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CP violation in the Higgs sector

* New sources of CP violation are necessary to explain the baryon asymmetry of

the Universe.

* One possibility: CP violation in the Higgs sector.

Focus of this talk: Constraining CP violation in the top-Yukawa interaction at the LHC.

e CP violation in the Higgs sector can be constrained by
* demanding significant contribution to the baryon asymmetry (BAU) /
* electric dipole measurements,

e collider measurements.
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Collider constraints @ loop level A——

SM
* Effective model: Liop-yuk = —yt—f(ct + 1y5C) tH.

V2

* Probe top-Yukawa coupling at the loop-level via gg — H, H - yy:
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Collider constraints @ tree level

* Tree-level constraints: top associated Higgs production

* Direct access to top-Yukawa interaction — less model dependence.

* Three sub channels contribute: ttH, tH (or tHq), tWH.
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Exploiting the kinematic information e ses o

Exemplary kinematic distributions for top-associated Higgs production
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How to best exploit the full available information to constraint top-Yukawa interaction?

— Focused on top-associated Higgs production with H — yy (demanding at least one lepton).
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Machine-learning based inference

[Brehmer et al.,1906.01578,1805.12244,1805.00013,1805.00020,1808.00973]
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* Allows to extract the full available information (maximal sensitivity).
* Use implementation in public code MadMiner
designed to work with MadGraph + Pythia + Delphes.
* Defined 47 observables as input for neural network.
Averaged over ensemble of six neural networks to minimize ML uncertainty.
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Expected limits at the (HL-)LHC

LHC-SM @ 139 fb—! LHC - SM @ 300 fb~!
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e Assumed here that Higgs—vector-boson coupling is SM-like (c¢;y = 1).
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* Additional variation of ¢, (and of the renormalization scale) only slightly weakens bounds.
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Comparison of constraints on CP-violating phase

—2AInL
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* CP-violating phase a;:
tana = ¢;/c;

* Exploiting full kinematic information
significantly strengthen limits.

* Including full-hadronic channel and other
Higgs decay channels will allow to further
improve sensitivity.



Complementarity with eEDM and BAU sseizm0s

Electron EDM
* Several EDMs are sensitive to CP violation in the Higgs sector.

* We consider only the electron EDM.
[Brod et al.,"13,'15, "18,22;Panico et al., 18;Altmannshofer et al., 20]

. ﬁ ~ 870c,é, + €,(610c, — 1082.6¢y) + -+

* Bounds strongly depend on assumptions about electron-
Yukawa coupling.

BAU

 Different techniques used in the literature to calculate BAU Yg: vev-insertion approach (VIA) and WKB
approximation.
[Huet&Nelson, 95; Carena et al.,"96;Riotto, 97; Lee et al.,’04; Joecy et al.,"94; Kainulainen et al.,’01,’02; Prokopec et al.,"03,04;Konstandin et al.,"13, 14, Basler, 21]

* VIA approach yields consistently higher results by orders of magnitude.

* We use VIA approach with bubble wall parameters close to optimal values for Yz — Yg values should be

regarded as upper bound on what is theoretically achievable. [de vries et al., '18; Fuchs et al., 20; Shapira, 21]
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Constraints on top-Yukawa coupling
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Dependence on electron-Yukawa coupling
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Electron Yukawa-coupling only very weakly
constrained (g, < 268 at 95% CL).

If c, smaller, eEDM significantly weakened.

Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that d, < d2“ME.

Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.



Dependence on electron-Yukawa coupling
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* If ¢, smaller, eEDM significantly weakened.
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* Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that d, < d2“ME.

* Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.
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Dependence on electron-Yukawa coupling
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* Electron Yukawa-coupling only very weakly
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* If ¢, smaller, eEDM significantly weakened.

* Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that d, < d2“ME.
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generation quark-Yukawa couplings.

LHC bounds important since they do not

depend on 15t gen. Yukawa couplings.
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Conclusions

Initial question: how well can we constrain

CP violation in the Higgs—top-quark interaction?

LHC constraints:

* gg — H and H — yy tightly constrain CP violation in the top-Yukawa couplings
— . indirectly.

g * Top-associated Higgs production is prime candidate to reduce model dependence.

» Strong constraints from top-associated Higgs production can be expected if full
kinematic information is exploited.

||

= EDM and baryogenesis constraints:

)  EDM bounds put very strong bounds on a CP-violating top-Yukawa interaction.

* Only very small contribution to BAU realizable

 EDM interpretation, however, strongly depends on first generation Yukawa couplings.

Thanks for your attention!
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Appendix



observable condition

N, > 2 (with |n| < 2.5 and pr > 25 GeV)
(¥F1,P%2) > (35,25) GeV

Moy [105 — 160] GeV

(P,1/ ™My, P12/ Myy) > (0.35,0.25)

Ny > 1 (with |n| < 2.5 and pr > 15 GeV)
Mgy [80,100] GeV vetoed if same flavour

Njet > 1 (with |n| < 2.5 and pr > 25 GeV)

Table 1: Summary of preselection cuts.
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Interpretation in terms of CP-violating angle
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Variation of ¢y

LHC - SM @ 300 ﬂa_
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and renormalization scale

LHC-SM@300fb~"
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Limits in case of deviation from SM

LHC - CP-mix @ 300 fb 1

CP-mix: ¢, = 1,¢c; = 0.5, ¢y = 1.
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Expe rimental studies s 2004.04545,cms 210412152

CMS 137 fb" (13 TeV)
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Which observables drive these constraints?

* Use Fisher matrix to evaluate information for different observables

ooy | 9log prn ({2 }16) 0log prun ({7 }(6)
I;(0) =E [ 80 90,

e E.g., for SM point we have

] ; with COV(é|0)ij Z 151(9),
0

914 13.7 0.1 cy
Iif;-ﬂl(SM) ~ | 13.7 108.2 —-0.1 |, with the parameter space spanned by Cy
0.1 —-0.1 0.004

Ct

e Evaluate Fisher matrix for various 1D and 2D histograms, full likelihood, XS only, kinematics only.



Fisher information for SM scenario
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c; not constrained by rate.

Use of kinematic information
mandatory.

No single observable able to
capture information about c;.

21



Fisher information for CP-mixed scenario
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Fisher information for CP-mixed scenario

ttH +tH +
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For CP-mixed scenario, Higgs pr
captures sizeable amount of
information on c;.

l

pr binned STXS measurements
useful to constrain CP violation
in the top-Yukawa coupling.
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