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CP violation in the Higgs sector

* New sources of CP violation are necessary to explain the baryon asymmetry of

the Universe.

* One possibility: CP violation in the Higgs sector.

Is the SM-like Higgs boson a CP-admixed state?

e CP violation in the Higgs sector can be constrained by §

* demanding significant contribution to the baryon asymmetry (BAU) /

* electric dipole measurements, —

e collider measurements.
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The CP nature of the Higgs boson

* CPviolation in HVV couplings already tightly constrained via VBF and pp — VH production as well

as H — 4l decay. [ATLAS,CMS:..,2002.05315, 2104.12152,2109.13808,2202.06923,2205.05120]

e CP-violating HVV coupling can only be induced at the loop level = expected to be small in most
BSM theories.

k|

e CP violation in Higgs—fermion couplings can be induced at the tree level. o el -

Focus of this talk: Constraining CP violation in the Higgs—top-quark interaction.
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Constraining CP violation

CP violation in the Higgs sector can be constrained using:

* Pure CP-odd observables:
e Unambiguous markers for CP violation: e.g.

* EDM measurements,
e decayangleinH - tt7~. —

* Experimentally difficult for top-Yukawa coupling
since top-quarks need to be reconstructed.
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Constraining CP violation

CP violation in the Higgs sector can be constrained using: y e [ +

* Pure CP-even observables:
* Many rate measurements are indirectly R T

sensitive: e.g. 20 - TNg 105
« Higgs production via gluon fusion, Lo oo 9.0
e H—> VY, Lo \'\\ \ 7.5
* Top-associated Higgs production. 00 f° 6.0
« Deviations from SM need not be due to CP <00 B ; iE
violation. —05 oy .
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Constraining CP violation

100
CP violation in the Higgs sector can be constrained using: =
Il
5 107!
 Kinematic information: 2
* Effectively mixes CP-even and CP-odd observables. B
=
* High sensitivity expected since all available i 75
information is used. :
* Can be difficult to reinterpret if multivariate o
analysis is USEd. 0 100 200 pT(ZB,)OFGeV] 400 500 600

‘ Exploit all three complementary approaches to learn as much as possible!

This talk: kinematic analysis of top-associated Higgs production.
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Effective model

« Modify Yukawa interactions by (e.g. generated by dim-6 (¢T¢)Q; Pty operator)

ySM B
‘Ctop—yuk — _t—t (Ct + 7"756t) tH.

V2

* Allow moreover for CP-conserving modification of HVV couplings (relevant for tH and tWH)

M} M?
Ly =cvH (—ZZ“Z“ + 2—WW,jw—“>
v (Y

« SM:ic,=1,6,=0,cp = 1.



Top-associated Higgs production

* Top-associated Higgs production
unique tree-level probe of top-

Yukawa coupling.

* Three subchannels: ttH, tH, tWH.
 tH and tWH negligible in the SM.

* Non-zero CP-odd top-Yukawa
coupling can significantly enhance tH

and tWH production.

* Non-zero CP-odd top-Yukawa
coupling significantly affects

kinematics.

Model-independent separation of sub-channels difficult. ==

Number of events (normalized)

[HB et al.,2007.08542]

1-lepton preselection

Vs =13 TeV, ATLAS card
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—SM

--- mixed CP-state, benchmark 1
--- mixed CP-state, benchmark 2

pure CP-odd

Combined analysis!
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Kinematic analysis of top-associated Higgs prod.

S
w

* Multivariate analyses exploiting
kinematic information:
* High sensitivity expected,
* BDT analysis,

[CMS,2003.10866;ATLAS,2004.04545]

* matrix-element approach.
[e.g. Goncalves et al,1804.05874;Kraus et al.,1908.09100]
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How to best exploit the full available information to constraint top-Yukawa interaction?
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Machine-learning based inference

[Brehmer et al.,1906.01578,1805.12244,1805.00013,1805.00020,1808.00973]

[Brehmer et al.,1805.00013]

l)}ll'éllll(‘l(‘l' 9 ;
l "
observable ‘:" O/ ' 01
latent 2 > T AN
\\)>>
) I‘(:I‘,,:' 0) >
argmin L{g| —» 7(z2|0) —>
. f(l < ) > g approximate
augmented data likelihood
ratio Ol
Simulation I Machine Learning Inference

Matrix element information

* Allows to extract the full available information (maximal sensitivity).

