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The Higgs boson —what we know so far.

* A scalar behaving similar as the SM Higgs boson was discovered at the LHC.

* What we know about this scalar:
* Its mass, vey, spin.
* It’s not a CP-odd state.
* Its couplings to gauge bosons (WW,ZZ, gg,vy): 0(10) %
* |ts coupling to third generation fermions: 0(20) %
* Its coupling to muons: O(50) %

* What we don’t know about this scalar:
* |ts exact CP nature.
* |ts couplings to first- and second-generation fermions.
* |ts width (are there any decays to non-SM particles?).
e The shape of its potential.

— Modification of Higgs potential can have implications for e.g. cosmology.



The Higgs potential

In the SM, the Higgs potential is completely determined by the Higgs mass and its vev:
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Relation between the different terms can easily be modified by BSM physics
— add modifier k; (and iy, ):
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How can we constraint k; experimentally?
unknown



Double-Higgs production

Most direct probe of trilinear Higgs coupling: double-Higgs production via gluon fusion.
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In the SM: large destructive interference between box and triangle contribution.

= Deviations from SM trilinear Higgs coupling can significantly enhance the hh cross section.

‘ Interpret experimental upper limits on hh cross section as limits on k.



Experimental bound on k;

Current strongest limit: —1.0 < k; < 6.6 at 95% CL [ATLAS-CONF-2021-052].

Assumptions:
* All other Higgs couplings are SM-like.
* Non-resonant Higgs-boson pair production only deviates from the SM via a modified trilinear Higgs

coupling.

_ Can we use this limit to constrain BSM models?



K, in the 2-Higgs-doublet-model (2HDM)

Focus first on 2HDM type | in the alighment limit (similar results expected for other types/models).
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2 Higgs doublets — 5 physical Higgs bosons: CP-even h, H; CP-odd A; charged H™.

Most relevant/largest couplings:
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* Strategy:
1. Scan parameter space applying various theoretical and experimental constraints.
2. ldentify regions with large deviations of k; , which is calculated at the 2L level.
3. Define a benchmark scenario and apply constraints on k.



2HDM parameter scan

* We checked for:
* Vacuum stability and boundedness-from-below.
NLO perturbative unitarity.

Electroweak precision observables (calculated at the 2L level using THDM_EWPQOS
[Hessenberger,Hollik,1607.04610]).

SM-like Higgs measurements via HiggsSignals.
Direct searches for BSM scalars via HiggsBounds.
* b-physics constraints.

e Most constraints checked using ScannersS.

* For each point passing the constraints, we calculate k; at the 1L and 2L level (K/(ll) and K)(lz)) using
results from [Braathen,Kanemura,1911.11507].



2HDM parameter scan - results

2HDM type I, a = 3 — m/2

2HDM type I, a = 8 — m/2
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Largest corrections for my = my+, myg < my+ and my = my+, my < my+. 2L corrections have

l sizeable impact.



Constraints on kK, - benchmark scenario
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Conclusions

* Measurement of the trilinear Higgs coupling crucial to determine shape of Higgs potential.

* Large deviations from the SM possible in many BSM models.

* We showed that already current bounds exclude significant parts of so far unconstrained 2HDM
parameter space.

* Including 2L corrections important for precise prediction.

* We expect similar results in other BSM Higgs models.

* More precise bounds expected in the future = more precise theory predictions will be needed.

* Potentially interesting implications for cosmology.

Thanks for your attention!



Appendix



Calculating BSM corrections to k;
pz/j/

* Need to calculate Higgs three-point function: P!
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* Alternatively, employ zero momentum approximation and then use effective potential:
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» Using V¢, 1L and 2L corrections have been calculated in various BSM Higgs models (see e.g.
[Braathen,Kanemura,1911.11507]).



Calculating BSM corrections tO Kj  suensmemmsisor
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Large non-decoupling corrections found in several
BSM models.

Analysis assumed that all BSM masses are equal Mg,.
No phenomenological analysis has been performed.

Idea of this work:

Can we constrain these models based on the large
corrections to k; ?




Applying the constraints on K

Assumptions of experimental bound:

e All other Higgs couplings are SM-like.
* 2HDM in the alignment limit with heavy BSM masses. V

* Higgs-boson pair production only deviates from the SM via a modified trilinear Higgs coupling.
* No resonant contribution because Hhh coupling is zero in alighnment limit. V

e Other BSM contributions to hh production?
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* We include the all corrections leading in the large coupling gpneoe at the NLO and NNLO level. \/
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My, in the 2HDM — correlation with k; ?
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