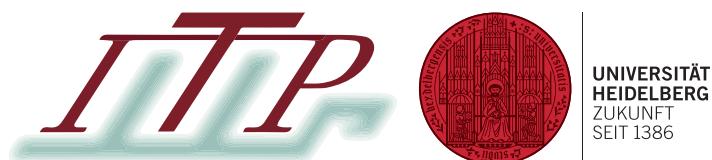


Accurate Surrogate Amplitudes with Calibrated Uncertainties

Henning Bahl

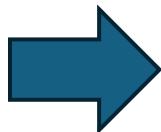
based on
2412.12069 in collaboration with Nina Elmer, Luigi Favaro,
Manuel Haußmann, Tilman Plehn, and Ramon Winterhalder



Particle Theory Seminar, Würzburg, 24.7.2025

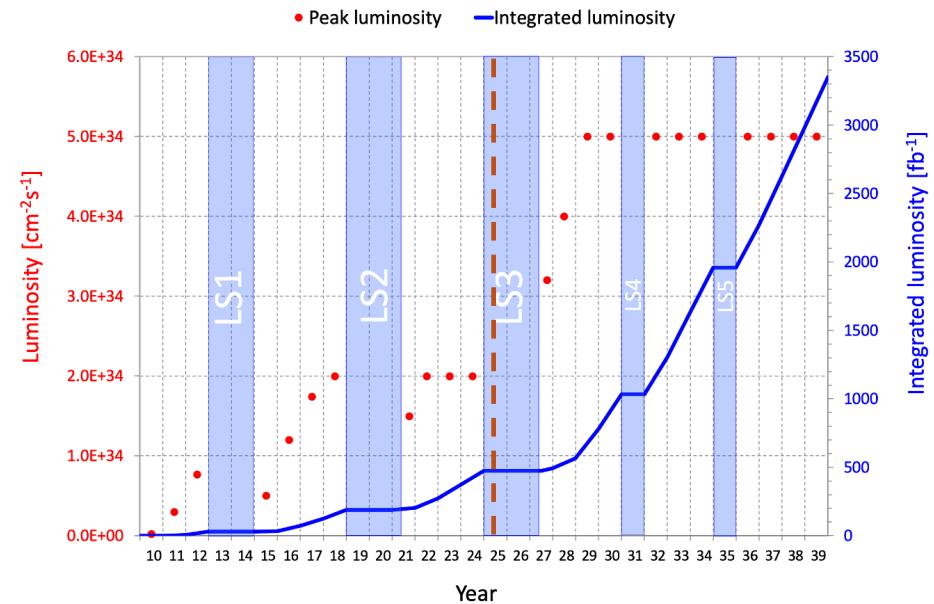
The challenge ahead

- general trend: larger-and-larger experiments collecting more-and-more data
- e.g. LHC: already enormous dataset will be further enlarged by a factor ~ 10
- costs for future experiments increasing

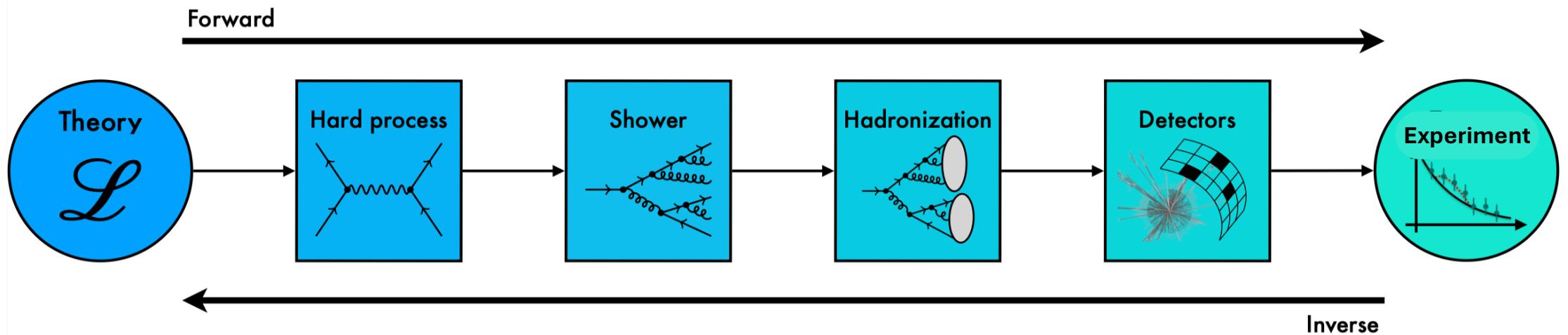


Fully exploit the available data!

- new analysis methods
- theory precision \simeq experimental precision
- in particular: high-precision MC simulation



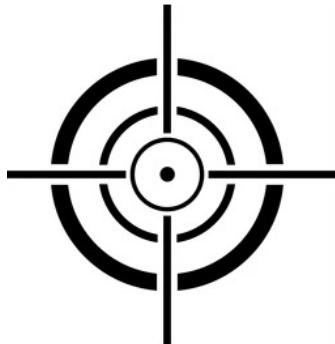
The particle physics workflow



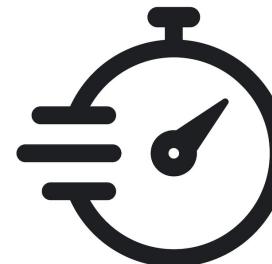
ML can help with each of these steps by increasing

- accuracy/performance and/or
- increase speed

ML for particle physics

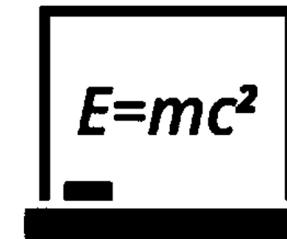


precision



speed

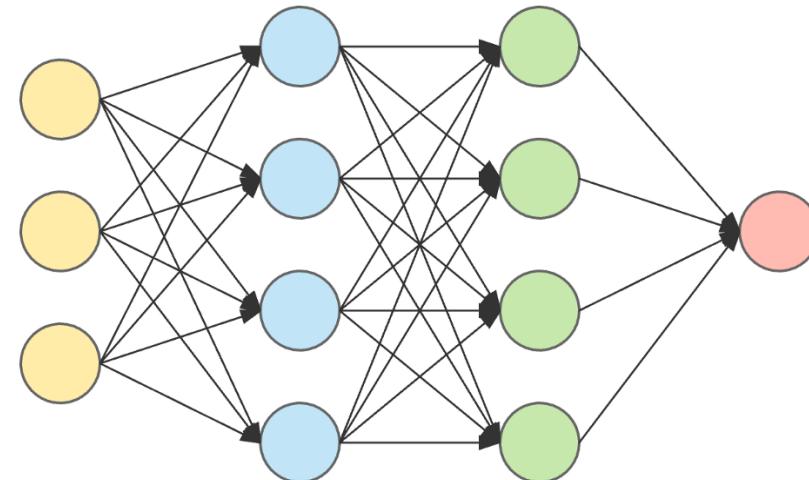
control



physics

Amplitude surrogates

$$|\mathcal{M}|^2 \approx$$



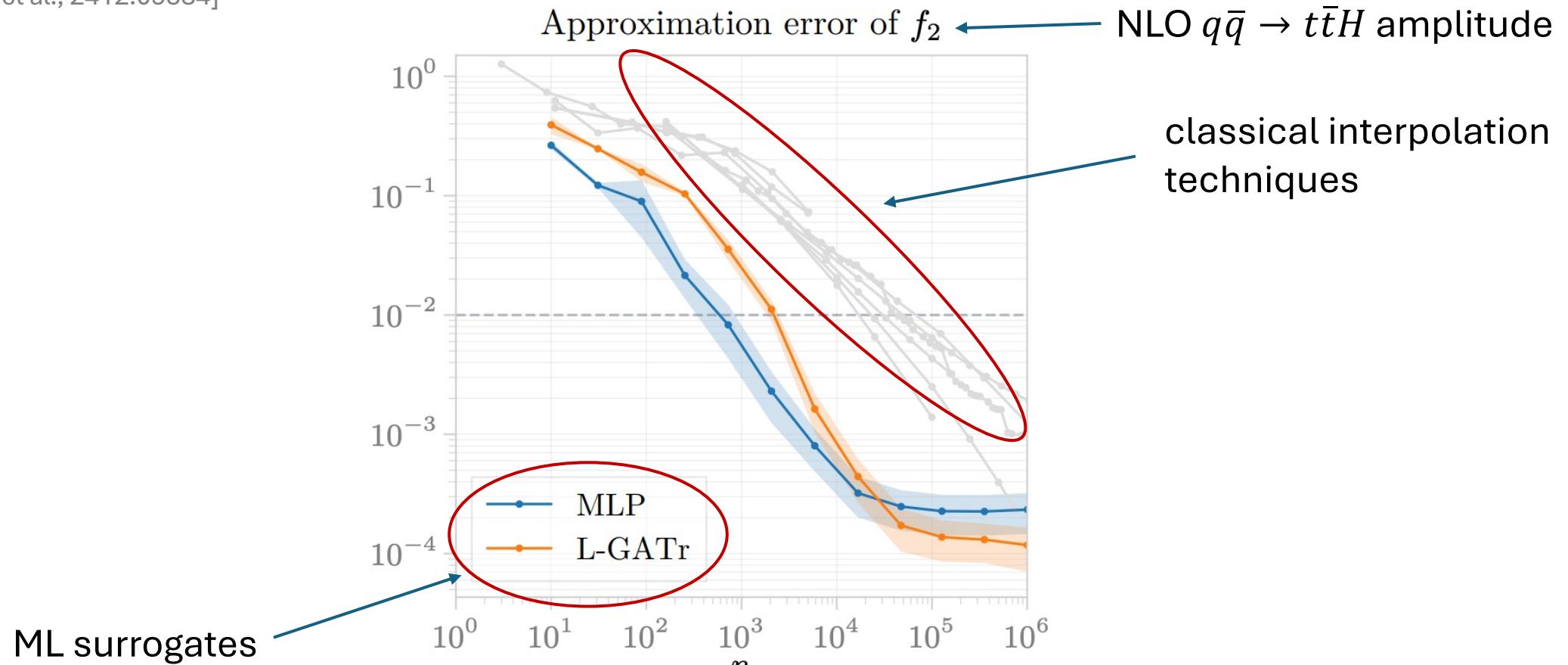
Case study for amplitude surrogates

- evaluating analytic expressions for amplitudes $|\mathcal{M}|^2$ can be very expensive due to
 - higher-order corrections
 - large final-state multiplicities
- possible solution:
 - generate small training sample using full analytic expression
 - train a NN to approximate $|\mathcal{M}|^2$
 - generate events using NN surrogate, which is much faster to evaluate

→ Does this work?

Comparison to classical interpolation

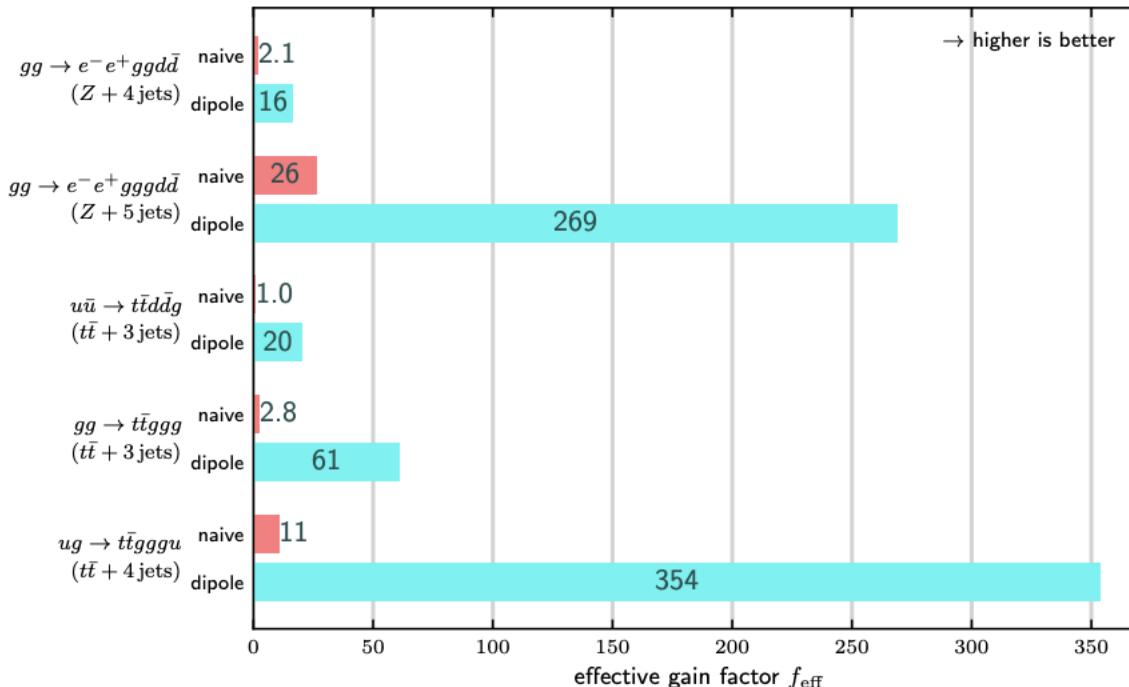
[Bresó et al., 2412.09534]



→ ML surrogates outperform classical interpolation techniques

Speed comparison

[Janßen et al., 2301.13562]



$$f_{\text{eff}} = \frac{T_{\text{standard}}}{T_{\text{surrogate}}}$$

dipole vs naïve:
encode singularity structure of amplitudes

Large speed-ups possible!

