unc. of ensemble members ∼ average uncertainty of each member

• but ensemble more precise



Fixing ensemble systematic unc.
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solution: train separate network with loss ℒ2 to predict systematic uncertainty of ensemble

lower noise levels → non-Gaussian biases become visible



Localized smearing
Is the systematic uncertainty able to pick-up local noise?
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[HB et al., to appear]



Box smearing
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• analytic amplitude evaluation might loss precision close to thresholds, kinematic edges, …

• can the learned systematic uncertainties pick this up?

• test this by inducing local noise to our amplitudes

• simple start: box smearing with 𝑚'3(*,3 = 200	GeV



Box smearing — results
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𝜎,-,' closely follows expected behavior



Box smearing — calibration
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also good calibration



Peaked smearing
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well captured by systematic uncertainties



Conclusions
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Conclusions
• amplitude surrogates → speed up MC generation

• uncertainty-aware NNs allow for controlled modelling of

• systematic uncertainties: data-inherent noise + model expressivity

• statistical uncertainties: lack of data

• methods: heteroskedastic loss, repulsive ensemble, Bayesian NNs

• learned uncertainties reflect actual deviations from truth well

• encoding physics knowledge increase accuracy with still well-calibrated unc.
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same techniques also applicable to all kind of other problems



Appendix
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Kolmogorov-Arnold theorem
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Any 𝑓: [0,1]4→ ℝ can be written as a finite decomposition of univariate functions and addition.



• KAN layer:

• KAN network:

• GroupKAN layer:

• GroupKAN network:

• Normal MLP network

Kolmogorov-Arnold Networks (KANs)
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Kolmogorov-Arnold Networks (KANs)
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Learned activation functions
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BNN prior dependence
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Uncertainty overview
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