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time?
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• Most couplings are measured with ∼ 10% precision.                                                                    
→ BSM effects could be hidden within the uncertainties.

• Some Higgs properties are only weakly constrained.

• Existing measurements already provide strong guidance for BSM model 
building.

• Many types of BSM physics can be linked to the Higgs.

⇒ Strong motivation for on-going and future Higgs precision programs.
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What is still left to explore?
Have we found the SM Higgs?
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What we don’t know about the Higgs (yet)

Many Higgs properties only weakly constrained, e.g.:

• Higgs width/BSM decay channels,                                                                     
SM: Γ! ≃ 4.1 MeV,

• Higgs potential,                                                      
SM: 𝑉 Φ = − "

#
𝑚!
#Φ$Φ+ %!

"

#&"
Φ$Φ #

,
• light Yukawas,                                                                     

SM: 𝑦' ∝ 𝑚'/𝑣,
• Higgs CP properties,                                              

SM: Higgs is CP-even.          
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Future collider?

Future collider? Not yet, but soonFuture collider?
• Established existence of 3rd generation Yukawas.
• Also first evidence for 2nd generation muon 

coupling.
• Constraining the other Yukawa couplings to their 

SM values will be difficult even in the future.

Ideas?Ideas?

What do we know about their CP structure?
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The CP nature of the Higgs boson

• Motivation: new sources of CP violation are necessary to explain the baryon asymmetry of the Universe.

• We know the Higgs boson is not a CP-odd state but it could be a CP-admixed state.

• Parameterize CP-odd interactions using EFT framework by adding dimension-6 operators to the SM:

• Gauge boson interactions: 𝛷$𝛷𝑊() :𝑊() , 𝛷$𝛷𝐵() =𝐵(), 𝛷!𝛷𝐵"# =𝐵"#, 𝛷!𝛷𝐺"# =𝐺"#

• Fermion interactions: 𝛷!𝛷 𝑄𝑢:𝛷 ,𝛷!𝛷 𝑄𝑑Φ ,𝛷!𝛷 𝑄𝑒𝛷 with complex Wilson coefficients
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What is the current status?
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Fermions

• CP structure of 𝐻𝑊𝑊, 𝐻𝑍𝑍 interactions is comparably well-
constrained. [ATLAS,CMS:..,2002.05315, 2104.12152,2109.13808,2202.06923,2205.05120] 

• The CP structure of the 𝐻𝑓 ̅𝑓, 𝐻𝛾𝛾, 𝐻𝑔𝑔 interactions is far less 
known.

• Most BSM theories predict largest CP violation in 
𝐻𝑓 ̅𝑓, 𝐻𝛾𝛾, 𝐻𝑔𝑔 couplings.
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constraints

Ideas?Ideas?

Ideas? Ideas? Ideas?

Ideas?

HL-LHC?

Fermions

What about future colliders?

• CP structure of 𝐻𝑊𝑊, 𝐻𝑍𝑍 interactions is comparably well-
constrained. [ATLAS,CMS:..,2002.05315, 2104.12152,2109.13808,2202.06923,2205.05120] 

• The CP structure of the 𝐻𝑓 ̅𝑓, 𝐻𝛾𝛾, 𝐻𝑔𝑔 interactions is far less 
known.
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Limits set on:

New ideas/techniques are needed to make the most of current and future data!

[Snowmass Higgs CP report, 2205.07715]



Constraining CP violation

• Pure CP-odd observables:
• Unambiguous markers for CP violation: e.g. 

• EDM measurements,
• decay angle in 𝐻 → 𝜏!𝜏".

• Typically requires to access polarization of 
particles coupling to the Higgs.

• Experimentally difficult for many LHC processes 
(i.e., top-associated Higgs production).