Process	SHERPA default			with dipole-model surrogate				
	$t_{\text{ME}}[\text{ms}]$	$t_{\text{PS}}[\text{ms}]$	ϵ_{full}	$t_{\text{surr}}[\text{ms}]$	x_{max}	$\epsilon_{1\text{st,surr}}$	$\epsilon_{2\text{nd,surr}}$	f_{eff}
$gg \rightarrow e^- e^+ gg d\bar{d}$	54	0.40	1.411 %	0.14	2.6	1.418 %	39 %	16
$gg \rightarrow e^- e^+ ggg d\bar{d}$	16 216	5.70	0.076 %	0.20	3.6	0.085 %	29 %	269

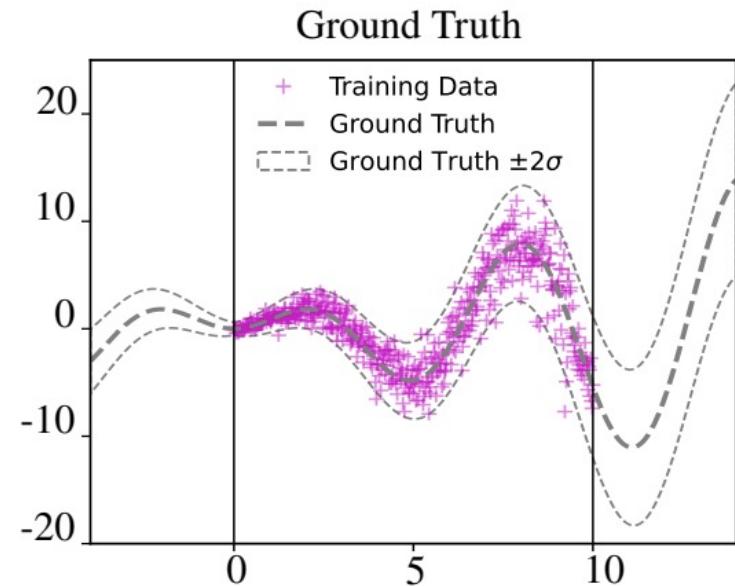
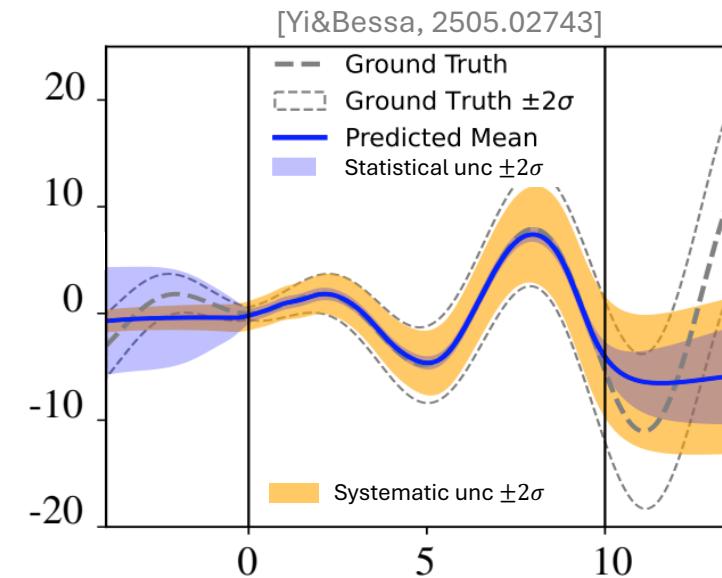
Can we also control the uncertainties?

Learning uncertainties

"All models are wrong, but some — those that know when they can be trusted — are useful!"

— George Box (adapted)

Regression with uncertainties



- statistical or epistemic uncertainty $\hat{=}$ lack of training data
- systematic or aleatoric uncertainty $\hat{=}$ noise in the data, lack in model expressivity

Systematic uncertainty: heteroskedastic loss

- log-likelihood loss:

$$\mathcal{L} = - \sum_{x_i, A_i \in D_{\text{train}}} \log p(A_{\text{true}}(x_i) | x_i, \theta)$$

sum over training dataset

true amplitudes

NN parameters

phase-space point

- assume Gaussian likelihood: $p(A|x, \theta) = \mathcal{N}(\bar{A}(x), \sigma_{\text{syst}}^2(x))$

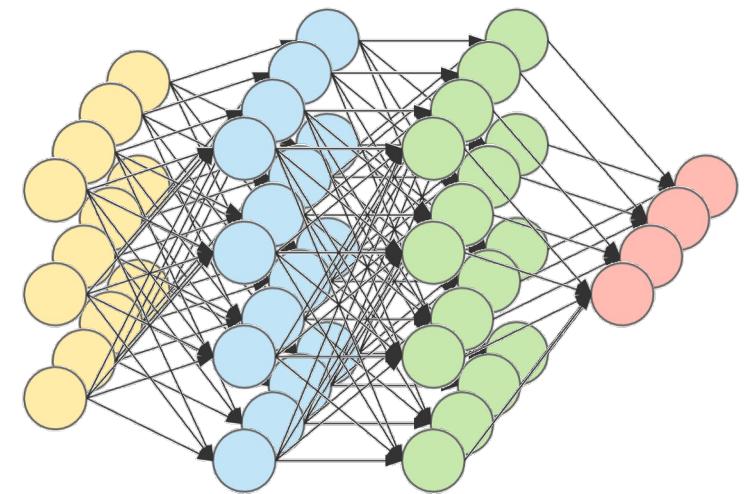
- NN learns both: $\bar{A}(x)$ and $\sigma_{\text{syst}}(x)$

$$\Rightarrow \text{heteroskedastic loss: } \mathcal{L} = \sum_i \left[\frac{(\bar{A}(x_i) - A_{\text{true}}(x_i))^2}{2\sigma_{\text{syst}}^2(x_i)} + \log(\sigma_{\text{syst}}(x_i)) \right]$$

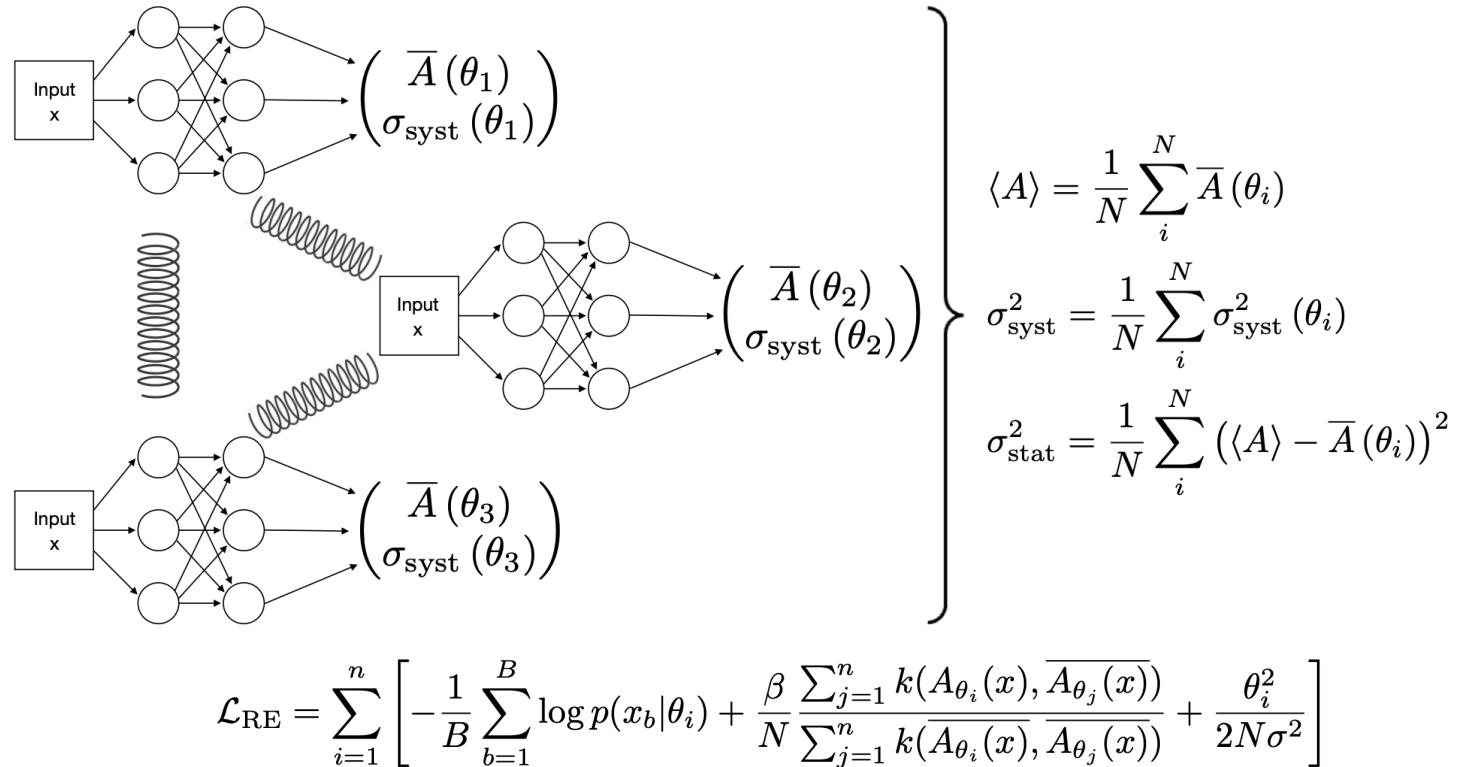
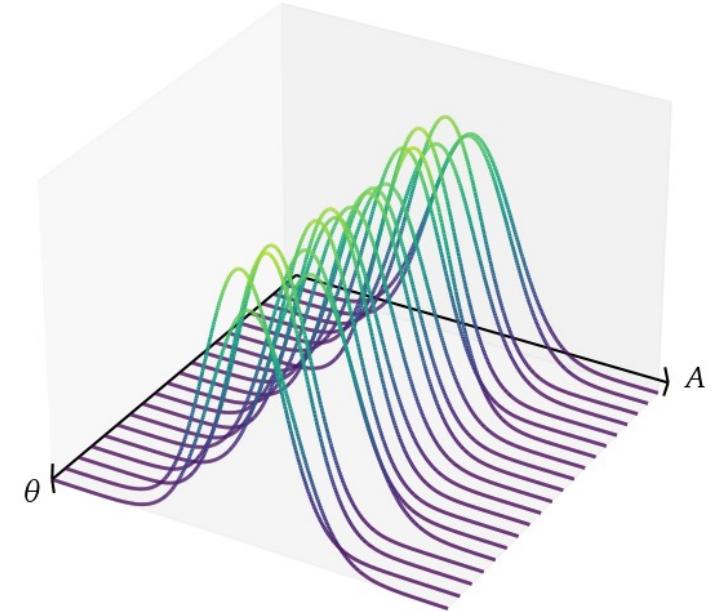
- constant σ_{syst} \rightarrow recovers MSE loss

Statistical uncertainty: repulsive ensemble

- train ensemble of networks
- ensure convergence to correct posterior via repulsive interaction between ensemble members
- each network leads to slightly different result
- spread of network predictions \sim statistical uncertainty
- less data \rightarrow higher spread

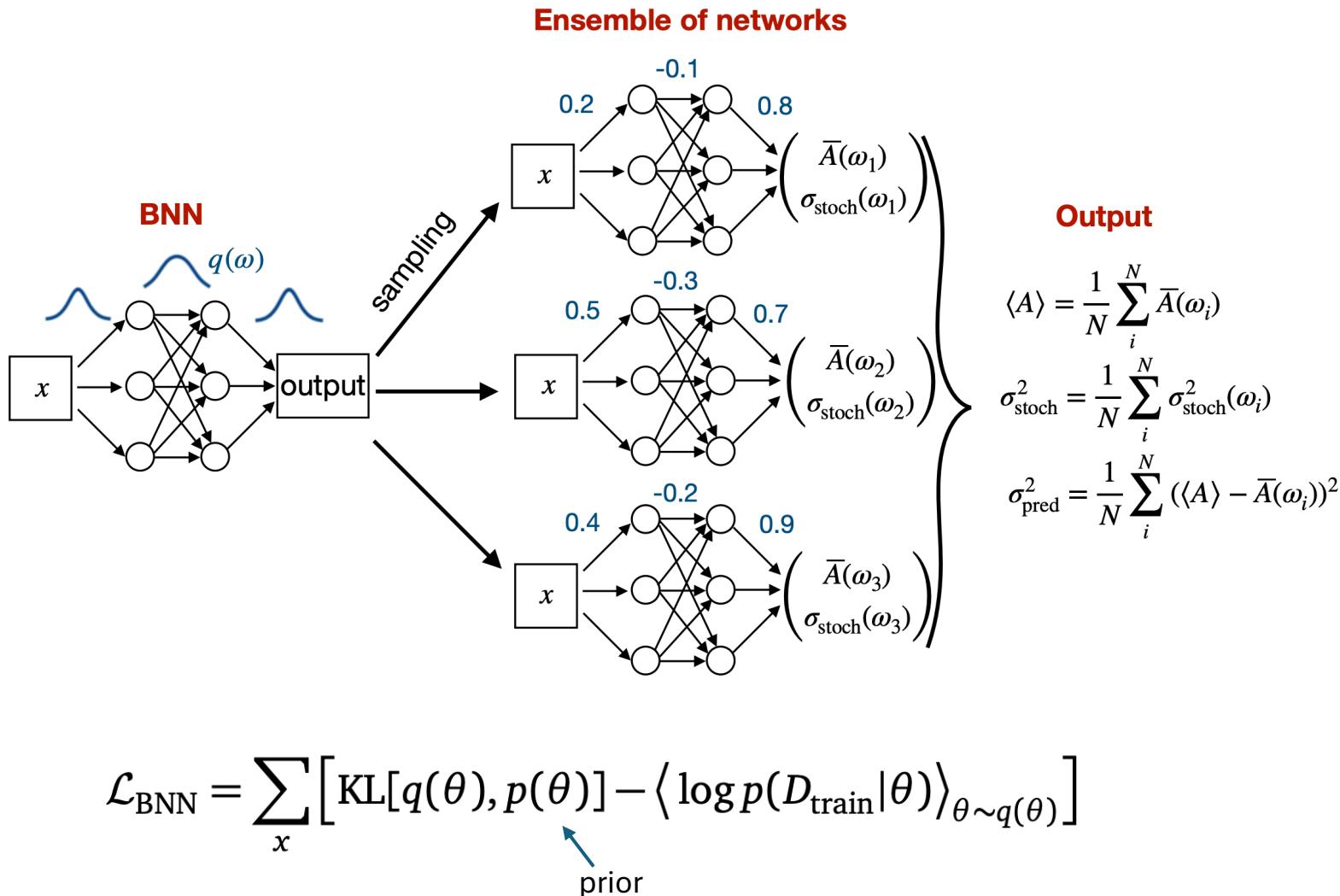


Repulsive ensemble + heteroskedastic loss



Combined learnable modelling of systematic and statistical uncertainties!

