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• generated mass term for gauge boson
• Can also generate fermion mass terms via 

Yukawa interaction: 𝑦'𝜙 ̅𝑓𝑓
• Model also used for describing super-
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• Higgs mechanism to break gauge group to 
𝑆𝑈 3 (×𝑈 1 +, → masses for fermions 
and electroweak gauge bosons.
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The Higgs discovery
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After decades of work, the Higgs discovery was a big 
success for particle physics (𝑚- = 125 GeV).

→ So, have we completed the SM?
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The SM at the LHC
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We still want to know about the

• nature of dark matter,

• baryon asymmetry of the Universe,

• origin of neutrino masses,

• fermion mass hierarchy,

• Higgs hierarchy problem,

• cosmological constant,

• thermal history of the Universe,

• stability of the Universe,

• …

Going beyond the SM
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• fermion masses,
• neutrino masses,
• flavour structure.

hierarchy problem • stability,
• thermal history.

cosmological 
constant

• portal to hidden 
sector,

• dark matter.

⇒ Strong motivation for on-going and future Higgs precision programs.
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The Higgs 10 years later              [ATLAS 2207.00092, CMS 2207.00043]

Henning Bahl 10

• Ten years later, we have entered the Higgs precision era.
• So far, all Higgs measurements agree with the SM predictions within the experimental and theoretical uncertainties.
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LHC Run-3 and beyond

Much more data will be collected in the next years.

→ The LHC program has just started.

• What can we learn from existing measurements?

• What is still left to explore?

• Have we found the SM Higgs?
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What can we learn from Higgs precision 
measurements?

Henning Bahl 13

• Higgs precision measurements put stringent 
constraints on many BSM scenarios.

Simplified scaling analysis:

• 1% precision level can constrain BSM particles 
with mass from 100 GeV to several TeV
(within reach of the LHC or future colliders).
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• Higgs precision measurements put stringent 
constraints on many BSM scenarios.

Simplified scaling analysis:

• 1% precision level can constrain BSM particles 
with mass from 100 GeV to several TeV
(within reach of the LHC or future colliders).

[Snowmass 2209.07510]

We also shouldn’t forget about the interplay with direct searches!
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• Important interplay between Higgs precision 
measurements and direct searches for BSM 
particles.

• Cannot be captured in EFT framework                        
→ use 2HDM here as a benchmark model.

• 2HDM: extend SM by 2nd Higgs doublet                     
→ additional 𝐻, 𝐴, 𝐻± BSM Higgs bosons

• BSM searches:
b) CMS: 𝑝𝑝 → 𝜙! → ℎ!&/𝜙& → 𝑏𝑏𝜏𝜏
c) CMS: 𝑝𝑝 → 𝜙 → 𝑍ℎ!&/
d) ATLAS: 𝑝𝑝 → 𝜙 → 𝑊𝑊,𝑍𝑍,𝑊𝑍
e) ATLAS: 𝑝𝑝 → 𝜙 → ℎ!&/ℎ!&/
f) ATLAS: 𝑝𝑝 → 𝜙 → 𝑉𝑉, 𝑉ℎ!&/
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What we don’t know about the Higgs (yet)

Many Higgs properties only weakly constrained, e.g.:

• Higgs width/BSM decay channels,                                                                     
SM: Γ- ≃ 4.1 MeV, 

• light Yukawas,                                                                     
SM: 𝑦' ∝ 𝑚'/𝑣,

• Higgs potential,                                                      
SM: 𝑉 Φ = − !

&
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&1"
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,

• Higgs CP properties,                                              
SM: Higgs is ~ CP-even.          
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What do we know about the Higgs potential?

• After the Higgs discovery, we know 
• the location of the EW minimum: 𝑣 = 246 GeV,
• the curvature of the potential close to the minimum: 
𝑚- = 125 GeV.

• Away from the minimum, the shape of the potential is, 
however, unknown so far.

→ Determination of trilinear Higgs coupling 𝜆--- crucial.

• 𝜆--- closely linked to
• stability of EW vacuum,
• nature of EW phase transition (→ EW baryogenesis?).

[figure by J. Braathen]
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Most direct probe of trilinear Higgs coupling: double-Higgs production via gluon fusion.

In the SM: large destructive interference between box and triangle contribution.

⇒ Deviations from SM trilinear Higgs coupling can significantly enhance the ℎℎ cross section.

