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Motivation

• BSM physics needed to explain e.g. Dark Matter, baryon asymmetry, etc.

• Many BSM models predict extended scalar sectors: extended Higgs sectors → bottom-up extensions of the 

SM (additional singlets, doublets, …), scalar partners (e.g. SUSY), …

• To assess viable BSM parameter space and discovery sensitivity, precise theoretical predictions for 

production and decay of BSM scalars are needed.

• Experimental searches push the BSM physics scale more and more above the electroweak scale  
(if the BSM states are not weakly coupled).
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One of the main challenges: large logarithms.



Large logarithms in BSM precision predictions

• In many BSM calculations, large logarithms appear spoiling the perturbative expansion.

• Different types of large logarithms are known (non-comprehensive list):

1. Logarithms containing heavy mass scale appearing in prediction of low-scale observable:
e.g. ln𝑀!"!#/𝑚$ in SUSY Higgs mass calculation; resumed by integrating out heavy states.

2. Logarithms involving light quark mass:
e.g. heavy Higgs to 𝑏'𝑏; evolve couplings to scale of process.

3. Electroweak Sudakov logarithms:
e.g. ln𝑀!/𝑀" appearing in heavy Higgs decays; resum using exponentiation or SCET;
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This talk: new type of Sudakov-like logarithms appearing in external leg corrections.



Toy model

• Three real scalars and one Dirac fermion: 𝜙!, 𝜙", 𝜙# and χ
• ℤ" symmetry: 𝜙! → − 𝜙!, 𝜙" → − 𝜙", 𝜙# → 𝜙#, 𝜒 → 𝜒

• For the present study, we are mainly interested in the trilinear couplings (especially 𝐴!"#). 
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The 𝜙! → �̅�𝜒 decay process
Tree-level:

One-loop virtual:

Corrections leading in powers of 𝐴$%& appear on external leg!

Γ!(𝜙" → �̅�𝜒) = #
$%
𝑚" 1 − &'!

"

'#
"

"/)
𝑦")

(𝑘 ≡ 4𝜋 %&)
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Infrared limits

1. 𝜙) and 𝜙" are almost mass-degenerate, 𝜙#is light (𝑚) → 𝑚", 𝑚# → 0)

with 𝜖 ≡ 𝑚"
) −𝑚)

) and 𝑚#
) ∼ 𝜖.

2. 𝜙) and 𝜙" are almost mass-degenerate, 𝜙#is massless (𝑚# = 0,𝑚) → 𝑚")

Infrared divergencies appear in external leg corrections
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Infrared limits

1. 𝜙) and 𝜙" are almost mass-degenerate, 𝜙#is light (𝑚) → 𝑚", 𝑚# → 0)

with 𝜖 ≡ 𝑚"
) −𝑚)

) and 𝑚#
) ∼ 𝜖.

2. 𝜙) and 𝜙" are almost mass-degenerate, 𝜙#is massless (𝑚# = 0,𝑚) → 𝑚")

Infrared divergencies appear in external leg corrections
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Focus of this talk.



Regulating the IR divergency:
soft 𝜙" radiation
Include soft 𝜙# radiation (here: 𝑚# ≠ 0 with 𝑚) = 𝑚"; 𝜖 ≠ 0 with 𝑚# = 0 case follows analogously):

Infrared divergencies are regulated with clear physical interpretation!

⇒ sum of virtual and real corrections is infrared finite:

detector 
resolution
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The appearance of large logarithms

If the mass of 𝜙# is large enough (or the mass difference 𝜖), 𝜙" → 𝜒𝜒 and 𝜙) → 𝜒𝜒𝜙# processes 
can be distinguished experimentally.

Then, we will have terms like
𝐴#)")

𝑚"
) ln

𝑚"
)

𝑚#
)

appearing in our amplitude.

For many BSM theories trilinear couplings are of the order of the BSM mass scale (𝐴#)" ∼ 𝑚").

Large unsuppressed logarithms appear in the prediction of the decay width!

How large is the numerical impact of these logarithms?
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Numerical analysis – 1L level     (𝑚) = 𝑚" = 1 TeV, 𝐴#)" = 3 TeV)

Large logarithm if no real 
radiation is included.

• If 𝜙# radiation can be resolved 
experimentally, large 1L corrections are 
possible!

• Resumming 𝜙# contributions results in 
substantial scale dependence (also no clear 
physical interpretation).
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How large is the impact of beyond-1L 
corrections?



External leg corrections at the 2L level

• Explictly evaluate the two-loop correction

with the two-loop diagrams (including only corrections leading in powers of 𝐴#)")
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Evaluation of 2L integrals

• 𝑇##)"& and 𝑇#)"&* are the finite parts of

• 2L integrals can be evaluated numerically using e.g. TSIL [Martin,Robertson,0501132].

