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The challenge ahead

* general trend: larger-and-larger experiments
collecting more-and-more data
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 e.g. LHC: already enormous dataset will be further

enlarged by a factor ~ 10

* costs for future experiments increasing

» Fully exploit the available data! -
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The particle physics workflow

Forward
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Inverse

ML can help with each of these steps by increasing
* accuracy/performance and/or

* increase speed
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ML for particle physics
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Amplitude surrogates




Case study for amplitude surrogates

« evaluating analytic expressions for amplitudes |M|? can be very expensive due to
* higher-order corrections
* large final-state multiplicities

* possible solution:
* generate small training sample using full analytic expression
« train a NN to approximate | M |?
* generate events using NN surrogate, which is much faster to evaluate

‘ Does this work?
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Comparison to classical interpolation

[Breso et al., 2412.09534]

Approximation error of fo « NLO qq — ttH amplitude

classical interpolation

i / techniques
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‘ ML surrogates outperform classical interpolation techniques
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Speed comparison

[JanBen et al.,2301.13562]
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Tstandard

feff =

Tsurrogate

dipole vs naive:
encode singularity structure of amplitudes

» Large speed-ups possible!

Can we also control the uncertainties?
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Learning uncertainties

"Allmodels are wrong, but some — those that know when they can be trusted —
are useful!”

— George Box (adapted)
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Regression with uncertainties
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[Yi&Bessa, 2505.02743]

= = Ground Truth
___7 Ground Truth +20

- Predicted Mean
Statistical unc +20

Systematic unc +2¢

5 10

» statistical or epistemic uncertainty = lack of training data

* systematic or aleatoric uncertainty = noise in the data, lack in model expressivity
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Systematic uncertainty: heteroskedastic loss

sum over training dataset

log-likelihood loss: l true amplitudes

/ / NN parameters

L=- z log p(Atrue(x)|x;, 6)

Xi,Ai€Dtrain \

phase-space point

assume Gaussian likelihood: p(4|x, 8) = N (A(x), aszyst(x))
NN learns both: A(x) and Osyst (X)

(Z(xl) — Atrue (xi))z

= heteroskedasticloss: £ = z + log(USyst(xi))
i _

constant gy — recovers MSE loss
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Statistical uncertainty: repulsive ensemble

train ensemble of networks AR X
ST\ - O
O R
ensure convergence to correct posterior via repulsive /“' ‘4\/‘"

Q

interaction between ensemble members ‘ «%\( ‘X%’w (O
RGOS

SN

each networks leads to slightly different result ‘

spread of network predictions ~ statistical uncertainty

less data — higher spread

Henning Bahl
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Repulsive ensemble + heteroskedastic loss

|n§ut %ﬁ@/ Osyst 01)
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Input A (03
i Q/ U syst (03

LrE = [— ZlOgP xp|0;) +
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Usyst (02

Zn
Ny

k(AGz (33), Aej (.’13))

‘ Combined learnable modelling of systematic and statistical uncertainties!
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Alternative: Bayesian NNs

Ensemble of networks
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/" ( Aw) )\ * promote NN parameters
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N\ AN 4 o.s/, 07 (4) =~ 2 A@) « for each evaluation,
/ e - Alw,) -y sample from Gaussians
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prior
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gg — yyg dataset

107
* generated using Sherpa+Njet |
103 4
* 1.1 million events, 70% used for training ]

* preprocessing:
* learn logarithm of amplitude
* rescale inputs and log-amplitudes to have 10* ;
zero mean and unit standard deviation
10% [ Il

* amplitude symmetries 10‘—9' 10~ 107 10~ 10~° 104
* Lorentz-invariant logA
* permutation-invariance w.r.t. identical
particles
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Behavior of learned uncertainties
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Test: apply different levels of Gaussian noise to amplitudes
» statistical uncertainty decreases with more training data

* systematic uncertainty converges to level of applied noise
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Extracting the noise level

only heteroskedastic loss, N0 04t
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- Able to reliably extract noise level!
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2 3 4 5
O train x1 0—8

being the systematic unc. due to limited NN expressivity.
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Are these uncertainties calibrated?

* statistical uncertainties play minor

role for amplitude regression 0.4
fsmear — 5% BNN
* define systematic pull: 0.31 RE
Det
=
t _ (A)(x) — Atrain (%) < 0.2 A0, 1)
syst —
Usyst(x) 011
* if calibrated, sy distribution should 0.0 , | , |
follow V'(0, 1) —50 —-25 00 25 5.0

tsyst

‘ Almost perfectly calibration — reliable uncertainty estimate
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Dependence on smearing

0.41

BNN and deterministic models

Finear = 5% BNN
RE
Det
SO, T)
—50 —25 00 25 5.0
tsyst

a.u.

0.41

0.21

0.0

fsmear = 1%

— BNN

—5.0

—DiE

5.0

2.5

0.0
tsyst

— well calibrated for different smearing levels

repulsive ensemble overestimates uncertainty for low smearing

— see below
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Pushing for precision

activations, layers, and domain knowledge
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Enhancing NN expressivity

vvvvvvvvvvvvvvv
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Can we improve accuracy for low smearing?

= |
- Det |

Improve NN expressivity:

 different activations, NN structures
* more layers,

* exploit symmetries

\\\\\\\ \V o
.- BNN
$
x‘=
'\_/
T L R -

fsmear [%]
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Activation functions and NN structure

MLP + KAN
0.04' th —_
i o ReL . . .
: i static activation
' GELU i functions
0.03 1 S LeakyReLU _
GroupKAN-1
3 0.02 GroupKAN-2 | | learned activation
GroupKAN-4 functions
0.01 GroupKAN-8
' KAN —— Kolmogorov-Arnold Network
0.0Q +===F=me==t o '
1072 1074 1072 10° 102 . . ANN—A
Al relative deviation: A = =5~ —tue

Atrue

‘ well-chosen activation function can significantly improve performance
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Adding more layers

— —

1 layer ]
2 layers 1
3 layers | adding more layers
4 layers
5 layers
6 layers |

10—1 ; Det —

/'{:\ ’ —— 1layer

= : - 2layers | convergence towards noise level
&

o

~

3 layers |
102t 4 layers -

: , 5 layers
— 6 layers

fsmear[o/o]
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Encoding our physics knowledge

0.08 el [l el —
—— Det-DSI 7
—— BNN-DSI :
0.06 1 RE-DSI - perm.utatlon Lorentz
- invariance — . :
. invariance
; oo B
< 0.04 B
0.02-
0.00 === -~ —= — , . ANN—A
107 107° 107° 107 relative deviation: A = 2NN _“true

|A| Atrue

‘ Large gain in NN accuracy! Also found uncertainties still to be well calibrated.
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Ensembling and biases

The wisdom (and biases) of the crowd.

[HB, Elmer, Plehn, Winterhalder, to appear]



Ensembling and biases

* ensembling averages out noise — widely used

* but, their can be systematic biases

10?1
101 i

1hl, 100 eps
- — _
!
—————— - ————_--1._-————————_——_——_—————————.—<
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Henning Bahl

f—\;
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T e T =
Atrue
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Extracting the biases
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‘ ensembling increases precision, but gains level off for No,,s = 100
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Miscalibration of ensemble systematic
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* averaging systematic unc. of ensemble members ~ average uncertainty of each member

* butensemble more precise

Henning Bahl
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Fixing ensemble systematic unc.

Nens B 2
_ 1 . 1 |Atrain(xb) _ANN(xb)|
Axn(x) = N ;ANN,i(x) Lo = B bZ:; [ 202(x;) +logo(xp)

solution: train separate network with loss L to predict systematic uncertainty of ensemble

0.5 — 0.5
L overall o Sfsmear = 5% overall o g
0.41 : | N, =8 0.41 . — averaged O
= Neps =32
0.3 — Neps =128 0.3
5 : — N, =512 5
« b
0.2 + averaged Oy 0.2
=" Neps = 16
0.11 0.1
0.0 " 0.0 :
—4 —2 0 2 4 —4 4

t syst tsyst

‘ lower noise levels = non-Gaussian biases become visible
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Localized smearing

Is the systematic uncertainty able to pick-up local noise?

[HB et al., to appear]

Henning Bahl
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Box smearing

analytic amplitude evaluation might loss precision close to thresholds, kinematic edges, ...
can the learned systematic uncertainties pick this up?

test this by inducing local noise to our amplitudes

simple start: box smearing with myresn = 200 GeV

N(Atrue(x): €Aprye(x)) if |myyg(x) — Mpresh| < W
if |myyg(x) _ mthreshl =W

Atrain(x ) — {

true

Henning Bahl

31



Box smearing — results
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» Osyst closely follows expected behavior
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Box smearing — calibration
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Peaked smearing

103 :
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L ; ¢ e=10"
101 i * =107
® no smearing

< 10°; — prediction
= _ --- expected
b%‘

190 195 200 205 210

m,.. [GeV]

0.8

0.61

RE, threshold region

e=10"3
e=10"%
e=10""

no smearing

em
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Conclusions

Henning Bahl



Conclusions

amplitude surrogates — speed up MC generation

uncertainty-aware NNs allow for controlled modelling of
* systematic uncertainties: data-inherent noise + model expressivity
* statistical uncertainties: lack of data

methods: heteroskedastic loss, repulsive ensemble, Bayesian NNs

learned uncertainties reflect actual deviations from truth well

encoding physics knowledge increase accuracy with still well-calibrated unc.

‘ same techniques also applicable to all kind of other problems

Henning Bahl
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Appendix
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Kolmogorov-Arnold theorem

Any f:[0,1]"—= R can be written as a finite decomposition of univariate functions and addition.

2n+1 n
fO)=flxn,..x)= D, &, (Z qsq,p(xp))

where ¢, ,:[0,1] >R and ¢, : R — R.
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Kolmogorov-Arnold Networks (KANS)

$1110)  @1120) o Dpin()
G1210)  bi220) 0 Do)

X1,

KAN layer: Xi41 =

¢l:nl+l:1(.) ¢l’nl+l’2(.) o ¢l:nl+l,nl(.)
E‘;I)l

KAN netWOI’kI KAN(X)-: (q)L—]. Oq)L—Zo"'oq)l OQO)X

®1,g,(1)(x1)
¢1,g1(2)(x2)

GroupKAN layer: activation(x) — GroupKANlayer;(x) =

d)l,gl(nl)(xnl )
GroupKAN network:  GroupKAN(x) = (W,_; o GroupKANlayer; , o W;_, o...o GroupKANlayer, o W, )x

Normal MLP network MLP(x) = (W;_; o activationo W;_, o... o activation o W,)x
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Kolmogorov-Arnold Networks (KANSs)
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L earned activation functions

MLP GroupKAN-1

— act-1 --- ReLU
act-2 GELU
— act-3 LeakyReLU

activation(x)




BNN prior dependence

0. 4 hidden layer, last Bayesian 6 hidden layer, last Bayesian
O prior = 0.001
0.4 " Obprior = 1 0.61
" Oprior = 10
e — G pior =100 041
S —— O prior = 1000 &
0.2- pror
— A(0,1)
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0.1-
0.0 = ' - ' 0.0 . . . '
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tsyst tsyst
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Uncertainty overview
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