• Almost impossible for 𝐻 → 𝑏%𝑏 or 𝐻 → 𝜇!𝜇"
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CP violation in the Higgs sector can be constrained using:



Constraining CP violation

• Pure CP-even observables:
• Many rate measurements are indirectly sensitive: e.g. 
𝑔𝑔𝐻.

• Subtle effects in kinematic distributions  of CP-even 
observables (e.g. 𝑝$,& in 𝑡 ̅𝑡𝐻).

• Deviations from SM need not be due to CP violation                                                                      
→ degeneracies with non-CPV BSM effects.
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CP violation in the Higgs sector can be constrained using:

[HB et al., 2007.08542]

[HB et al., to appear]



Constraining CP violation

• Multivariate analyses:
• Exploit full kinematic information 

using machine learning.
• Often mixes CP-even and CP-odd 

observables.
• High sensitivity.
• Can be difficult to reinterpret.

Henning Bahl 14

CP violation in the Higgs sector can be constrained using:

Exploit and combine all three complementary approaches to learn as much 
as possible!

[e.g. simulation-based inference, Brehmer et al.,1805.00013, …]



Improving LHC CP measurements
Higgs + 2 jet production as an exemplary process
[HB et al., 2309.03146]

Henning Bahl 15



Higgs + 2jet production (ggF2j)

Why is ggF2j production interesting for Higgs CP tests? [Hankele, Klamke, Zeppenfeld `06,`07, …]

• Gluon fusion is the largest Higgs production channel → wealth of data.

• Two additional jets in the final state allow to construct CP-odd observables                                                    

→ direct CP test.

• Allows for indirect constraint of CP character of top-Yukawa interaction.
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heavy-top limit



ggF2j— amplitude structure

• Effective Lagrangian (after integrating out the top quark, SM: 𝑐' = 1, 𝑐̃' = 0):

ℒ&'' = − (
)*
𝐻 − +#

,-
𝑐'𝐺"#. 𝐺.,"# +

+#
/-
𝑐̃'𝐺"#. =𝐺.,"# (heavy top limit enforced by 𝑝$ cut)

• Amplitude splits up into three pieces:

• Existing measurements focus on CP-odd Δ𝜙00 observable to constrain interference term.
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Analysis flow

• Focus on 𝐻 → 𝛾𝛾 decay channel.
• Two signal regions: ggF2j-SR, VBF-SR
• For each signal region: train classifier to distinguish signal (ggF2j) from background (𝑉𝐵𝐹, 𝑉𝐻).
• Then, train two classifiers to distinguish 

• ℳ4546
/ vs. ℳ788

/ → 𝑃( ℳ4546
/ ), and 

• (positive intf.) vs (negative intf) → 𝑃(Interf. ).
• Build two observables: CP-even 𝑃(𝑐'/) and CP-odd 𝑃: − 𝑃;.
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ggF2j signal region

• ggF2j signal region outperforms VBF signal region (not shown),
• Δ𝜙00 limit is significantly worse.

Henning Bahl 5



Interpretation in terms of top-Yukawa coupling

Henning Bahl 5

• Effective Lagrangian (SM: 𝑐< = 1, 𝑐̃< = 0)

• If no colored BSM particles at low energies:        
𝑐' ≃ 𝑐<, 𝑐̃' ≃ 𝑐̃<



Interpretation in terms of top-Yukawa coupling

• Competitive with global LHC fit (which is dominated by 𝑔𝑔𝐻 XS and 𝐻 → 𝛾𝛾 BR constraints).

• Less model-dependent than global fit to mainly XS measurements.

Henning Bahl 5

• Effective Lagrangian (SM: 𝑐< = 1, 𝑐̃< = 0)

• If no colored BSM particles at low energies:        
𝑐' ≃ 𝑐<, 𝑐̃' ≃ 𝑐̃<



Complementarity with EDM 
measurements
What do EDM measurements tell us about the Higgs CP nature?
[HB et al., 2202.11753; see also Brod et al., 2203.03736]

Henning Bahl 21



Complementarity with EDM constraints

• Several EDMs are sensitive to CP violation in the Higgs sector.