• We want to extract the large logarithms ⇒ analytic expansion in infrared limits. 

(using expressions from [Martin,Robertson,0312092,0307101,0501132])



MS 2L result (for 𝑚!
" = 𝜖,𝑚"

" = 𝑚#
" = 𝑚")

Expanding in 𝜖, we obtain (<lnx = ln 𝑥 /𝑄) and ren. scale 𝑄)

Terms enhanced by 𝒪( ⁄# + , C# +) appear in result! Can we absorb them into the renormalization of the masses?
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Mass renormalization

Renormalize 𝑚# and 𝑚) in the OS scheme:

Cancels 𝒪( ⁄# + , C# +) terms!

• Similar issues are known to appear e.g. in the MSSM: non-decoupling of gluino corrections
(see e.g. [9812472, 0105096,1606.09213, 1912.04199, 1912.10002]).

• Also investigated different schemes for renormalization of 𝐴#)" finding no significant differences.

OS mass renormalization essential to avoid unphysically large corrections!
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Numerical analysis – 2L level     (𝑚) = 𝑚" = 1 TeV, 𝐴#)" = 3 TeV)

2L corrections can have substantial impact close to IR limit.
Only moderate differences between 𝐴#)" schemes.
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Application I: gluino decay in the MSSM
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• We work in the limit ,
-$%$&

→ 0.

• Non-SM Higgs bosons 𝐻, 𝐴, 𝐻± have the 
mass 𝑚/, which plays the role of 𝑚# in 
the toy model (and 𝑚 01',) ↔ 𝑚),").

• Large logarithms of the form ln-*+*,
"

'-
"

with 𝑀3435 = 𝑚 01' = 𝑚 01) appear.



Application II: ℎ! → 𝜏𝜏 decay in the N2HDM
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Extend SM by additional Higgs doublet + singlet: 

• Mass eigenstates: CP-even ℎ#,),", CP-odd 𝐴, charged 𝐻±.

• Light states: 𝑚6.
) , 𝑚6"

) ∼ 𝜖 with	𝜖 = 50 GeV )

• Heavy states: 𝑚6# = 𝑚/ = 𝑚7± = 𝑚.

• Calculate trilinear-enhanced contributions to ℎ" → 𝜏8𝜏9

involving 𝑋: =
#
&
𝑎#; − 𝑎); with 𝑋: = 3𝑚.

Sizeable effect of 2L corrections.



Conclusions
• If a new BSM particle is discovered, precise theoretical predictions will be a crucial.
• Identified new source of large Sudakov-like logarithmic contributions:

• Appear on external legs of heavy scalar particles.
• At least one light scalar particle needs to present.
• Large trilinear coupling between scalars needed.

• Discussed toy model containing one light and two heavy scalars at the one- and two-loop level:
• Occurrence of large logarithms related to infrared limit.
• Infrared divergencies can be regulated by including radiation of the light scalar particle.
• If additional radiation can be resolved experimentally → large logarithms appear.
• On-shell renormalization of masses crucial at the 2L level.

• Exemplary applications: gluino decay in the MSSM, heavy Higgs decay in the N2HDM
• Found sizeable 1L corrections; only moderate 2L effects → no resummation needed.

Thanks for your attention!
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Appendix
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Electroweak Sudakov logarithms
• Sudakov logarithms also appear in electroweak corrections in the form

• Example: heavy Higgs boson decay into 𝑏#𝑏 (see e.g. [Domingo,Paßehr, 1907.05468]).

• Sudakov logarithms related to infrared limit (𝑀% → 0); cancel in combined ℎ& → 𝑏#𝑏, ℎ& → 𝑏#𝑏 + 𝑍/ℎ', ℎ& → 𝑡#𝑏 +𝑊( amplitude.

• If additional ⁄𝑍 ⁄ℎ' 𝑊 radiation can be resolved analytically → large logarithms remain in result.

∼ )'

*+,'
ln- .(

'

/
and     ∼ )'

*+,'
ln.(

'

/
where 𝑀% is a gauge or Higgs boson mass.



External leg corrections: LSZ factor

• Need to ensure that external particles have correct OS properties ⇒ LSZ formalism!

• For non-mixing particles, this accounts to multiplying the amplitude by factors of 𝑍< for every external 
particle 𝜙,

𝑍< = #

#8=>00
1 ℳ0

"
,

where UΣ<<@ is the momentum derivative of the 𝜙𝜙 self energy. 