* No information loss due to binning (as for BDT analysis).

* No approximation of shower and detector effects (as for matrix-element approach).
 Use implementation in public code MadMiner.

* Works with MadGraph + Pythia + Delphes but other tools could also be interfaced.
[Brehmer,Kling,Espejo,Cranmer,1907.10621]
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ML-based inference: setup

* Focus on top-associated Higgs production (ttH,tH,tWH) with H - yy.

* We require at least one lepton — consider ZH, W H as backgrounds.

* Non-Higgs backgrounds are assumed to be subtracted by fit to smoothly falling m,,,, distribution.
* Free parameters: ¢, C¢, and ¢y (+ renormalization scale up).

* Defined 47 observables used by neural network (photon, jet, lepton momenta, Higgs pr, etc.).

* Averaged over ensemble of six neural networks to minimize ML uncertainty.

= Evaluate likelihoods for different luminosities at the LHC + HL-LHC.



Expected limits at the (HL-)LHC

[HB&Brass,2110.10177]

LHC - SM @ 139 fb~! i ,__ LHC-SM @300 fb" L0 o, HL-LHC - SM @ 3000 fb”"
1t 0.5}
107! 107t
E . \ g
N B a8 O ; | TS 00
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110~ 1072
|| 1 —0.5
10—3 ) ) i — _ | i .
25 = 0 1 2 107 1950 0.5 1.0 15 2.0
Ct Ct
o [0) o o) o
a < 60° at 95% CL a < 40° at 95% CL a < 22°at 95% CL

* Canalsointerpret result in terms of mixing angle tan a = ¢;/c;.

* Additional variation of ¢y (and of the renormalization scale) only slightly weakens bounds
(~ 5° for 300 fb™1).
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Limits in case of deviation from SM
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* CP-mixed scenario:c; = 1,¢cg = 0.5, ¢y = 1.
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Which observables drive these constraints?

* Use Fisher matrix to evaluate information for different observables

1,(6) = | RPN DB RalizIO) | e cov(010); > 151(6),
¢ 0

— The higher the information, the more precise we can measure a parameter.

* E.g., for SM point we have Information about ¢y

91.4] 13.7 ,4

I;3"(SM) ~ ( 13.7 [08.2 —0.1),

\ 0.1 —0.1 [0.004

Correlation of ¢; and ¢y Information about ¢,

Information about ¢;

* Evaluate Fisher matrix for various 1D and 2D histograms, full likelihood, XS only, kinematics only.



Fisher information for SM scenario
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Fisher information for CP-mixed scenario
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For CP-mixed scenario, Higgs pr
captures sizeable amount of
information on c;.

l

pr binned STXS measurements
useful to constrain CP violation
in the top-Yukawa coupling.

( Important: )

Due not separate tH bin
based on assumption of SM-

\_like kinematics! Yy,
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Conclusions

Initial question: What is the best way to CP violation in the top-Yukawa coupling at the LHC?

* Focused on top associated Higgs production with H — yy.

* Used machine-learning based inference approach allowing to extract full available information.
e Strong bounds expected especially at HL-LHC.

* Used Fisher information to compare sensitivity of different observables.

* For establishing a deviation from the SM, the Higgs pr shape is a promising observable.

* Method easily extendible to other production/decay modes.

Thanks for your attention!
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Experimental tOp CP StUdieS [ATLAS,2004.04545:CMS,2104.12152]
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observable condition

N, > 2 (with |n| < 2.5 and pr > 25 GeV)
(¥F1,P%2) > (35,25) GeV

Moy [105 — 160] GeV

(P,1/ ™My, P12/ Myy) > (0.35,0.25)

Ny > 1 (with |n| < 2.5 and pr > 15 GeV)
Mgy [80,100] GeV vetoed if same flavour

Njet > 1 (with |n| < 2.5 and pr > 25 GeV)

Table 1: Summary of preselection cuts.
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Interpretation in terms of CP-violating angle

14 .............. T
i —— LHC-SM @ 139 b1
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—— HL-LHC - SM @ 3000 fb! |
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Variation of ¢y

LHC - SM @ 300 ﬂa_
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and renormalization scale

LHC-SM@300fb~"
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Complementarity with eEDM and BAU sseizm0s
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