• Consider here only constraints from theoretically cleanest EDM: the electron EDM.                                     
[Brod et al.,1310.1385,1503.04830, 1810.12303, 2203.03736;Panico et al.,1810.09413;Altmannshofer et al.,2009.01258] 

• Limit by ACME collaboration: 𝑑#$%&' = 1.1 ⋅ 10"()𝑒 cm at 90% CL. [ACME, Nature 562 (2018) 7727, 355-360]

•

*!
*!"#$%

≃ 𝑐# 870.0𝑐̃+ + 3.9𝑐̃, + 3.4𝑐̃- +⋯ + 𝑐̃#(610.1𝑐+ + 3.1𝑐, + 2.8𝑐- − 1082.6𝑐. +⋯)

• Bounds strongly depend on assumptions about electron-Yukawa coupling.
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Complementarity with EDM constraints: 𝑡 and 𝜏

Henning Bahl 23

Very strong constraints on CP-odd 
top-Yukawa coupling.

Ratio of baryon asymmetry 
to observation 

(optimistic upper bound)
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Complementarity with EDM constraints: 𝑡 and 𝜏

Henning Bahl 23

Very strong constraints on CP-odd 
top-Yukawa coupling.

CP-odd 𝜏 coupling can contribute significantly 
to baryon asymmetry.

→ updated EDM measurement almost 
completely excludes green area

[Roussy et al., 2212.11841]

Ratio of baryon asymmetry 
to observation 

(optimistic upper bound)



EDM > LHC?
[see also Fuchs et al.,1911.08495]
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EDM > LHC?
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EDM > LHC?
[see also Fuchs et al.,1911.08495]
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CP-insensitive 𝐻 → 𝜇:𝜇; rate 
measurement outperforms EDM 

constraint.

No.



Dependence on electron-Yukawa coupling

Henning Bahl 25
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• Electron Yukawa-coupling only very weakly 
constrained (𝑔# ≤ 268 at 95% CL).

• If 𝑐# smaller, eEDM significantly weakened.

• Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that 𝑑# < 𝑑#$%&'.

• Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.
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• Electron Yukawa-coupling only very weakly 
constrained (𝑔# ≤ 268 at 95% CL).

• If 𝑐# smaller, eEDM significantly weakened.

• Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that 𝑑# < 𝑑#$%&'.

• Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.

LHC bounds important since they do not 
depend on 1st gen. Yukawa couplings.
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• The Higgs is not the last missing puzzle piece of the SM but 
could be the link to many BSM scenarios.

• Many Higgs properties still need to be determined:
• Light Yukawas,
• Higgs CP structure,
• Higgs potential,
• Higgs width,
• …

• Higgs CP nature:
• The Higgs boson could be a CP-admixed state.
• Novel analysis methods promise significant 

improvements.
• Important interplay between LHC and EDM 

measurements.



Conclusions

Henning Bahl 27

• The Higgs is not the last missing puzzle piece of the SM but 
could be the link to many BSM scenarios.

• Many Higgs properties still need to be determined:
• Light Yukawas,
• Higgs CP structure,
• Higgs potential,
• Higgs width,
• …

• Higgs CP nature:
• The Higgs boson could be a CP-admixed state.
• Novel analysis methods promise significant 

improvements.
• Important interplay between LHC and EDM 

measurements.



Conclusions

Henning Bahl 27

• The Higgs is not the last missing puzzle piece of the SM but 
could be the link to many BSM scenarios.

• Many Higgs properties still need to be determined:
• Light Yukawas,
• Higgs CP structure,
• Higgs potential,
• Higgs width,
• …

• Higgs CP nature:
• The Higgs boson could be a CP-admixed state.
• Novel analysis methods promise significant 

improvements.
• Important interplay between LHC and EDM 

measurements.