External leg corrections: 𝑍-matrix formalism
[Fuchs,Weiglein,1610.06193] 

In general, we also need to consider mixing:

With                               and

ΔAB is the 𝑖𝑗 element of the propagator matrix, ℳ:
) is the complex pole and

for three particles 𝑖, 𝑗, 𝑘.

e.g. for three Higgs boson ℎ, 𝐻, 𝐴:



Regulating the IR divergency I:
resummation of 𝜙" contributions
Idea: give 𝜙#an effective mass by resuming 𝜙# self-energy insertions (like for the Goldstone boson catastrophe).

with

IR divergence regulated, but physical interpretation unclear.



Renormalization of 𝐴"#!
• Three options for renormalization of 𝐴#)" (CT is scale independent at leading order in 𝐴#)"):

• 𝐴)&* 𝑀𝑆:

• 𝐴)&* OS via 𝜙& → 𝜙)𝜙* amplitude:

• Choose 𝐴)&* counterterm such that ln& 𝜖 in 1Γ(𝜙* → 𝜒�̅�) cancels (“no-log-sq” scheme):
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Mass configuration 1
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Mass configuration 2
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Numerical analysis – 2L level    (𝑚# = 0 TeV, 𝑚" = 0.5 TeV, 𝐴#)"-; = 1.5 TeV)

2L corrections can have substantial impact close to IR limit.



Stop-Higgs couplings in the MSSM
Higgs bosons: 𝒞𝒫-even ℎ, 𝐻 bosons, 𝒞𝒫-odd 𝐴 boson, charged 𝐻± bosons.

For simplicity: neglect all contributions proportional to the electroweak gauge couplings.

Then, the stop mass matrix is given by (𝑋1 = 𝐴1 − 𝜇/ tan𝛽)

In the unbroken phase of the theory (𝒗 = 𝟎 → 𝑚1 = 0), the stops do not mix (�̃�C and �̃�D are mass eigenstates).

In this approximations, the stop-Higgs couplings are given by (𝑌1 = 𝐴1 + 𝜇 tan𝛽)
ℎ#: top-Yukawa coupling,
tan 𝛽: ratio of vevs
𝑐$ ≡ cos𝛽,
𝑠$ ≡ sin 𝛽

Note: 
no couplings involving 
two identical stops.



Gluino decay in the MSSM: 𝑌$ terms
Consider first corrections leading corrections in 𝑌1:

Non-SM Higgs bosons 𝐻, 𝐴, 𝐻± have the mass 𝑚/, which plays the role of 𝑚# in the toy model (and 𝑚 01',) ↔ 𝑚),").

Assuming 𝑚 01) = 𝑚 01' = 𝑀;E;F and renormalising all masses and 𝑌1 on-shell, we obtain ( U𝑌1 ≡ ⁄𝑌1 𝑀;E;F ∼ 𝒪(1))



Gluino decay in the MSSM: 𝑋$ terms
Next, consider corrections leading corrections in 𝑋1:

In the gaugeless limit, SM-like scalars ℎ, 𝐺, 𝐺± are massless and 𝜖 = 𝑚 01)
) −𝑚 01'

) .

Renormalizing all masses and 𝑋1 in the OS scheme, we obtain ( U𝑋1 ≡ ⁄𝑋1 𝑀;E;F ∼ 𝒪(1))



Gluino decay in the MSSM: 𝑋$ terms

• Large logarithms have sizeable impact at the one-
loop level close to IR limit; two-loop corrections 
only moderate.

• Suggests that fixed-order treatment is sufficient.



Gluino decay in the MSSM: 𝑋$ terms (𝑣 ≠ 0 )
We can also consider leading corrections in 𝑋1 for 𝑣 ≠ 0 (assuming 𝑚 01) = 𝑚 01'):

• stops mix → �̃�# and �̃�) mass eigenstates,

• 𝑚 01.
) = 𝑀;E;F

) +𝑚1
) −𝑚1 𝑋1 and 𝑚 01"

) = 𝑀;E;F
) +𝑚1

) +𝑚1 𝑋1

• For 𝑀;E;F ≫ 𝑚1, stop mass difference 𝜖 = 2𝑚1𝑋1 will be small with respect to 𝑀;E;F
) .

• Additional infrared divergency because of couplings involving two identical stops.

⇒ need to introduce infrared regulator mass 𝑚GD
) .



Gluino decay in the MSSM: 𝑋$ terms (𝑣 ≠ 0 )
Virtual amplitude: 

Real emission amplitude: Note:
Real emission of ℎ boson does 
not affect large logarithms.



Gluino decay in the MSSM: 𝑋$ terms (𝑣 ≠ 0 )

Large logarithms are not an artifact of 
assuming 𝑣 = 0, but also appear in the 

broken phase (𝑣 ≠ 0). 



N2HDM: analytic results
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