Probing 𝜆!!! via double-Higgs production



Most direct probe of trilinear Higgs coupling: double-Higgs production via gluon fusion.

In the SM: large destructive interference between box and triangle contribution.

⇒ Deviations from SM trilinear Higgs coupling can significantly enhance the ℎℎ cross section.

Probing 𝜆!!! via double-Higgs production

Interpret experimental upper limits on ℎℎ cross section as limits on 𝜅2.
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Experimental bound on 𝜅" ≡ 𝜆!!!/𝜆!!!#$

Current strongest limit: −0.4 < 𝜅2 < 6.3 at 95% CL [ATLAS-CONF-2022-050].

Assumptions:

• Simplest analysis assumes that all other Higgs couplings are 
SM-like.

• Non-resonant Higgs-boson pair production only deviates from 
the SM via a modified trilinear Higgs coupling (i.e., no heavy 
resonances).

• Can we use this seemingly weak limit to constrain BSM models?
• Can large BSM deviations occur given other theoretical and experimental constraints?



Trilinear Higgs coupling in the 2HDM
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• Large deviations possible in the 2HDM without 
being in conflict with other measurements.

• Additional enhancement by 2L corrections.

• Maximal size bounded by perturbative unitarity.

[HB,Braathen,Weiglein, 2202.03453]
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• Large deviations possible in the 2HDM without 
being in conflict with other measurements.

• Additional enhancement by 2L corrections.

• Maximal size bounded by perturbative unitarity.

Already current experimental limits on 𝜅2 probe 
so-far unconstrained BSM parameter space!

[HB,Braathen,Weiglein, 2202.03453]



The CP nature of the Higgs boson
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Does the Higgs sector provide additional sources of CP violation?



The CP nature of the Higgs boson

• Motivation: new sources of CP violation are necessary to explain the baryon asymmetry of the Universe.

• We know the Higgs boson is not a CP-odd state but it could be a CP-admixed state.

• Parameterize CP-odd interactions using EFT framework by adding dimension-6 operators to the SM:

• Gauge boson interactions: 𝛷0𝛷𝑊#$ c𝑊#$ , 𝛷0𝛷𝐵#$ e𝐵#$, 𝛷0𝛷𝑊#$ e𝐵#$, 𝛷0𝛷𝐺#$ e𝐺#$

• Fermion interactions: 𝛷0𝛷 𝑄𝑢c𝛷 ,𝛷0𝛷 𝑄𝑑Φ ,𝛷0𝛷 𝑄𝑒𝛷 with complex Wilson coefficients
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Fermions

• CP structure of 𝐻𝑊𝑊, 𝐻𝑍𝑍 interactions is comparably well-
constrained. [ATLAS,CMS:..,2002.05315, 2104.12152,2109.13808,2202.06923,2205.05120] 

• The CP structure of the 𝐻𝑓 ̅𝑓, 𝐻𝛾𝛾, 𝐻𝑔𝑔 interactions is far less 
known.

• Most BSM theories predict largest CP violation in 
𝐻𝑓 ̅𝑓, 𝐻𝛾𝛾, 𝐻𝑔𝑔 couplings.
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Weak indirect 
constraints

Ideas?Ideas?

Ideas? Ideas? Ideas?

Ideas?

HL-LHC?

Fermions

New ideas/techniques are needed to make the 
most of current and future data!

• CP structure of 𝐻𝑊𝑊, 𝐻𝑍𝑍 interactions is comparably well-
constrained. [ATLAS,CMS:..,2002.05315, 2104.12152,2109.13808,2202.06923,2205.05120] 

• The CP structure of the 𝐻𝑓 ̅𝑓, 𝐻𝛾𝛾, 𝐻𝑔𝑔 interactions is far less 
known.

• Most BSM theories predict largest CP violation in 
𝐻𝑓 ̅𝑓, 𝐻𝛾𝛾, 𝐻𝑔𝑔 couplings.



Constraining CP violation

• Pure CP-odd observables:
• Unambiguous markers for CP violation: e.g. 

• EDM measurements,
• decay angle in 𝐻 → 𝜏!𝜏".

• Typically requires to access polarization of 
particles coupling to the Higgs.

• Experimentally difficult for many LHC processes 
(i.e., top-associated Higgs production).