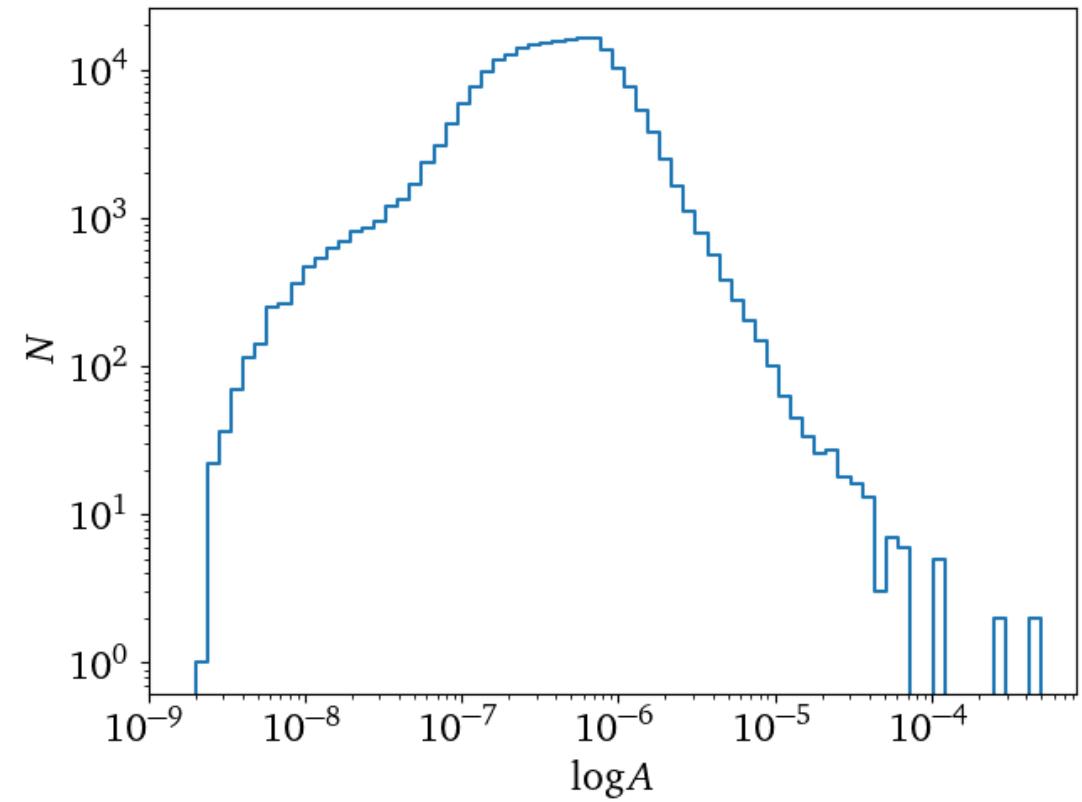
Alternative: Bayesian NNs



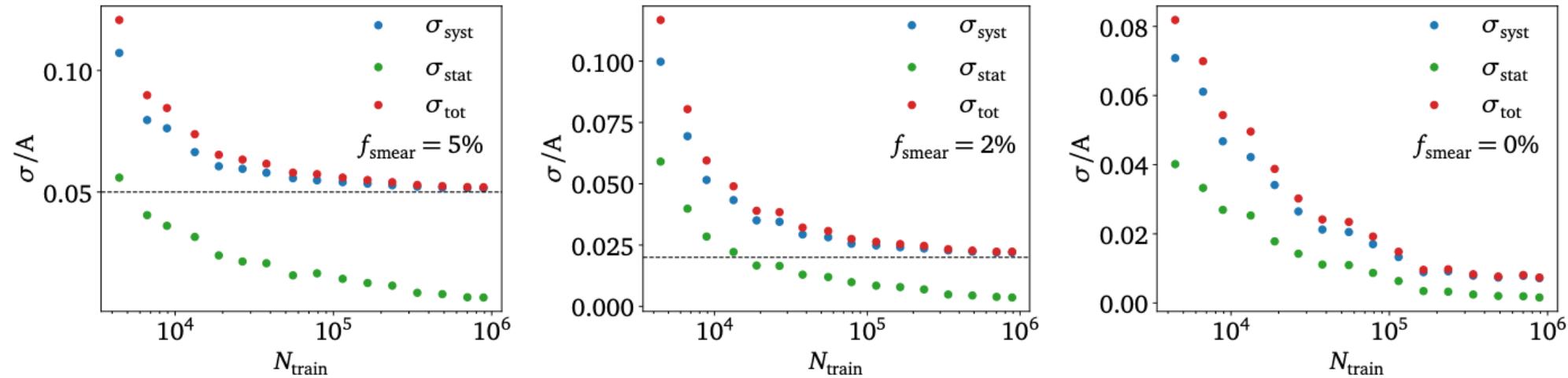
- promote NN parameters to Gaussians $q(\theta)$
- for each evaluation, sample from Gaussians
- learn means and widths

$gg \rightarrow \gamma\gamma g$ dataset

- generated using Sherpa+Njet
- 1.1 million events, 70% used for training
- preprocessing:
 - learn logarithm of amplitude
 - rescale inputs and log-amplitudes to have zero mean and unit standard deviation
- amplitude symmetries
 - Lorentz-invariant
 - permutation-invariance w.r.t. identical particles



Behavior of learned uncertainties

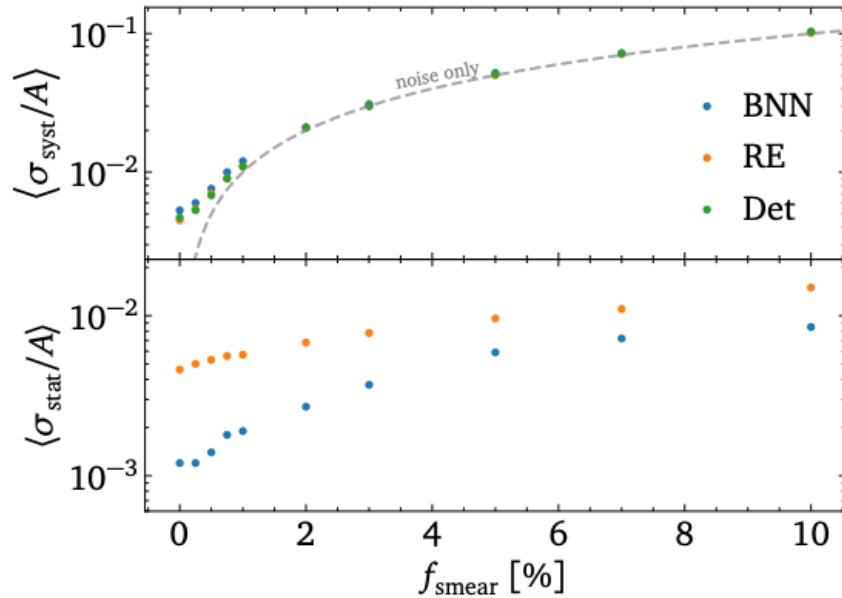
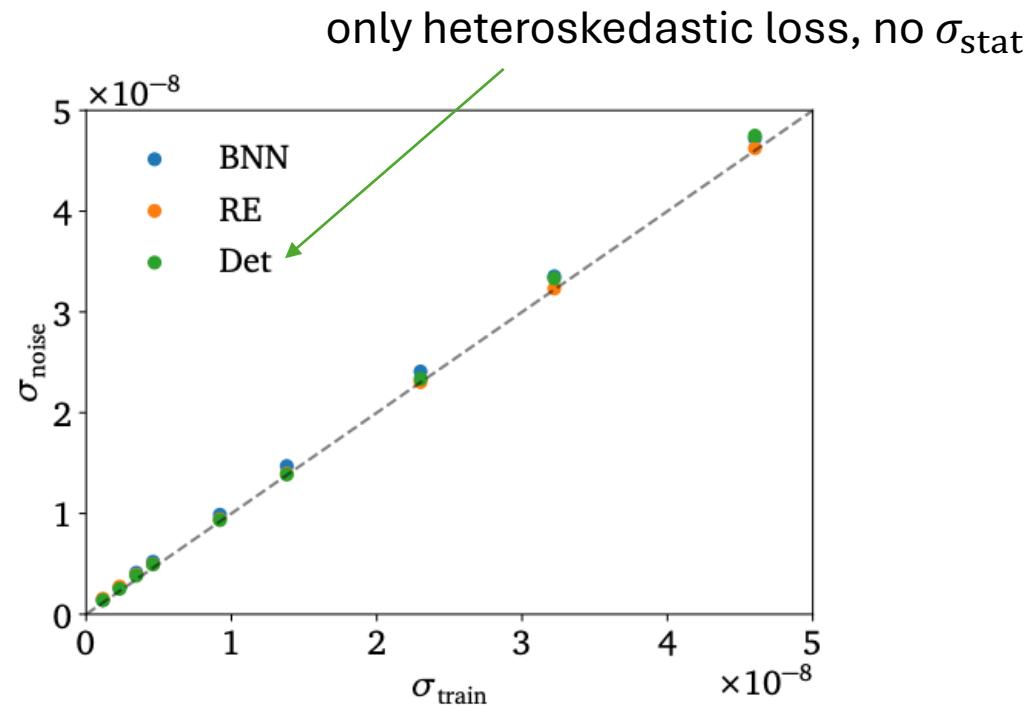


Test: apply different levels of Gaussian noise to amplitudes

- statistical uncertainty decreases with more training data
- systematic uncertainty converges to level of applied noise

$$A_{\text{train}} \sim \mathcal{N}(A_{\text{true}}, \sigma_{\text{train}}^2)$$
$$\sigma_{\text{train}} = f_{\text{smear}} A_{\text{true}}$$

Extracting the noise level



with $\sigma_{\text{noise}}^2 = \sigma_{\text{syst}}^2 - \sigma_{\text{syst},0}^2$ and $\sigma_{\text{syst},0}^2$ being the systematic unc. due to limited NN expressivity.

Able to reliably extract noise level!

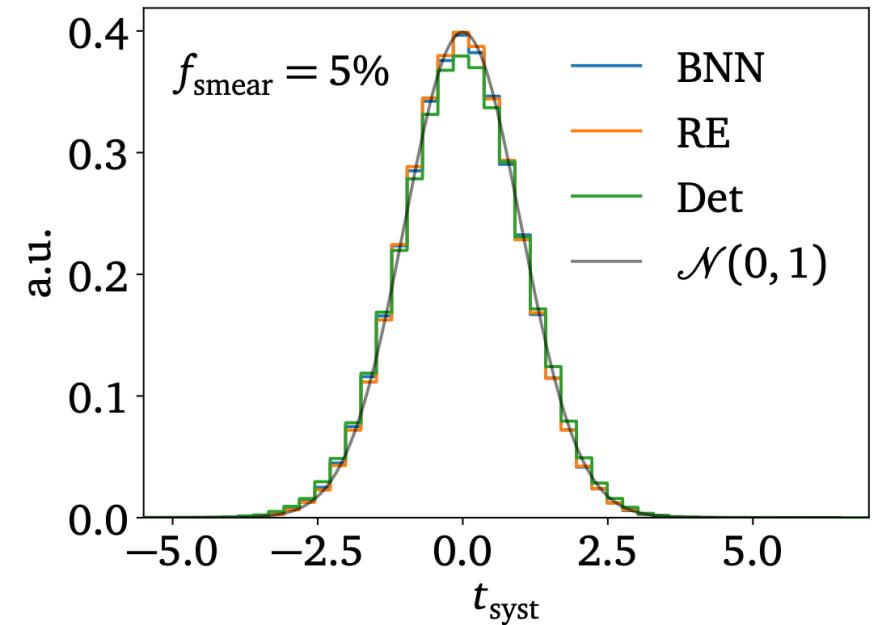
Are these uncertainties calibrated?

