Constraining CP-violation in the Higgs-top-quark interaction using machine-learning-based inference

# Henning Bahl

based on 2110.10177

In collaboration with  $S.\ Brass$ 



THE UNIVERSITY OF CHICAGO

LHC Top WG meeting, June 17<sup>th</sup>, 2022

# CP violation in the Higgs sector

- New sources of CP violation are necessary to explain the baryon asymmetry of the Universe.
- One possibility: CP violation in the Higgs sector.

Is the SM-like Higgs boson a CP-admixed state?

- CP violation in the Higgs sector can be constrained by
  - demanding significant contribution to the baryon asymmetry (BAU)
  - electric dipole measurements,
  - collider measurements.

Henning Bahl









# The CP nature of the Higgs boson

- CP violation in *HVV* couplings already tightly constrained via VBF and  $pp \rightarrow VH$  production as well as  $H \rightarrow 4l$  decay. [ATLAS,CMS:..,2002.05315, 2104.12152,2109.13808,2202.06923,2205.05120]
- CP-violating HVV coupling can only be induced at the loop level → expected to be small in most BSM theories.
- CP violation in Higgs—fermion couplings can be induced at the tree level.

Focus of this talk: Constraining CP violation in the Higgs-top-quark interaction.

 $H^{\mathcal{CP}\text{-even}} - H^{\mathcal{CP}\text{-odd}}$ 

# Constraining CP violation

CP violation in the Higgs sector can be constrained using:

- Pure CP-odd observables:
  - Unambiguous markers for CP violation: e.g.
    - EDM measurements,
    - decay angle in  $H \rightarrow \tau^+ \tau^-$ .
  - Experimentally difficult for top-Yukawa coupling since top-quarks need to be reconstructed.





# Constraining CP violation

CP violation in the Higgs sector can be constrained using:

- Pure CP-even observables:
  - Many rate measurements are indirectly sensitive: e.g.
    - Higgs production via gluon fusion,
    - $H \rightarrow \gamma \gamma$ ,
    - Top-associated Higgs production.
  - Deviations from SM need not be due to CP violation.



# Constraining CP violation

CP violation in the Higgs sector can be constrained using:

- Kinematic information:
  - Effectively mixes CP-even and CP-odd observables.
  - High sensitivity expected since all available information is used.
  - Can be difficult to reinterpret if multivariate analysis is used.





Exploit all three complementary approaches to learn as much as possible!

This talk: kinematic analysis of top-associated Higgs production.

## Effective model

• Modify Yukawa interactions by (e.g. generated by dim-6  $(\phi^{\dagger}\phi)Q_L\tilde{\phi}t_R$  operator)

$$\mathcal{L}_{\text{top-yuk}} = -\frac{y_t^{\text{SM}}}{\sqrt{2}} \bar{t} \left( c_t + i\gamma_5 \tilde{c}_t \right) t H.$$

• Allow moreover for CP-conserving modification of HVV couplings (relevant for tH and tWH)

$$\mathcal{L}_V = c_V H\left(\frac{M_Z^2}{v} Z_\mu Z^\mu + 2\frac{M_W^2}{v} W_\mu^+ W^{-\mu}\right)$$

• SM:  $c_t = 1$ ,  $\tilde{c}_t = 0$ ,  $c_V = 1$ .

# Top-associated Higgs production

- Top-associated Higgs production unique tree-level probe of top-Yukawa coupling.
- Three subchannels:  $t\bar{t}H$ , tH, tWH.
- *tH* and *tWH* negligible in the SM.
- Non-zero CP-odd top-Yukawa coupling can significantly enhance tH and tWH production.
- Non-zero CP-odd top-Yukawa coupling significantly affects kinematics.



Model-independent separation of sub-channels difficult.  $\implies$  Combined analysis!

# Kinematic analysis of top-associated Higgs prod.

- Multivariate analyses exploiting kinematic information:
  - High sensitivity expected,
  - BDT analysis, [CMS,2003.10866;ATLAS,2004.04545]
  - matrix-element approach. [e.g. Goncalves et al,1804.05874;Kraus et al.,1908.09100]



#### How to best exploit the full available information to constraint top-Yukawa interaction?

# Machine-learning based inference

[Brehmer et al., 1906.01578, 1805.12244, 1805.00013, 1805.00020, 1808.00973]



- Allows to extract the full available information (maximal sensitivity).
- No information loss due to binning (as for BDT analysis).
- No approximation of shower and detector effects (as for matrix-element approach).
- Use implementation in public code MadMiner.
- Works with MadGraph + Pythia + Delphes but other tools could also be interfaced. [Brehmer,Kling,Espejo,Cranmer,1907.10621]

