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CP violation in the Higgs sector

* New sources of CP violation (CPV) are necessary to explain the baryon asymmetry of \/Kﬂ

the Universe.
* One possibility: CP violation in the Higgs sector.

e |nthe SM:

* No CPVinleading-order Higgs couplings.
« CPVin CKM matrix propagates to Higgs couplings at higher orders (tiny effect).

Can BSM physics induce larger CPV Higgs couplings?
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EFT perspective

 CPviolation in Higgs couplings introduced via dimension-six operators:

* Gauge boson interactions: @ToW,,W*, ®T®B,, B*, dToW, B, dT0G,,, G

» Fermion interactions: ®T®(Qu®), T (QdP), T (Qed) with complex Wilson coefficients

[side note: (h + 17)3 = v3 + 3hv + ---; factor 3 crucial, otherwise diagonalization of fermion mass matrix also makes Yukawa

matrix diagonal and real like in the SM]
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* Gauge boson interactions: @ToW,,W*, ®T®B,, B*, dToW, B, dT0G,,, G

» Fermion interactions: ®T®(Qu®), T (QdP), T (Qed) with complex Wilson coefficients

L Rewrite: Lyu=— Y

f:,u”d,c,s’t’b’e’ui’r

f(Cf +i75¢5) fH,

S

[side note: (h + 17)3 = v3 + 3hv + ---; factor 3 crucial, otherwise diagonalization of fermion mass matrix also makes Yukawa

matrix diagonal and real like in the SM]

‘ * All of them are independent (apart from RGE mixing)!
* Alsoindependent from non-CPV Higgs coupling modifications.
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UV perspective

How can we generate these CPV interactions in concrete UV models?

e Fermion interactions

* Simplest possibility: mixing with CP-odd BSM state (e.g. 2HDM, see later)

* Also possible: mixing with vector boson, loop-level contribution

 Gauge interactions

* Notree-level CP-odd coupling possible = no CPV at the tree level

* In particular: CP-odd scalar has no tree-level couplings to vector bosons.

* Must be induced at the loop level.
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UV perspective

How can we generate these CPV interactions in concrete UV models?

. . . CP- CP-odd
 Fermion interactions _H _ev_en’fi Cor

* Simplest possibility: mixing with CP-odd BSM state (e.g. 2HDM, see later)

* Also possible: mixing with vector boson, loop-level contribution

 Gauge interactions

* Notree-level CP-odd coupling possible = no CPV at the tree level
* In particular: CP-odd scalar has no tree-level couplings to vector bosons.

* Must be induced at the loop level.

= Generic expectation: CPV in HVV couplings loop-suppressed in comparison to Hf f couplings
Henning Bahl
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CPVin HVV via CPVin Hf f |

« Example: ggF + 2jets (ggF2j)

heavy-top limit

SM
* consider CPV top-Yukawa coupling: Lo, = %f(ct + iysC)tH

 This coupling will directly affect ttH but also induce Higgs—gluon interaction:

2

_ 1 95
LHgg B 4vH( 1272

2
a r~a,uv 9s ~ r~a Ffa,uv
cg GG+ 2, GR, G
with ¢, = ¢y and ¢y = C; in heavy-top limit.
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CPVin HVV viaCPVinHf f I

[HB et al., 2309.03146]
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CPVin HVV viaCPVinHf f I

[HB et al., 2309.03146]

(ct, &) free
| . |

0.6r =1 |71 BEEZl [
Koy 10 LHC fit ]
0.31 \""‘\ J « ggF2j kinematic analysis competitive with global LHC fit
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[HB et al., 2309.03146]
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Naive estimate for weak gauge-boson couplings:
2

* CPVin HVV couplings suppressed by 1§n2

e HWW: suppression by ~ 0.003
« HZZ:suppressionby~ 0.001

with respectto Hf f couplings.
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When should we use an EFT and when a
concrete model?

 EFTs are a great tool to benchmark/combine different measurements/colliders.
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When should we use an EFT and when a
concrete model?

 EFTs are a great tool to benchmark/combine different measurements/colliders.

* EFTsruninto problems when trying to connect these measurements to the BAU:

e Study of strong 15t order phase transitions using EFTs very limited. (see e.g. [Postma&White, 2012.03953])
* Interplay with direct searches for BSM particles.

 CPV couplings of BSM particles can provide additional CP sources.
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Benchmark model: complex 2HDM

* 0(1) CP-odd Yukawa couplings require new physics to show
up at O(few 100) GeV.
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Benchmark model: complex 2HDM

* 0(1) CP-odd Yukawa couplings require new physics to show
up at O(few 100) GeV.

* Most studied model: complex 2HDM with mixing between two M?
CP-even and one CP-odd Higgs boson.

Zl Re(Zﬁ) —Im(Z6)
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Yo /v? + %23_45
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* 0(1) CP-odd Yukawa couplings require new physics to show
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Benchmark model: complex 2HDM

* 0(1) CP-odd Yukawa couplings require new physics to show
up at O(few 100) GeV. Z, Re(Ze) “Tm(Zg)

2
* Most studied model: complex 2HDM with mixing between two M= 2, 1+ —
CP-even and one CP-odd Higgs boson. 02 Yp/v* + 24345 v,/ 22Im 1Z;
2/V" + 34345

CP-odd h,,s couplings induced via mixing with CP-odd A boson. RM2RT = diag(m%, m%, m%)

= also CP-even hy,5 couplings deviate from SM. hy o

l h'2 =R 908 )
h3 CLO

Perform Higgs CP measurements without assuming that
other Higgs couplings are at their SM values!

* Intricate interplay between h;,: measurements, direct
searches, flavor constraints, EWPQOs, EDM.

Henning Bahl 8



Interplay with EDMs

[Altmannshofer et al., 2009.01258]
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Interplay with EDMs

[Altmannshofer et al., 2009.01258]
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Interplay with EDMs

[Altmannshofer et al., 2009.01258]

* Notonly the SM-like Higgs has CP-violating
couplings, but also the BSM Higgs bosons.
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Interplay with direct searches

[Biekotter et al., 2403.02425]
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Impact of LHC measurements

[Biekotter et al., 2403.02425]
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Conclusions

 EFT perspective:
e CPV canoccurineach coupling independently.
* No a-priori information of size = should test each coupling!
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couplings.

Working with concrete UV models allows to
« make contact with baryon asymmetry of the Universe, Thanks for your
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CP structure of Higgs couplings

* How can we constrain CP-violating couplings at the LHC?
9 “ @ a * Direct constraints: CP-odd observables.
* Indirect constraints: CP-even observables.

* Multivariate analyses: potentially mixing CP-odd and
CP-even observables.
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« How can we constrain CP-violating couplings at the LHC?
* Direct constraints: CP-odd observables.
* Indirect constraints: CP-even observables.
* Multivariate analyses: potentially mixing CP-odd and
CP-even observables.

 CP structure of HVV interactions is comparably well-
constrained. B
* The CP structure of the Hf f interactions is far less known

SM

‘Cyuk = - Z %f(cf +275Ef) fH7

f:u,d,c,s,t,b,e,p,‘r

 Most BSM theories predict largest CP violation in Hf f
couplings.
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CP structure of Higgs couplings

~ * How can we constrain CP-violating couplings at the LHC?
HL-LHC?! . .
« W « * Direct constraints: CP-odd observables.
* Indirect constraints: CP-even observables.

* Multivariate analyses: potentially mixing CP-odd and
CP-even observables.
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Improving Higgs CP measurements

General amplitude structure for CP measurements:

CP- 2 CP- CP—odd* 2 CP—odd |2
|M|2 = Cgvenlm even| +‘2CevencoddRe[M evenM ? ]'+ Coddl]v[ 0 |

| |
interference
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CP can be tested either by:
2 2
« Distinguishing |M P7¢Ve"|" from | M “F7°44|”  CP-even observables.

* Constraining interference term — CP-odd observables.
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Improving Higgs CP measurements

General amplitude structure for CP measurements:

CP- 2 CP- CP-odd* 2 CP-odd
|M|2 = Cgvenlm even| +‘2CevencoddRe[M evenM ? ]'+ Coddl]v[ 0 |

| |
interference

CP can be tested either by:

2 2
« Distinguishing |M P7¢Ve"|" from | M “F7°44|”  CP-even observables.

* Constraining interference term — CP-odd observables.

* In many cases, CP-odd observables are hard to measure (require polarization information).

* Also, often no obvious choices for CP-even observables.

» Higgs CP has become a testing ground for new analysis ideas/methods!
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Complementarity with EDM constraints

Several EDMs are sensitive to CP violation in the Higgs sector
via 2L Bar-Zee diagrams.

* Bounds strongly depend on assumptions about
» first-generation Yukawa coupling,
e absence of other CP-violating BSM physics.

* Significantincrease in precision expected within the next years!
(see €.8. [Snowmass report, 2203.08103])

* Evaluation of NLO corrections will become necessary.
(see e.g. [Brod et al., 2306.12478])
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