Conclusions

Henning Bahl 27

• The Higgs is not the last missing puzzle piece of the SM but 
could be the link to many BSM scenarios.

• Many Higgs properties still need to be determined:
• Light Yukawas,
• Higgs CP structure,
• Higgs potential,
• Higgs width,
• …

• Higgs CP nature:
• The Higgs boson could be a CP-admixed state.
• Novel analysis methods promise significant 

improvements.
• Important interplay between LHC and EDM 

measurements.

The Higgs will keep us busy for many decades to come!
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Higgs width constraints

Henning Bahl 29

[ATLAS, 2304.01532]



Starting point — 1 flavor fits: 𝜏
[HB et al.,2202.11753]

Henning Bahl 30

• Without CMS 𝐻 → 𝜏𝜏 CP analysis ring-like structure since Γ&→>> ∝ 𝑐>/ + 𝑐̃>/ (similar for muon-Yukawa 
coupling).

• With CMS 𝐻 → 𝜏𝜏 CP analysis, we can differentiate between CP-even and CP-odd tau-Yukawa coupling.

Without CMS 𝐻 → 𝜏𝜏 CP analysis. With CMS 𝐻 → 𝜏𝜏 CP analysis.



1 flavor fits: 𝑏
[HB et al.,2202.11753]

Henning Bahl 31

• Ring-like structure since Γ&→?? ∝ 𝑐?/ + 𝑐̃?/.
• Bottom-Yukawa coupling, however, also affects 𝑔𝑔𝐻 rate:

• @$$→&
@$$→&
'( ≃ 1.1𝑐</ + 2.6𝑐̃</ − 0.1𝑐<𝑐? +⋯ .

• Negative 𝑐? values disfavored since 𝑔𝑔𝐻 rate is enhanced by 
∼ 20%.

• Direct bottom CP measurements very difficult.

Indirect CP constraints will remain important for the bottom-Yukawa coupling.



Top-Yukawa coupling
• Probe top-Yukawa coupling at the loop-level via 𝑔𝑔 → 𝐻, 𝐻 → 𝛾𝛾, gg → 𝑍𝐻:

• 𝜅/( ≡
0&&→(
0&&→(
)$ ≃ 1.1𝑐+( + 2.6𝑐̃+( − 0.1𝑐+𝑐, − 0.2𝑐̃+𝑐̃, +⋯, disfavors large 𝑐̃+.

• 𝜅1( ≡
2(→**
2(→**
)$ ≃ 1.6𝑐.( − 0.7𝑐.𝑐+ + 0.1𝑐+( + 0.2𝑐̃+( +⋯, disfavors negative/small 𝑐+.

•

0&&→+(
0&&→+(
)$ ≃ 0.5𝑐+( + 0.5𝑐̃+( + 2.4𝑐.( − 1.9𝑐.𝑐+…, disfavors negative 𝑐+.

Henning Bahl 32



Top-Yukawa coupling
• Probe top-Yukawa coupling at the loop-level via 𝑔𝑔 → 𝐻, 𝐻 → 𝛾𝛾, gg → 𝑍𝐻:

• 𝜅/( ≡
0&&→(
0&&→(
)$ ≃ 1.1𝑐+( + 2.6𝑐̃+( − 0.1𝑐+𝑐, − 0.2𝑐̃+𝑐̃, +⋯, disfavors large 𝑐̃+.

• 𝜅1( ≡
2(→**
2(→**
)$ ≃ 1.6𝑐.( − 0.7𝑐.𝑐+ + 0.1𝑐+( + 0.2𝑐̃+( +⋯, disfavors negative/small 𝑐+.

•

0&&→+(
0&&→+(
)$ ≃ 0.5𝑐+( + 0.5𝑐̃+( + 2.4𝑐.( − 1.9𝑐.𝑐+…, disfavors negative 𝑐+.