• Almost impossible for 𝐻 → 𝑏%𝑏 or 𝐻 → 𝜇!𝜇"
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Constraining CP violation

• Pure CP-even observables:
• Many rate measurements are indirectly sensitive: e.g. 
𝑔𝑔𝐻.

• Subtle effects in kinematic distributions  of CP-even 
observables (e.g. 𝑝3,5 in 𝑡 ̅𝑡𝐻).

• Deviations from SM need not be due to CP violation                                                                      
→ degeneracies with non-CPV BSM effects.
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CP violation in the Higgs sector can be constrained using:

[HB et al., 2007.08542]



Constraining CP violation

• Multivariate analyses:
• Exploit full kinematic information 

using machine learning.
• Often mixes CP-even and CP-odd 

observables.
• High sensitivity.
• Can be difficult to reinterpret.
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Constraining CP violation

• Multivariate analyses:
• Exploit full kinematic information 

using machine learning.
• Often mixes CP-even and CP-odd 

observables.
• High sensitivity.
• Can be difficult to reinterpret.

Henning Bahl 27

[e.g. simulation-based inference, Brehmer et al.,1805.00013, …]

𝑡 ̅𝑡𝐻, 𝐻 → 𝛾𝛾
Exploit and combine all three complementary 

approaches to learn as much as possible!

[HB&Brass,2110.10177]



Complementarity with EDM constraints

• Several EDMs are sensitive to CP violation in the Higgs sector.

• Consider here only constraints from theoretically cleanest EDM: the electron EDM. 

• Limit by ACME collaboration: 𝑑#$%&' = 1.1 ⋅ 10"()𝑒 cm at 90% CL.
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Complementarity with EDM constraints: 𝑡 and 𝜏
[HB et al., 2202.11753]
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Very strong constraints on CP-odd 
top-Yukawa coupling.
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to observation 

(optimistic upper bound)



Complementarity with EDM constraints: 𝑡 and 𝜏
[HB et al., 2202.11753]

Henning Bahl 29

Very strong constraints on CP-odd 
top-Yukawa coupling.
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to baryon asymmetry.
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Complementarity with EDM constraints: 𝑡 and 𝜏
[HB et al., 2202.11753]
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Very strong constraints on CP-odd 
top-Yukawa coupling.

CP-odd 𝜏 coupling can contribute significantly 
to baryon asymmetry.

→ updated EDM measurement almost 
completely excludes green area

[Roussy et al., 2212.11841]

Ratio of baryon asymmetry 
to observation 

(optimistic upper bound)



EDM > LHC?
[see also Fuchs et al.,1911.08495]
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EDM > LHC?
[see also Fuchs et al.,1911.08495]
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CP-insensitive 𝐻 → 𝜇6𝜇7 rate 
measurement outperforms EDM 

constraint.

No.

Γ5→###$ ∝ 𝑐#& + 𝑐̃#&



Dependence on electron-Yukawa coupling
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• Electron Yukawa-coupling only very weakly 
constrained (𝑔# ≤ 268 at 95% CL).

• If 𝑐# smaller, eEDM significantly weakened.

• Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that 𝑑# < 𝑑#$%&'.

• Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.
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• Electron Yukawa-coupling only very weakly 
constrained (𝑔# ≤ 268 at 95% CL).

• If 𝑐# smaller, eEDM significantly weakened.

• Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that 𝑑# < 𝑑#$%&'.

• Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.

LHC bounds important since they do not 
depend on 1st gen. Yukawa couplings.
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• The Higgs is not the last missing puzzle piece of the SM 
but could be the link to many BSM scenarios.

• Higgs precision measurements and precision predictions 
are crucial to understand electroweak symmetry 
breaking.

• Existing measurements already teach us a lot about 
possible BSM extensions.

• Much work still left to do:
• Light Yukawas,
• Higgs CP structure,
• Higgs potential,
• Higgs width,
• …
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• The Higgs is not the last missing puzzle piece of the SM 
but could be the link to many BSM scenarios.

• Higgs precision measurements and precision predictions 
are crucial to understand electroweak symmetry 
breaking.

• Existing measurements already teach us a lot about 
possible BSM extensions.

• Much work still left to do:
• Light Yukawas,
• Higgs CP structure,
• Higgs potential,
• Higgs width,
• …

The Higgs will keep us busy for many decades to come!
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Impact of Higgs precision measurements on 2HDM
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• BSM benchmark model: 2HDM type-I

• Two Higgs doublets → CP-even ℎ!, ℎ& (and 𝐴,𝐻±)
• tan𝛽: ratio of vevs
• 𝛼: mixing angle
• 𝑚-% < 𝑚-"

• Scaling of vector boson couplings

𝑐 ℎ!𝑉𝑉 ∝ sin(𝛽 − 𝛼)
𝑐 ℎ&𝑉𝑉 ∝ cos(𝛽 − 𝛼)

→ Measurements enforce approximate alignment of  
the SM-like Higgs with the electroweak vacuum. [ATLAS-CONF-2020-027]

assumes that ℎ! is ℎ!&/
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• BSM benchmark model: 2HDM type-I

• Two Higgs doublets → CP-even ℎ!, ℎ& (and 𝐴,𝐻±)
• tan𝛽: ratio of vevs
• 𝛼: mixing angle
• 𝑚-% < 𝑚-"

• Scaling of vector boson couplings

𝑐 ℎ!𝑉𝑉 ∝ sin(𝛽 − 𝛼)
𝑐 ℎ&𝑉𝑉 ∝ cos(𝛽 − 𝛼)

→ Measurements enforce approximate alignment of  
the SM-like Higgs with the electroweak vacuum. 

sin 𝛽 − 𝛼 ~1 if ℎ! is ℎ!&/ or
cos 𝛽 − 𝛼 ~1 if ℎ& is ℎ!&/

How can we distinguish the two cases?

[ATLAS-CONF-2020-027]

assumes that ℎ! is ℎ!&/
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• Also loop effects can be important as evident in the di-
photon decay channel.

• Charged Higgs yields sizeable contribution:

⇒ Lower di-photon signal rate predicted if heavier CP-even
Higgs 𝐻 is ℎ!&/

Higgs potential parameter. 
Pert. unitarity enforces 𝑚"!

# ∼ 𝑚$±
# ∼ (𝑚#

Loop suppression: 𝑣%/𝑚&±
%

Coupling:
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• Also loop effects can be important as evident in the di-
photon decay channel.

• Charged Higgs yields sizeable contribution:

⇒ Lower di-photon signal rate predicted if heavier CP-even
Higgs 𝐻 is ℎ!&/

Higgs potential parameter. 
Pert. unitarity enforces 𝑚"!

# ∼ 𝑚$±
# ∼ (𝑚#

Loop suppression: 𝑣%/𝑚&±
%

Coupling:

[HB et al. 2103.07484, see also Bernon et al 1511.03682]

2HDM type-I

∼ CMS 2207.00043

Important interplay between different Higgs couplings!



Interlude: HiggsTools [HB et al., 2210.09332]
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HiggsTools is a complete and extended rewrite of HiggsBounds and HiggsSignals in modern C++.

HiggsPredictions-1 HiggsBounds-6 HiggsSignals-3

• Handles user input (model predictions).
• Provides tabulated cross sections and BRs.
• Common process definitions and clustering.

C++ interface for high performance; Python and Mathematica interfaces for ease of use.

current status: 258 limits current status: 131 measurements



The stability of the Universe
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But could we see a BSM effects first in the Higgs potential?



Baryon asymmetry of the Universe

• Different techniques used in the literature to calculate BAU 𝑌*: 
• Vev-insertion approach (VIA),

[Huet&Nelson,9504427,9506477;Carena et al., 9603420;Riotto, 9712221;Lee et al.,0412354;Postma et al.,2206.01120]

• WKB (or FH) approximation.
[Joecy et al.,9410282;Kainulainen et al.,0105295, 0202177;Prokopec et al., 0312110, 0406140;Konstandin et al.,1302.6713, 1407.3132]

• VIA approach yields consistently higher results by orders of magnitude.

• We use VIA approach with bubble wall parameters close to optimal values for 𝑌*:                                
[de Vries,1811.11104;Fuchs et al.,2003.00099,2007.06940;Shapira,2106.05338]

𝑌*
𝑌*+,-

≃ 28𝑐̃. − 0.2𝑐̃/ − 11𝑐̃0 +⋯

Henning Bahl 39

𝜂 ≡ 𝑌& [Basler et al.,2108.03580]

𝑌* values should be regarded as upper bound on what is theoretically achievable.



Case study: real singlet extension of the SM
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𝑉 Φ, 𝑆 = 𝑉9: Φ +
1
2𝜇;

&𝑆& +
1
4! 𝜆;𝑆

" + 𝜆;<𝑆&Φ0Φ

If 𝑆 does not get a vev, 𝜆555 = 𝜆5559: at the tree-level (𝑚;
& = 𝜇;& + 𝜆;<𝑣&).

The 1L correction to 𝜆555 scales like

𝜆555!) ∝ =,--
.

"> " 𝐶? … ∝ =,--
.

"> "
!
,-
" ∝

!
"> "

,-
/

1.
1 − #-

"

,-
"

@
⇒ 𝜅2 ≡

2,,,
2,,,
01 =1 + !

"> "
,-
/

1/22
01 1 − #-

"

,-
"

@

whereas the dominant correction to other Higgs couplings scale like

𝑔!) ∝ =,--
"

"> "𝐵?A … ⋅ 𝑔BCDD ∝
!
"> "

,-
"

1"
1 − #-

"

,-
"

&
⇒ 𝜅= ≡

=
=01

=1 + !
"> "

,-
"

1"
1 − #-

"

,-
"

&

Deviation in 𝜆555 enhanced by a factor ,-
"

1"22
01 1 − #-

"

,-
" w.r.t. to other Higgs couplings!



Calculating BSM corrections to 𝜅"
• Need to calculate Higgs three-point function:

• Alternatively, employ zero momentum approximation and then use effective potential:

• Using 𝑉.//, 1L and 2L corrections have been calculated in various BSM Higgs models (see e.g. 
[Braathen,Kanemura,1911.11507]).



Calculating BSM corrections to 𝜅" [Braathen,Kanemura,1911.11507]

𝛿𝑅 = 𝜅2 − 1

• Large non-decoupling corrections found in several 
BSM models.

• Analysis assumed that all BSM masses are equal 𝑀<.
• No phenomenological analysis has been performed.

Idea of this work:

Can we constrain these models based on the large 
corrections to 𝜅2?



2HDM parameter scan

• We checked for
• vacuum stability and boundedness-from-below,
• NLO perturbative unitarity, [Grinstein et al., 1512.04567; Cacchio et al., 1609.01290]

• electroweak precision observables (calculated at the 2L level using THDM_EWPOS), 
[Hessenberger & Hollik,1607.04610,2207.03845]

• SM-like Higgs measurements via HiggsSignals, [Bechtle et al., 2012.09197]

• direct searches for BSM scalars via HiggsBounds, [Bechtle et al., 2006.06007]

• b-physics constraints.

• Most constraints checked using ScannerS. [Mühlleitner et al., 2007.02985]

• For each point passing the constraints, we calculate 𝜅2 at the 1L and 2L level (𝜅2
(!) and 𝜅2

(&)). [Braathen,Kanemura,1911.11507]



2HDM parameter scan — results 
(showing only points passing all constraints mentioned on previous slide)

• Largest corrections for 𝑚G ≃ 𝑚5±, 𝑚5 < 𝑚5± and 𝑚5 ≃ 𝑚5±, 𝑚G < 𝑚5± (𝜅2 of up to 9). 
• 2L corrections have sizeable impact (up to 70%).



Can we apply the experimental constraints on 𝜅!?
Assumptions of experimental bound:

• All other Higgs couplings are SM-like. 

Ø 2HDM in the alignment limit with heavy BSM masses.

• Higgs-boson pair production only deviates from the SM via a modified trilinear Higgs coupling.

Ø No resonant contribution because 𝐻ℎℎ coupling is zero in alignment limit.

Ø Other BSM contributions to ℎℎ production?

Ø We include the all corrections leading in the large coupling 𝑔--<< at the NLO and NNLO level.

∝ 𝒪(𝑦H&𝑔--<<& ) (not included) ∝ 𝒪(𝑦H𝑔--<<@ ) (included)



Momentum dependence



The Higgs mass as a precision observable
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[Slavich, HB et al., 2012.15629]

• Also the Higgs mass is a precision observable useful for 
BSM phenomenology.

• In SUSY models, the Higgs mass can be predicted in 
terms of the model parameters.

• MSSM: 𝑀- ∼ 125 GeV ⇒ stop masses ≿ 2 TeV.

• Experimental precision significantly better than 
remaining theoretical uncertainty.                                   
(∼ 0.5 GeV for 𝑋'/𝑀( = 0 and ∼ 1 GeV for 𝑋'/𝑀( = 6)

Stop mixing parameter

Stop mass scale