- statistical uncertainties play minor role for amplitude regression
- define systematic pull:

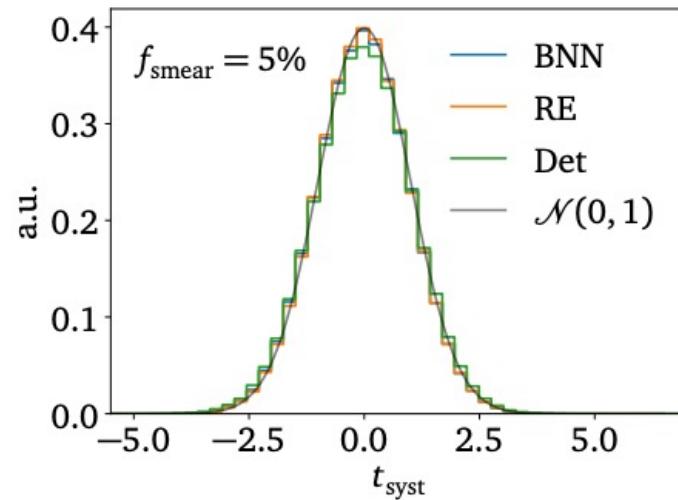
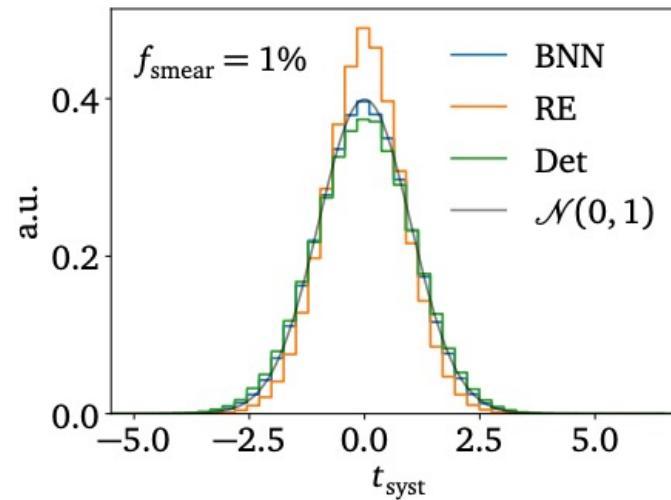
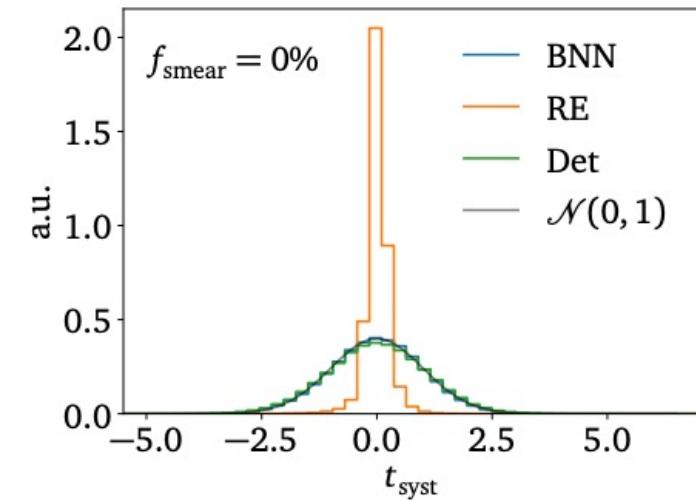
$$t_{\text{syst}} = \frac{\langle A \rangle(x) - A_{\text{train}}(x)}{\sigma_{\text{syst}}(x)}$$

- if calibrated, t_{syst} distribution should follow $\mathcal{N}(0, 1)$

Almost perfectly calibration → reliable uncertainty estimate



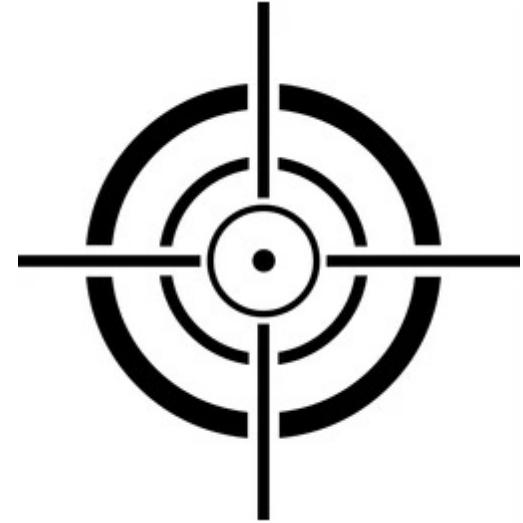
Dependence on smearing



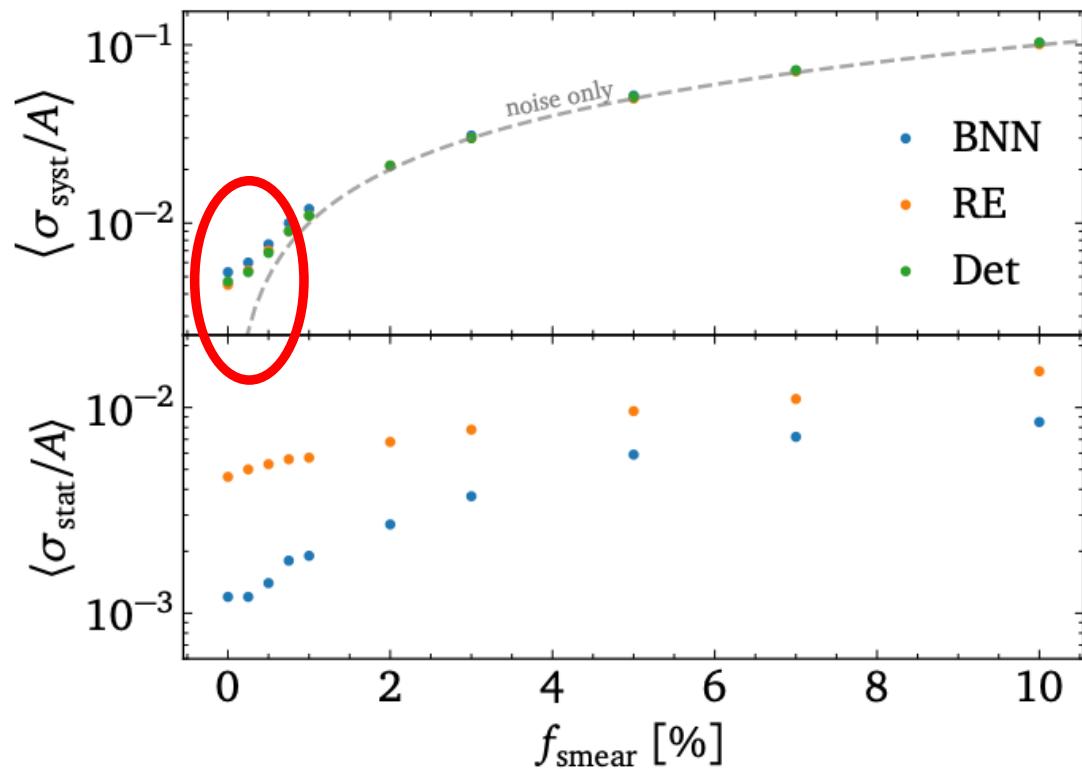
- BNN and deterministic models
→ well calibrated for different smearing levels
- repulsive ensemble overestimates uncertainty for low smearing
→ see below

Pushing for precision

activations, layers, and domain knowledge



Enhancing NN expressivity

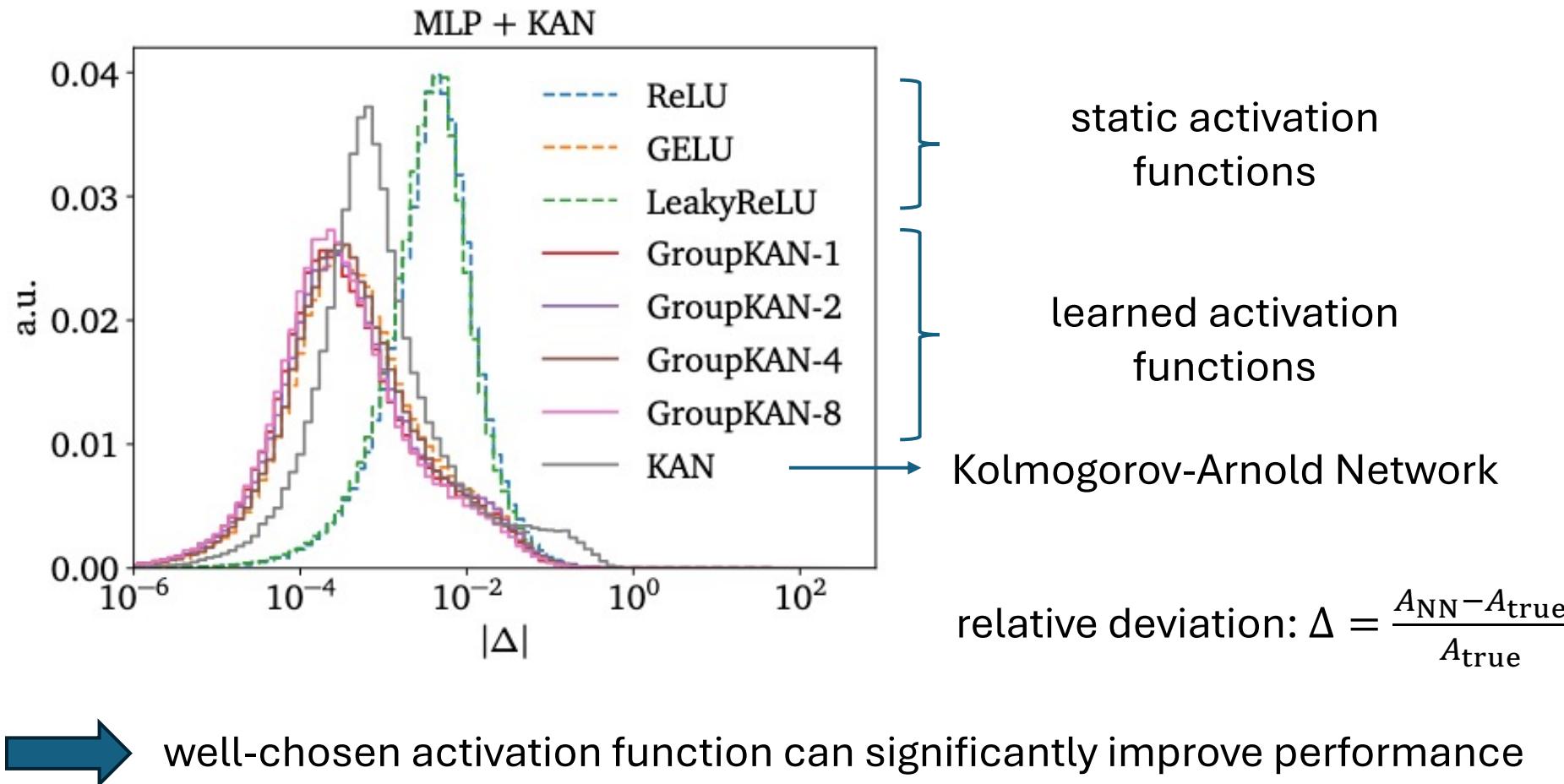


Can we improve accuracy for low smearing?

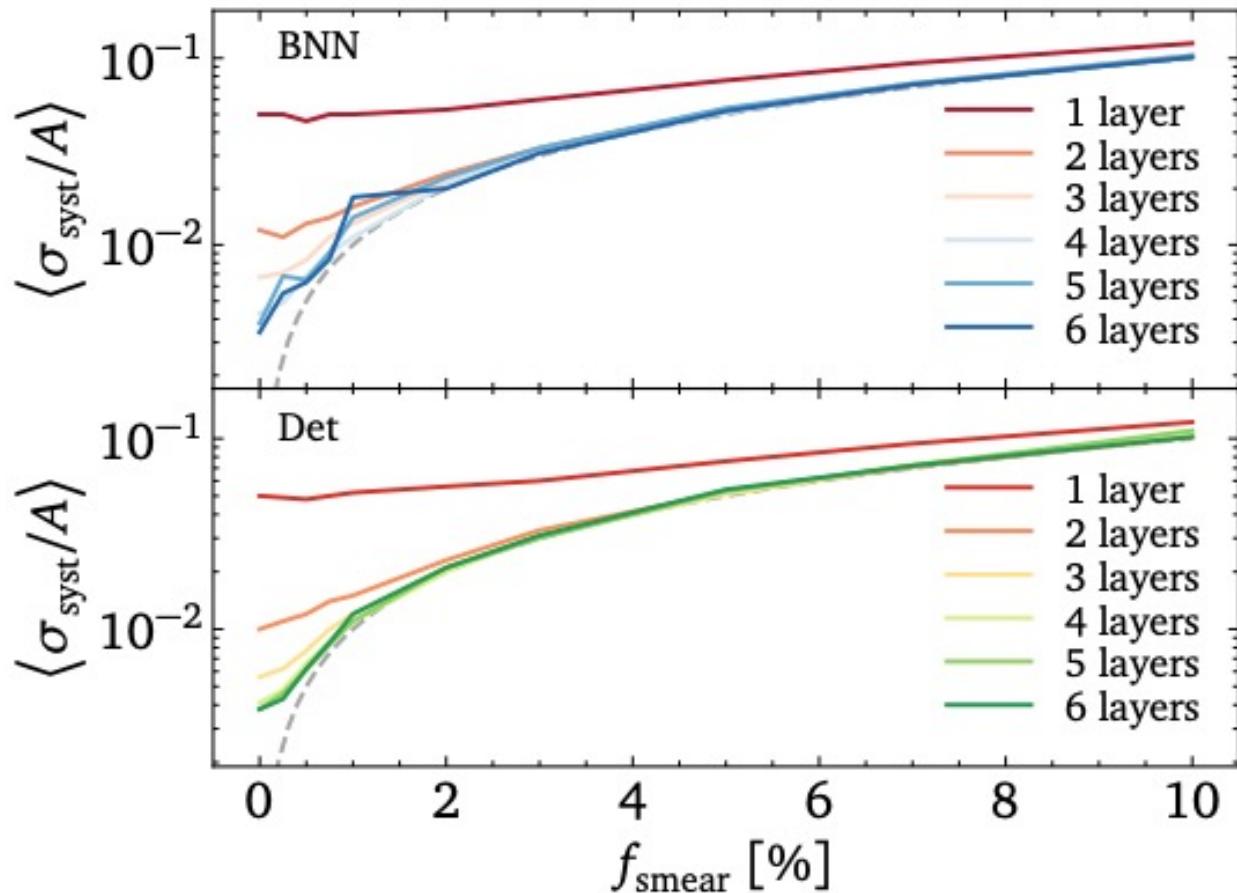
Improve NN expressivity:

- different activations, NN structures
- more layers,
- exploit symmetries

Activation functions and NN structure



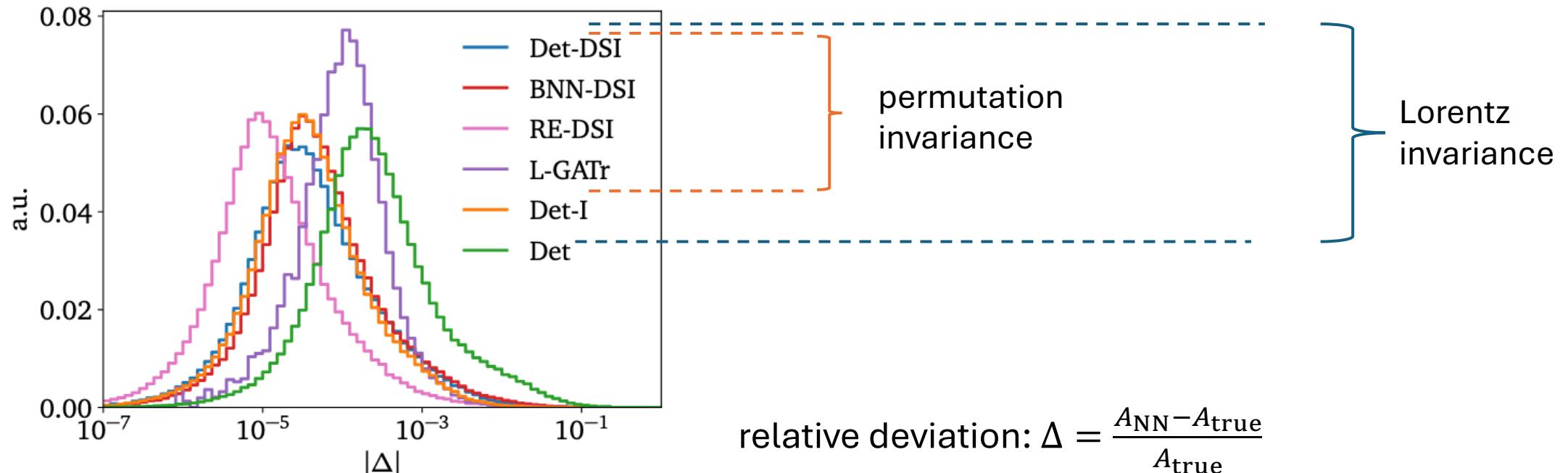
Adding more layers



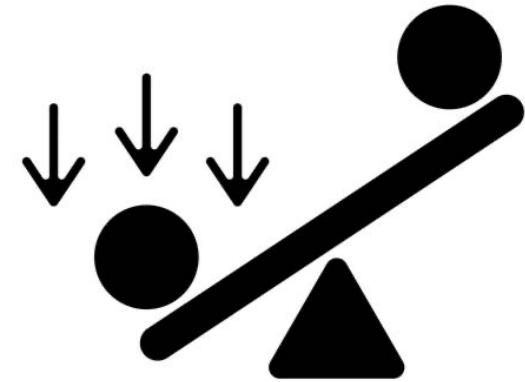
adding more layers

convergence towards noise level

Encoding our physics knowledge



Large gain in NN accuracy! Also found uncertainties still to be well calibrated.



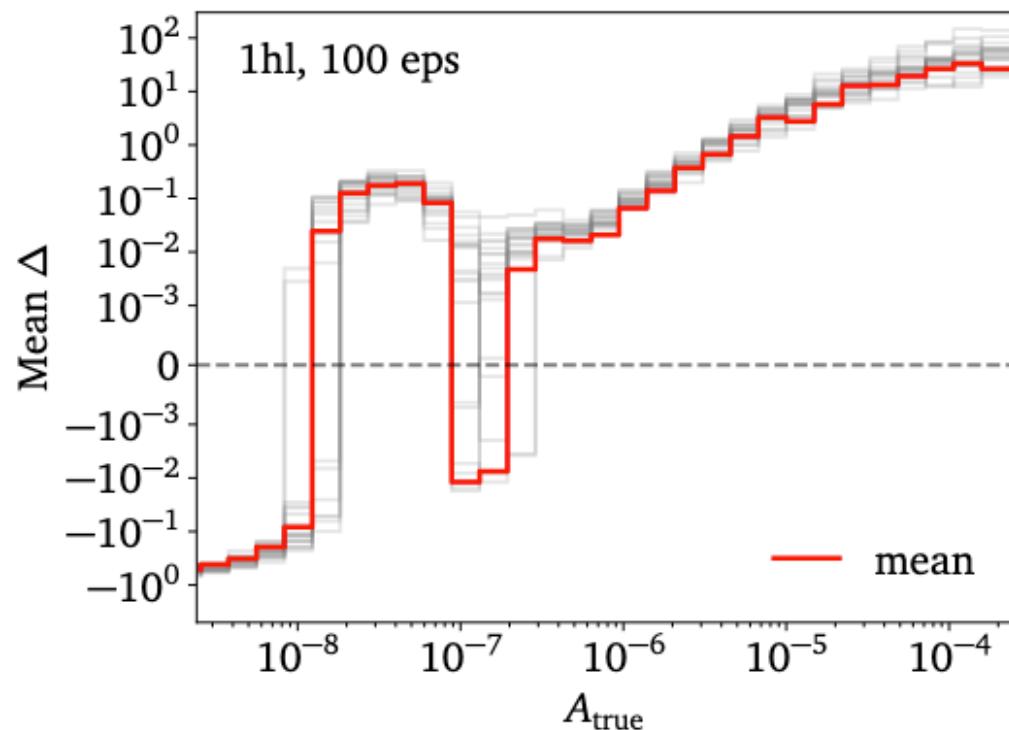
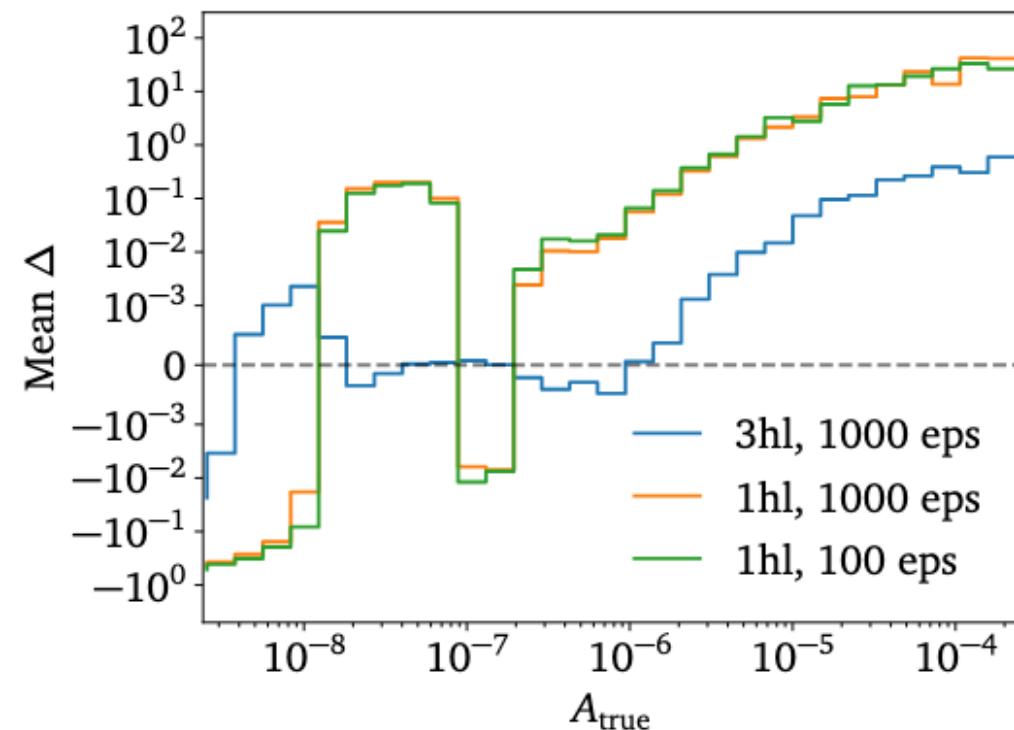
Ensembling and biases

The wisdom (and biases) of the crowd.

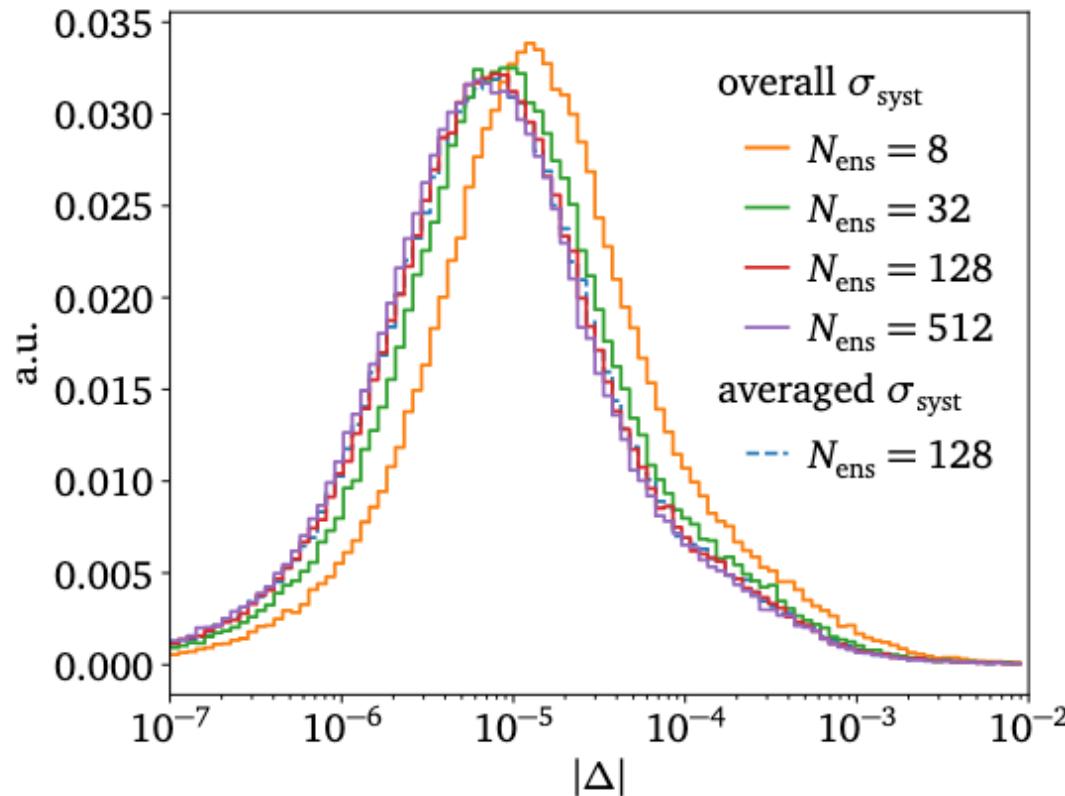
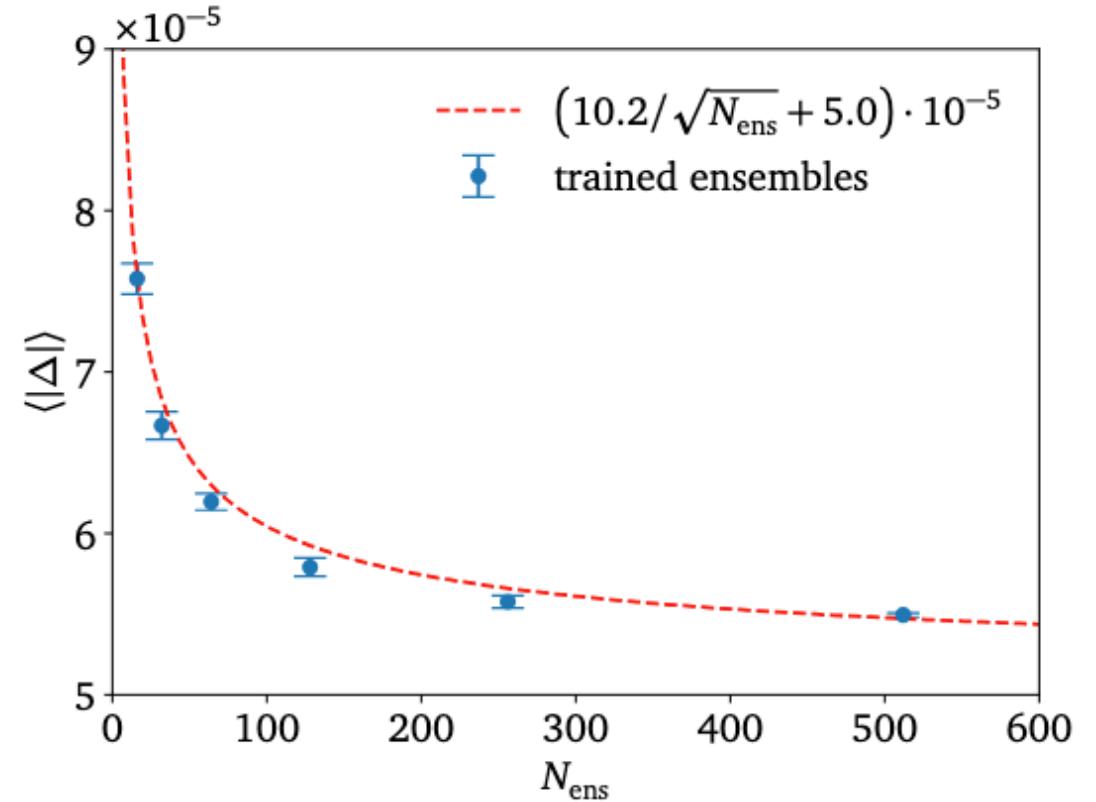
[HB, Elmer, Plehn, Winterhalder, to appear]

Ensembling and biases

- ensembling averages out noise → widely used
- but, there can be systematic biases

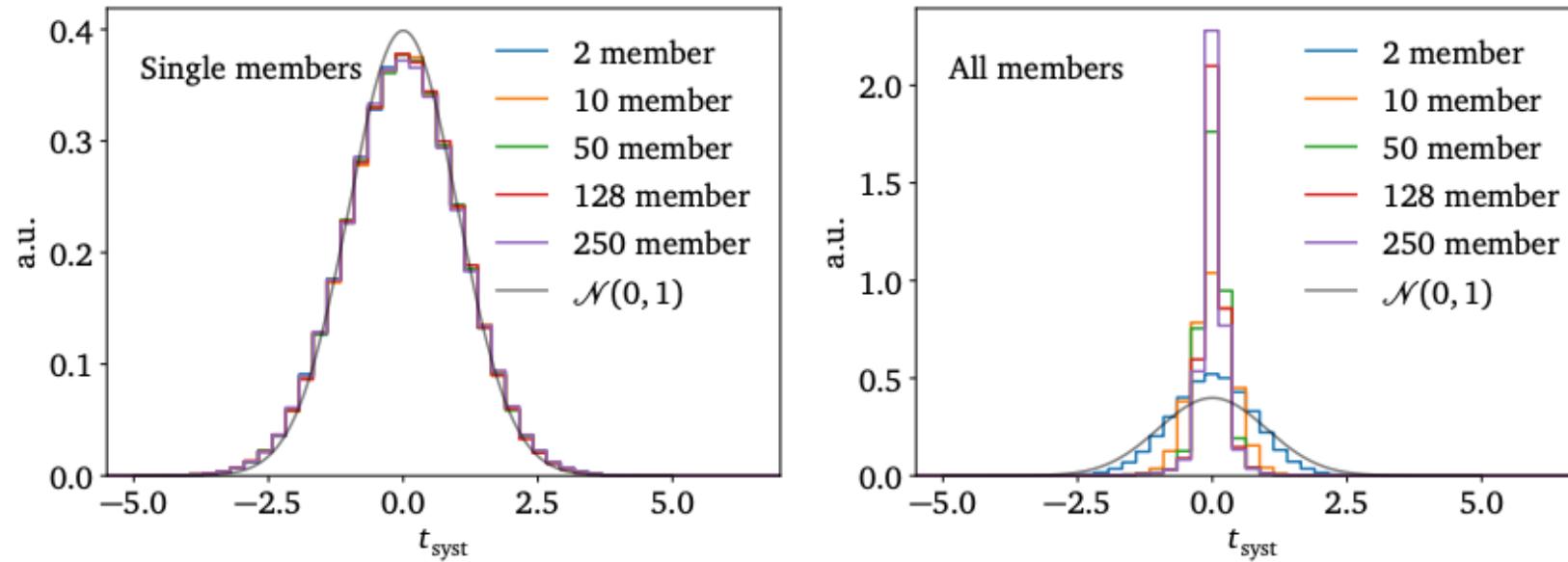


Extracting the biases



ensembling increases precision, but gains level off for $N_{\text{ens}} \gtrsim 100$

Miscalibration of ensemble systematic



$$A_{\text{NN}}(x) = \frac{1}{N_{\text{ens}}} \sum_{i=1}^{N_{\text{ens}}} A_{\text{NN},i}(x)$$
$$\sigma^2(x) = \frac{1}{N_{\text{ens}}} \sum_{i=1}^{N_{\text{ens}}} \sigma_i^2(x).$$

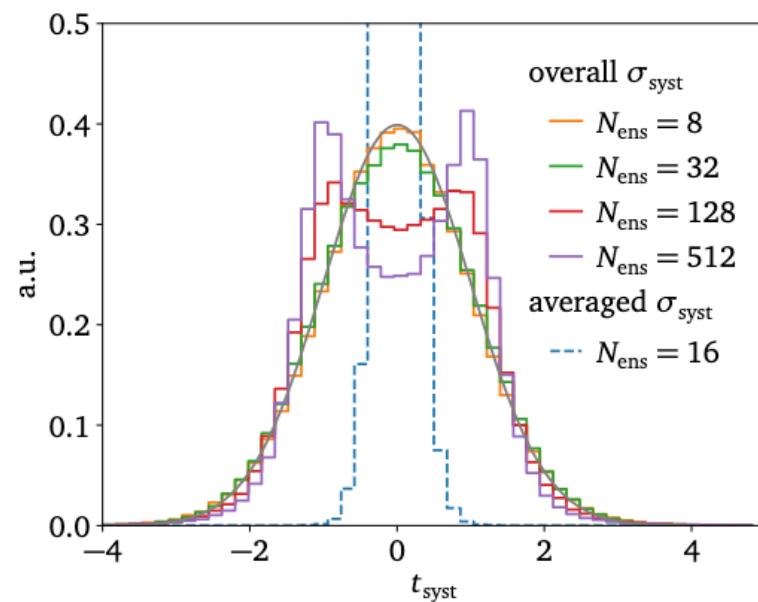
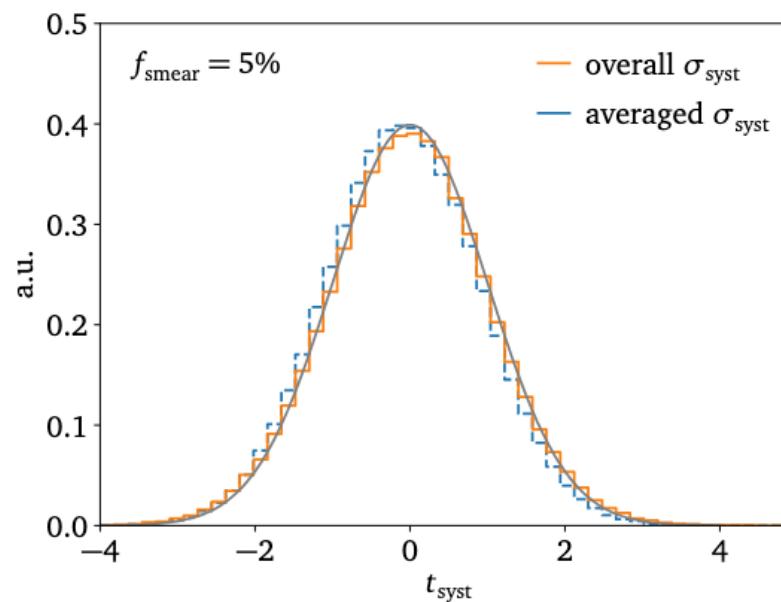
- averaging systematic unc. of ensemble members \sim average uncertainty of each member
- but ensemble more precise

Fixing ensemble systematic unc.

$$A_{\text{NN}}(x) = \frac{1}{N_{\text{ens}}} \sum_{i=1}^{N_{\text{ens}}} A_{\text{NN},i}(x)$$

$$\mathcal{L}_{\sigma} = \frac{1}{B} \sum_{b=1}^B \left[\frac{|A_{\text{train}}(x_b) - A_{\text{NN}}(x_b)|^2}{2\sigma^2(x_b)} + \log \sigma(x_b) \right]$$

solution: train separate network with loss \mathcal{L}_{σ} to predict systematic uncertainty of ensemble



lower noise levels \rightarrow non-Gaussian biases become visible

Localized smearing

Is the systematic uncertainty able to pick-up local noise?

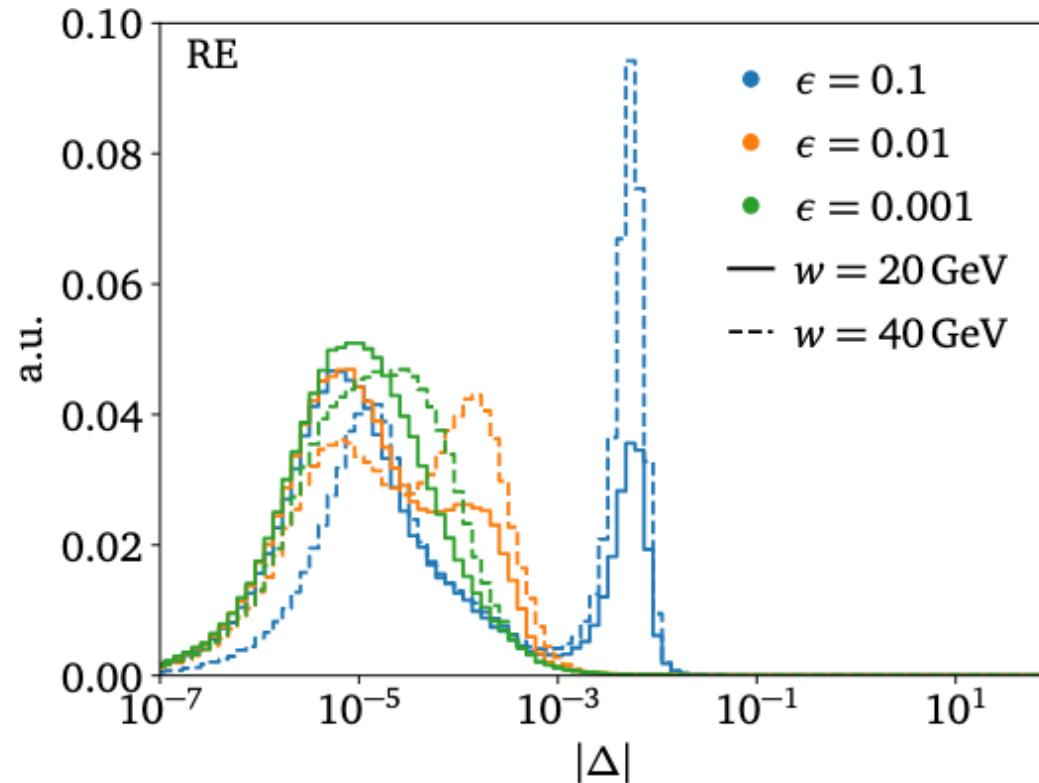
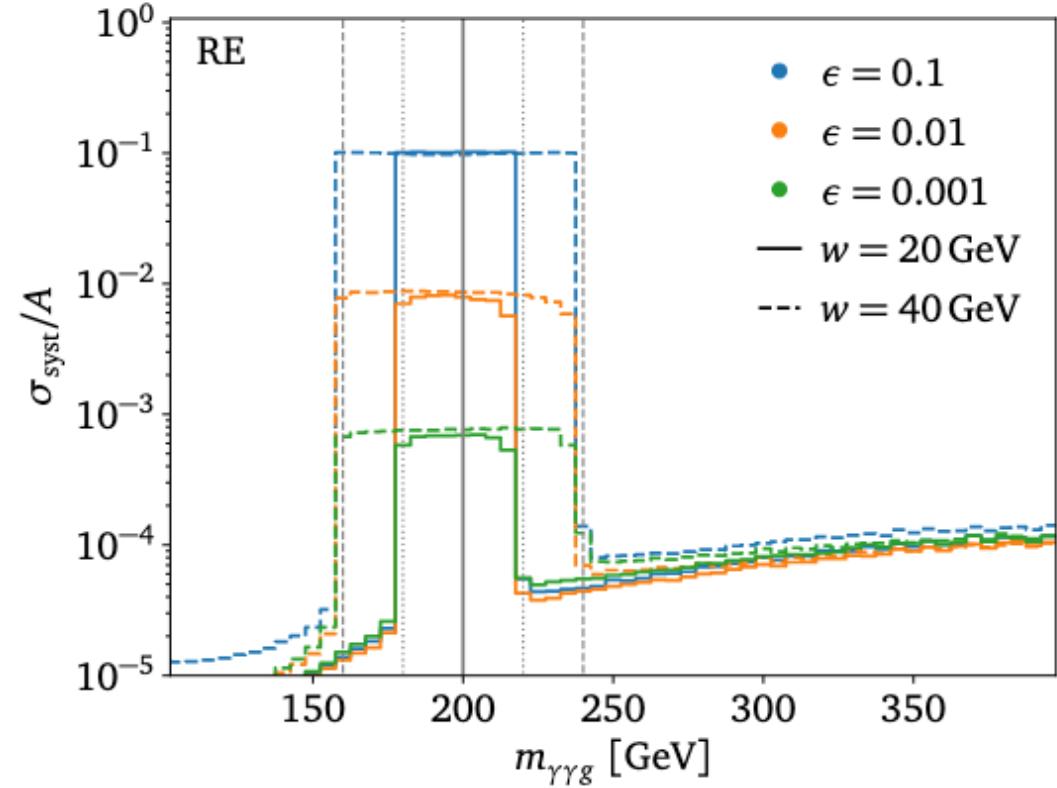
[HB et al., to appear]