Henning Bahl 32



Top-Yukawa coupling
• Probe top-Yukawa coupling at the loop-level via 𝑔𝑔 → 𝐻, 𝐻 → 𝛾𝛾, gg → 𝑍𝐻:

• 𝜅/( ≡
0&&→(
0&&→(
)$ ≃ 1.1𝑐+( + 2.6𝑐̃+( − 0.1𝑐+𝑐, − 0.2𝑐̃+𝑐̃, +⋯, disfavors large 𝑐̃+.

• 𝜅1( ≡
2(→**
2(→**
)$ ≃ 1.6𝑐.( − 0.7𝑐.𝑐+ + 0.1𝑐+( + 0.2𝑐̃+( +⋯, disfavors negative/small 𝑐+.

•

0&&→+(
0&&→+(
)$ ≃ 0.5𝑐+( + 0.5𝑐̃+( + 2.4𝑐.( − 1.9𝑐.𝑐+…, disfavors negative 𝑐+.

Henning Bahl 32



Top-Yukawa coupling
• Probe top-Yukawa coupling at the loop-level via 𝑔𝑔 → 𝐻, 𝐻 → 𝛾𝛾, gg → 𝑍𝐻:

• 𝜅/( ≡
0&&→(
0&&→(
)$ ≃ 1.1𝑐+( + 2.6𝑐̃+( − 0.1𝑐+𝑐, − 0.2𝑐̃+𝑐̃, +⋯, disfavors large 𝑐̃+.

• 𝜅1( ≡
2(→**
2(→**
)$ ≃ 1.6𝑐.( − 0.7𝑐.𝑐+ + 0.1𝑐+( + 0.2𝑐̃+( +⋯, disfavors negative/small 𝑐+.

• 0&&→+(
0&&→+(
)$ ≃ 0.5𝑐+( + 0.5𝑐̃+( + 2.4𝑐.( − 1.9𝑐.𝑐+…, disfavors negative 𝑐+.

Henning Bahl 32



Top-Yukawa coupling
• Probe top-Yukawa coupling at the tree-level via top-associated Higgs production:

• Three subchannels: 𝑡 ̅𝑡𝐻, 𝑡𝐻, 𝑡𝑊𝐻.
• Difficult to disentangle experimentally.
• Consider combined signal strength

𝜇+3!++̅3!+53 =
0 +3!++̅3!+53

0,- +3!++̅3!+53
.
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1 flavor fits: 𝑡
[HB et al.,2007.08542]

Henning Bahl 34

• 𝑔𝑔𝐻 and 𝐻 → 𝛾𝛾 total rates strongly constraint CP violation in top-Yukawa coupling.
• Relies on assumption that no other BSM physics affect 𝑔𝑔𝐻 and 𝐻 → 𝛾𝛾.
• What happens if we allow 𝜅1 and 𝜅/ to float freely? 



1 flavor fits: 𝑡 — free 𝜅!, 𝜅"
[HB et al.,2007.08542]
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• Colored and charged BSM particles can cancel the effect of a modified top-Yukawa coupling.
• Top-associated Higgs production is a more model-independent but weaker probe.

≥ 2 flavor fits ⇒ only weak correlations between different Yukawa couplings.



2 flavor fits: 𝑡 and 𝑏
[HB et al.,2202.11753]
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• 𝑔𝑔𝐻 rate correlates top and bottom Yukawa couplings: 𝜅'/ ≃ 1.1𝑐</ + 2.6𝑐̃</ − 0.1𝑐<𝑐? − 0.2𝑐̃<𝑐̃?.
• Correlation of CP-odd coupling modifiers weaker since bounds on 𝑐̃< are stronger.



Charm- and muon-Yukawa couplings

Henning Bahl 37



Global modification fits

Henning Bahl 38

• Universal fermion coupling modifiers: 𝑐A = 𝑐< = 𝑐? = ⋯ = 𝑐>, 𝑐̃A = 𝑐̃< = 𝑐̃? = ⋯ = 𝑐̃>.
• Dominated by constraints on top-Yukawa coupling.
• Additional varying 𝑐B reopens negative 𝑐A range.