# ML-based inference: setup

- Focus on top-associated Higgs production  $(t\bar{t}H,tH,tWH)$  with  $H \rightarrow \gamma\gamma$ .
- We require at least one lepton  $\rightarrow$  consider ZH, WH as backgrounds.
- Non-Higgs backgrounds are assumed to be subtracted by fit to smoothly falling  $m_{\gamma\gamma}$  distribution.
- Free parameters:  $c_t$ ,  $\tilde{c}_t$ , and  $c_V$  (+ renormalization scale  $\mu_R$ ).
- Defined 47 observables used by neural network (photon, jet, lepton momenta, Higgs  $p_T$ , etc.).
- Averaged over ensemble of six neural networks to minimize ML uncertainty.
- $\Rightarrow$  Evaluate likelihoods for different luminosities at the LHC + HL-LHC.

# Expected limits at the (HL-)LHC

[HB&Brass,2110.10177]



- Can also interpret result in terms of mixing angle  $\tan \alpha = \tilde{c}_t/c_t$ .
- Additional variation of  $c_V$  (and of the renormalization scale) only slightly weakens bounds (~ 5° for 300 fb<sup>-1</sup>).

#### Limits in case of deviation from SM



• CP-mixed scenario:  $c_t = 1$ ,  $c_{\tilde{t}} = 0.5$ ,  $c_V = 1$ .

# Which observables drive these constraints?

• Use Fisher matrix to evaluate information for different observables

$$I_{ij}(\theta) = \mathbb{E}\left[\frac{\partial \log p_{\text{full}}(\{x\}|\theta)}{\partial \theta_i} \frac{\partial \log p_{\text{full}}(\{x\}|\theta)}{\partial \theta_j}\Big|_{\theta}\right], \quad \text{with} \quad \operatorname{cov}(\hat{\theta}|\theta)_{ij} \ge I_{ij}^{-1}(\theta),$$

 $\rightarrow$  The higher the information, the more precise we can measure a parameter.

- E.g., for SM point we have  $Information about c_V \qquad Information about c_t$   $I_{ij}^{\text{full}}(\text{SM}) \simeq \begin{pmatrix} 91.4 & 13.7 & 0.1 \\ 13.7 & 108.2 & -0.1 \\ 0.1 & -0.1 & 0.004 \end{pmatrix},$ Correlation of  $c_t$  and  $c_V$  Information about  $\tilde{c}_t$
- Evaluate Fisher matrix for various 1D and 2D histograms, full likelihood, XS only, kinematics only.

#### Fisher information for SM scenario



- $\tilde{c}_t$  not constrained by rate.
- Use of kinematic information mandatory.
- No single observable able to capture large part of information about *c̃*<sub>t</sub>.

### Fisher information for CP-mixed scenario



## Conclusions

Initial question: What is the best way to CP violation in the top-Yukawa coupling at the LHC?

- Focused on top associated Higgs production with  $H \rightarrow \gamma \gamma$ .
- Used machine-learning based inference approach allowing to extract full available information.
- Strong bounds expected especially at HL-LHC.
- Used Fisher information to compare sensitivity of different observables.
- For establishing a deviation from the SM, the Higgs  $p_T$  shape is a promising observable.
- Method easily extendible to other production/decay modes.

#### Thanks for your attention!

# Appendix

#### Experimental top CP studies [ATLAS, 2004.04545;CMS, 2104.12152]



| observable                                                          | condition                                                                       |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $\overline{N_{\gamma}}$                                             | $\geq 2 \text{ (with }  \eta  < 2.5 \text{ and } p_T > 25 \text{ GeV} \text{)}$ |
| $(p_{T,1}^\gamma, p_{T,2}^\gamma)$                                  | $\geq (35,25)~{ m GeV}$                                                         |
| $m_{\gamma\gamma}$                                                  | $[105-160]~{\rm GeV}$                                                           |
| $(p_{T,1}^\gamma/m_{\gamma\gamma},p_{T,2}^\gamma/m_{\gamma\gamma})$ | $\geq (0.35, 0.25)$                                                             |
| $N_\ell$                                                            | $\geq 1 \text{ (with }  \eta  < 2.5 \text{ and } p_T > 15 \text{ GeV})$         |
| $m_{\ell\ell}$                                                      | [80, 100] GeV vetoed if same flavour                                            |
| $N_{jet}$                                                           | $\geq 1 \text{ (with }  \eta  < 2.5 \text{ and } p_T > 25 \text{ GeV})$         |

 Table 1: Summary of preselection cuts.

#### Interpretation in terms of CP-violating angle



### Variation of $c_V$ and renormalization scale



#### Complementarity with eEDM and BAU [HB et al., 2202.11753]