Box smearing

- analytic amplitude evaluation might loss precision close to thresholds, kinematic edges, ...
- can the learned systematic uncertainties pick this up?
- test this by inducing local noise to our amplitudes
- simple start: box smearing with $m_{\text{thresh}} = 200 \text{ GeV}$

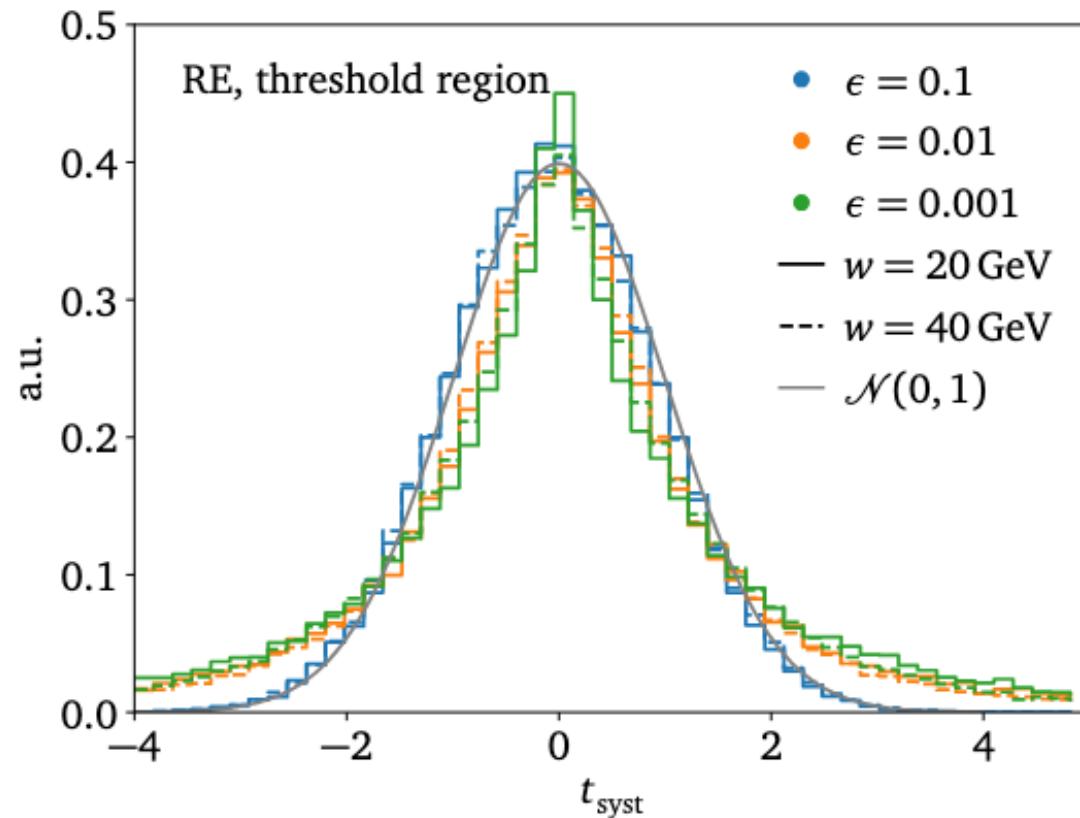
$$A_{\text{train}}(x) = \begin{cases} \mathcal{N}(A_{\text{true}}(x), \epsilon A_{\text{true}}(x)) & \text{if } |m_{\gamma\gamma g}(x) - m_{\text{thresh}}| < w \\ A_{\text{true}} & \text{if } |m_{\gamma\gamma g}(x) - m_{\text{thresh}}| \geq w \end{cases}$$

Box smearing — results

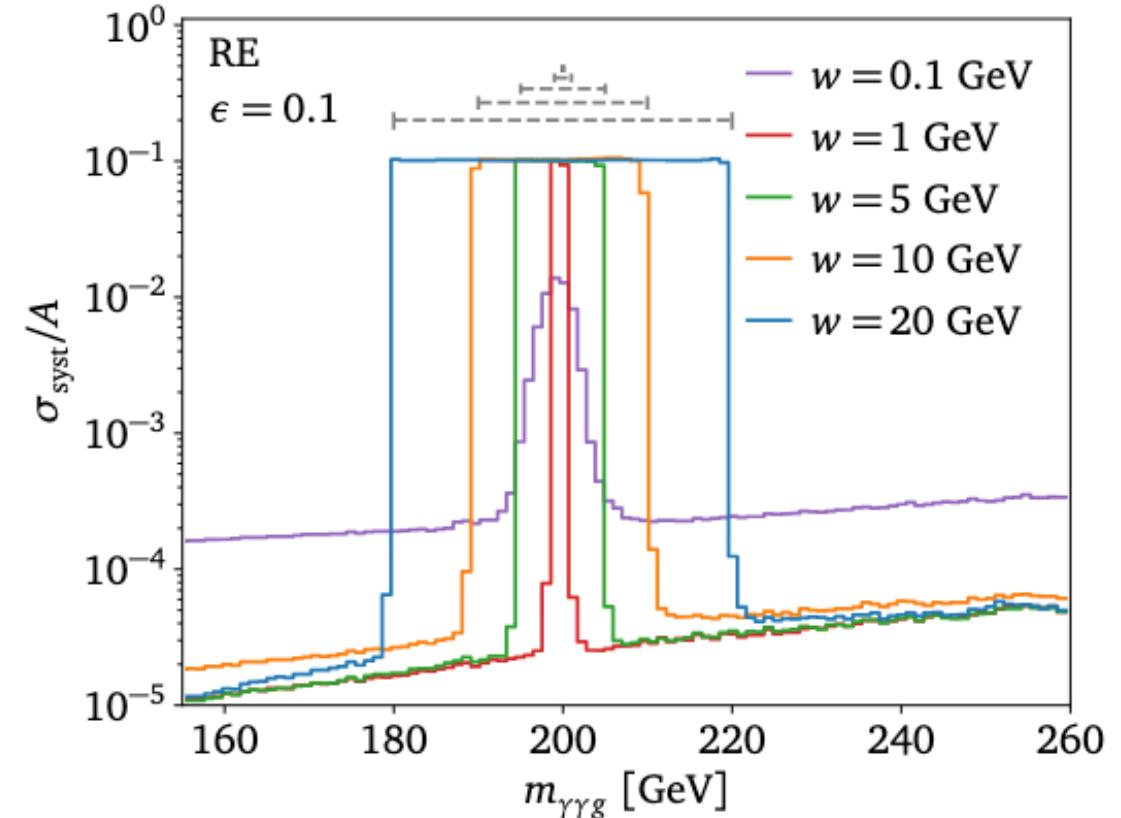


σ_{syst} closely follows expected behavior

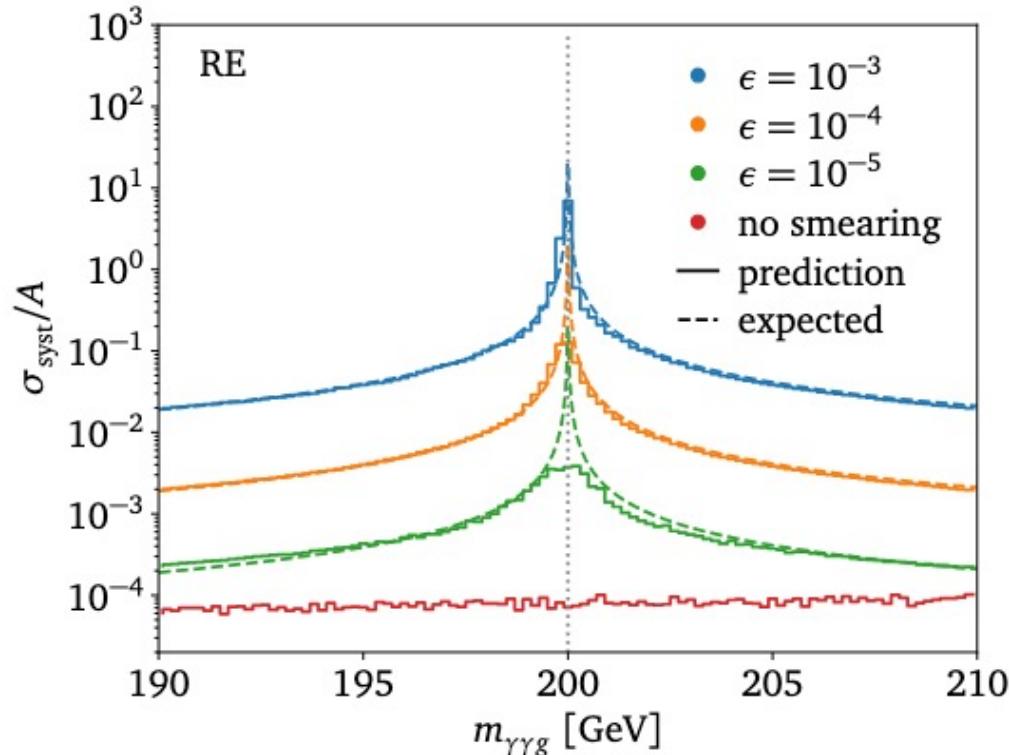
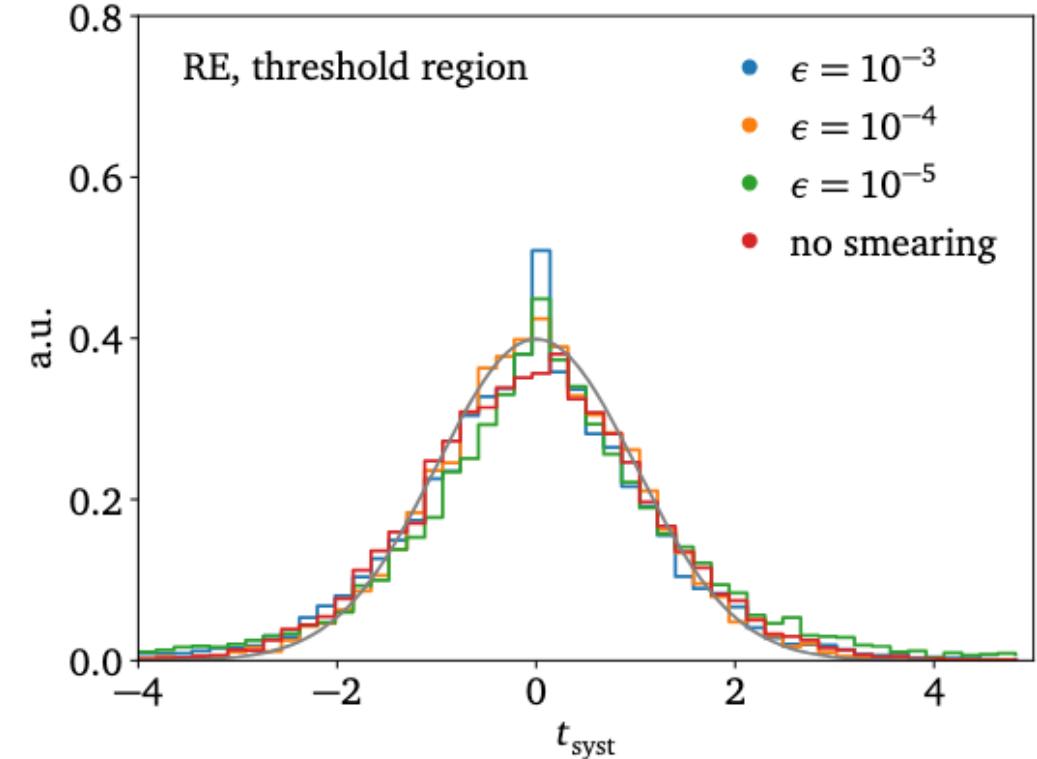
Box smearing — calibration



also good calibration



Peaked smearing



$$A_{\text{train}}(x) = \mathcal{N}\left(A_{\text{true}}(x), \frac{\epsilon m_{\text{thresh}}}{|m_{\gamma\gamma g}(x) - m_{\text{thresh}}|} A_{\text{true}}(x)\right) \rightarrow \text{well captured by systematic uncertainties}$$

Conclusions

Conclusions

- amplitude surrogates → speed up MC generation
- uncertainty-aware NNs allow for controlled modelling of
 - systematic uncertainties: data-inherent noise + model expressivity
 - statistical uncertainties: lack of data
- methods: heteroskedastic loss, repulsive ensemble, Bayesian NNs
- learned uncertainties reflect actual deviations from truth well
- encoding physics knowledge increase accuracy with still well-calibrated unc.

same techniques also applicable to all kind of other problems

Appendix

Kolmogorov-Arnold theorem

Any $f: [0,1]^n \rightarrow \mathbb{R}$ can be written as a finite decomposition of univariate functions and addition.

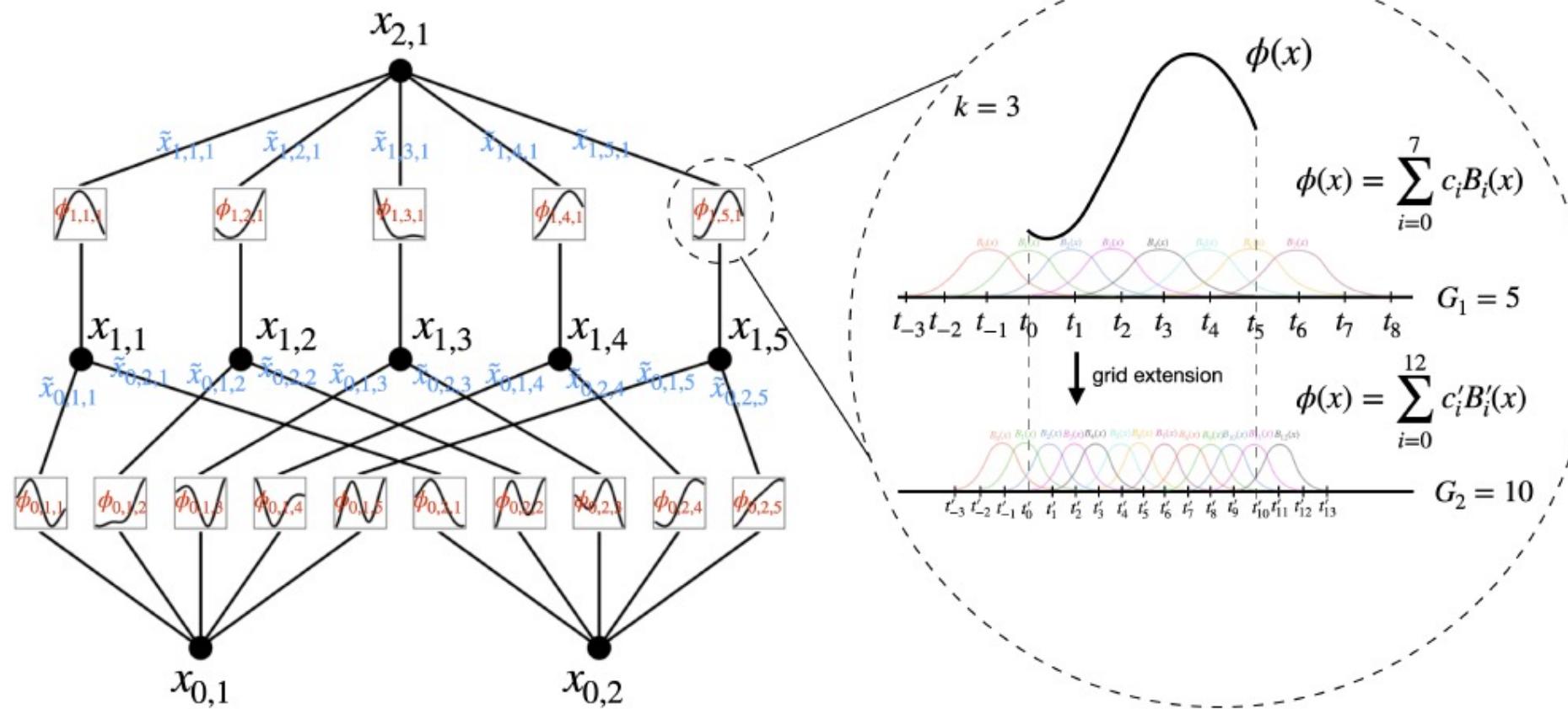
$$f(x) = f(x_1, \dots, x_n) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$$

where $\phi_{q,p} : [0, 1] \rightarrow \mathbb{R}$ and $\Phi_q : \mathbb{R} \rightarrow \mathbb{R}$.

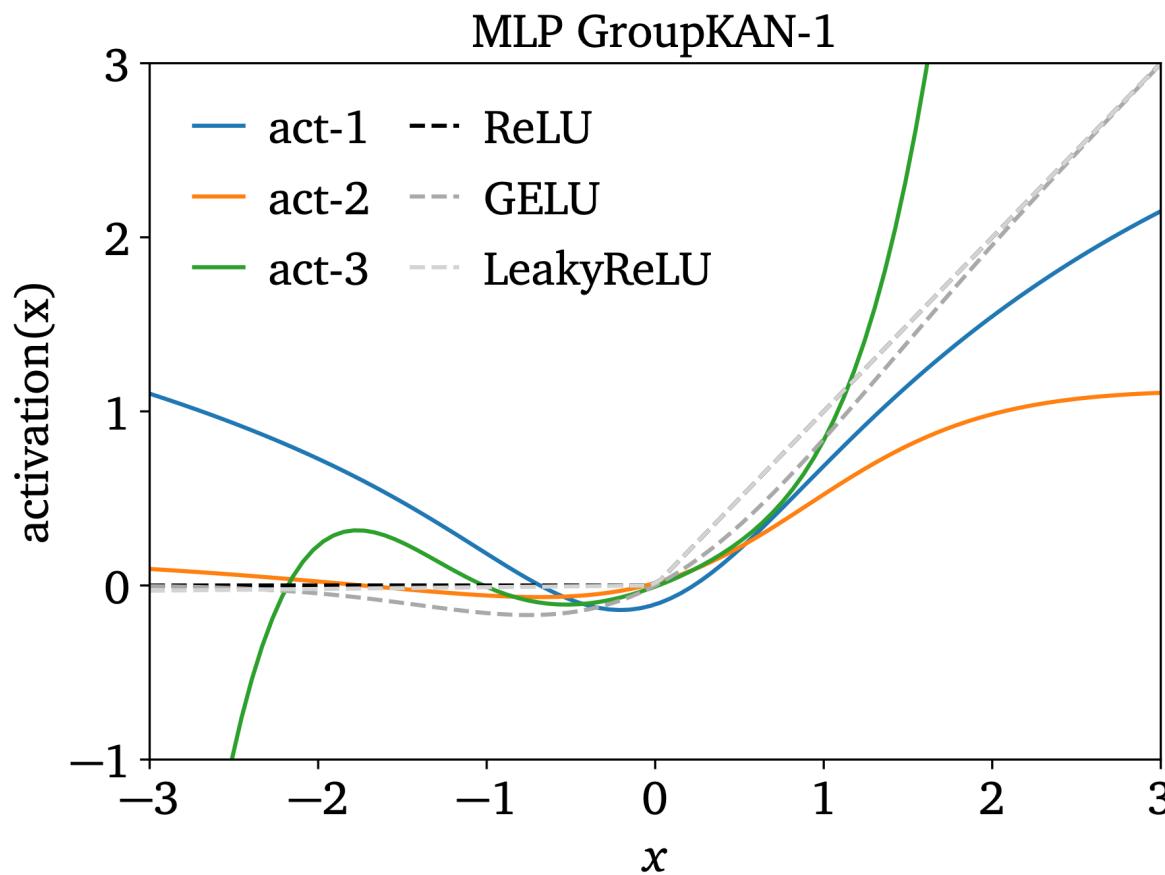
Kolmogorov-Arnold Networks (KANs)

- KAN layer:
$$x_{l+1} = \underbrace{\begin{pmatrix} \phi_{l,1,1}(\cdot) & \phi_{l,1,2}(\cdot) & \cdots & \phi_{l,1,n_l}(\cdot) \\ \phi_{l,2,1}(\cdot) & \phi_{l,2,2}(\cdot) & \cdots & \phi_{l,2,n_l}(\cdot) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{l,n_{l+1},1}(\cdot) & \phi_{l,n_{l+1},2}(\cdot) & \cdots & \phi_{l,n_{l+1},n_l}(\cdot) \end{pmatrix}}_{\equiv \Phi_l} x_l,$$
- KAN network: $\text{KAN}(x) = (\Phi_{L-1} \circ \Phi_{L-2} \circ \dots \circ \Phi_1 \circ \Phi_0)x$
- GroupKAN layer: $\text{activation}(x) \rightarrow \text{GroupKANlayer}_l(x) = \begin{pmatrix} \phi_{l,g_l(1)}(x_1) \\ \phi_{l,g_l(2)}(x_2) \\ \vdots \\ \phi_{l,g_l(n_l)}(x_{n_l}) \end{pmatrix}$
- GroupKAN network: $\text{GroupKAN}(x) = (W_{L-1} \circ \text{GroupKANlayer}_{L-2} \circ W_{L-2} \circ \dots \circ \text{GroupKANlayer}_0 \circ W_0)x$
- Normal MLP network $\text{MLP}(x) = (W_{L-1} \circ \text{activation} \circ W_{L-2} \circ \dots \circ \text{activation} \circ W_0)x$

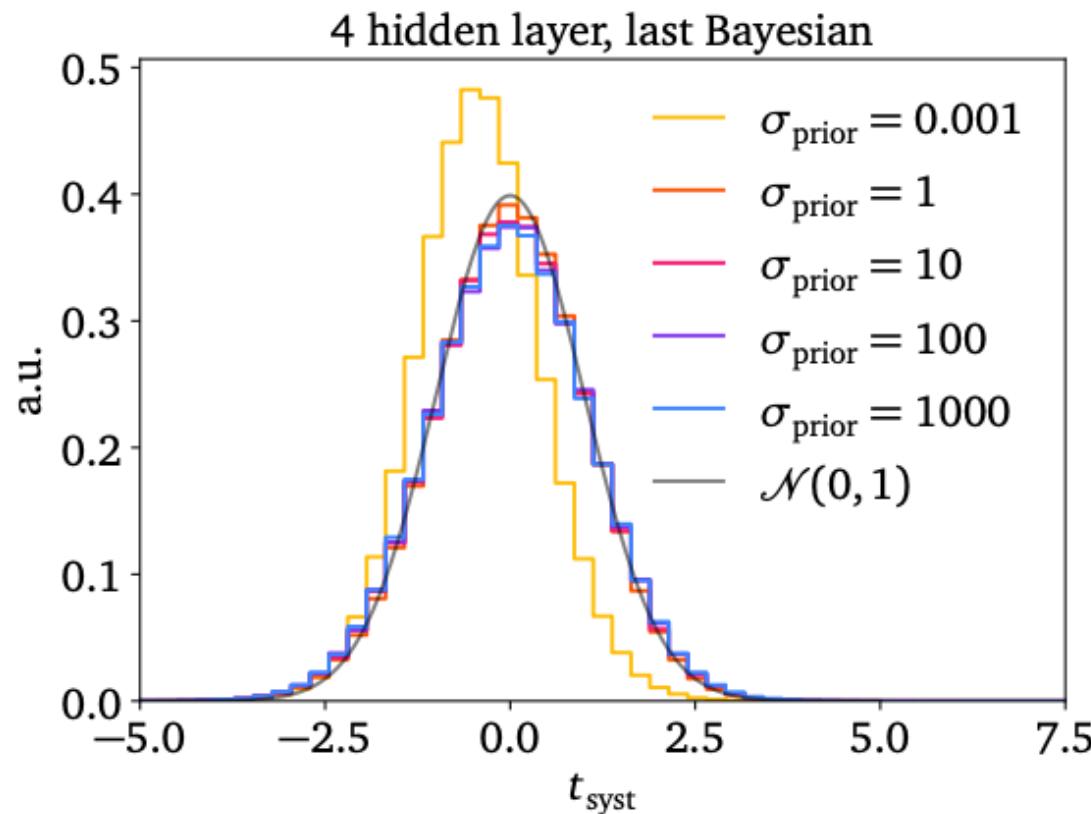
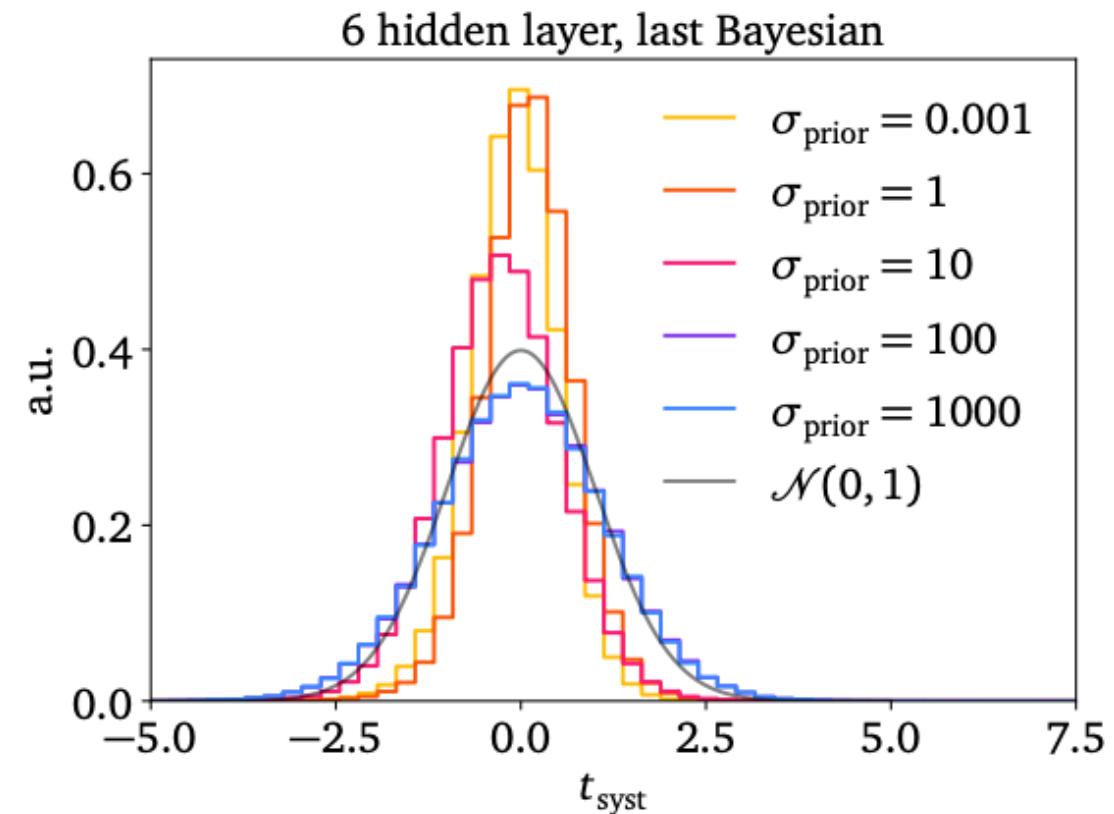
Kolmogorov-Arnold Networks (KANs)



Learned activation functions



BNN prior dependence



Uncertainty overview