“Global” ttH CPV fit
Most studies so-far concentrate on fitting CP character of a single Higgs coupling, e.g.

ℒC7D;EFG = −
𝑦<HI

2
̅𝑡 𝑐< + 𝑖𝛾J𝑐̃< 𝑡𝐻

In SMEFT, this coupling can be generated by rewriting:

There are, however, further “Higgs” operators which contribute to e.g. 𝑡 ̅𝑡𝐻:

Interplay of the different operators not well understood if CPV is present.
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“Global” ttH CPV fit
Most studies so-far concentrate on fitting CP character of a single Higgs coupling, e.g.

ℒC7D;EFG = −
𝑦<HI

2
̅𝑡 𝑐< + 𝑖𝛾J𝑐̃< 𝑡𝐻

In SMEFT, this coupling can be generated by rewriting:

There are, however, further “Higgs” operators which contribute to e.g. 𝑡 ̅𝑡𝐻:

Interplay of the different operators not well understood if CPV is present.

𝑂+6 = (𝜙7𝜙)( %𝑄𝑡 Q𝜙)

𝑂+8 = %𝑄𝜎9:𝑇;𝑡 Q𝜙𝐺9:; ,

𝑂68 = (𝜙7𝜙) 𝐺9:; 𝐺;9: ,
𝑂6 <8 = (𝜙7𝜙) 𝐺9:; Q𝐺;9: .

[Maltoni,Vryonidou,Zhang,1607.05330]
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Correlation with other Higgs channels
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[Maltoni,Vryonidou,Zhang,1607.05330]

𝑔𝑔 → 𝐻 𝑔𝑔 → 𝐻𝐻𝑔𝑔 → 𝐻𝑗(+𝐻𝑗𝑗)

(+ interplay with bottom Yukawa etc.)
[see e.g. HB et al., ]



Correlation with other Higgs channels
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[Maltoni,Vryonidou,Zhang,1607.05330]

𝑔𝑔 → 𝐻 𝑔𝑔 → 𝐻𝐻𝑔𝑔 → 𝐻𝑗(+𝐻𝑗𝑗)

Comb. fit

→ Would be great to get full likelihood information!

[CMS, 2205.05120]
(+ interplay with bottom Yukawa etc.)

[see e.g. HB et al., ]



Baryon asymmetry of the Universe

• Different techniques used in the literature to calculate BAU 𝑌=: 
• Vev-insertion approach (VIA),

[Huet&Nelson,9504427,9506477;Carena et al., 9603420;Riotto, 9712221;Lee et al.,0412354;Postma et al.,2206.01120]

• WKB (or FH) approximation.
[Joecy et al.,9410282;Kainulainen et al.,0105295, 0202177;Prokopec et al., 0312110, 0406140;Konstandin et al.,1302.6713, 1407.3132]

• VIA approach yields consistently higher results by orders of magnitude.

• We use VIA approach with bubble wall parameters close to optimal values for 𝑌=:                                
[de Vries,1811.11104;Fuchs et al.,2003.00099,2007.06940;Shapira,2106.05338]

𝑌=
𝑌=>?@

≃ 28𝑐̃+ − 0.2𝑐̃, − 11𝑐̃- +⋯
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𝜂 ≡ 𝑌! [Basler et al.,2108.03580]

𝑌= values should be regarded as upper bound on what is theoretically achievable.



2 flavor results: 𝑡 and 𝑏
[HB et al.,2202.11753]
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• Presence of more than one CP-violating coupling allows for cancellation in eEDM.

→ Larger values for 𝑌=/𝑌=>?@ can be reached.

Maximal 𝑌K/𝑌K7LM within LHC 
and eEDM constraints:


