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Introduction



Motivation
• BSM physics needed to explain e.g. Dark Matter, baryon asymmetry, etc.

• Many BSM models predict extended scalar sector (e.g. singlet extensions, 2HDM, MSSM).

• If a new particle is discovered, its characterization will be of foremost interest.

• Precise theory predictions will be needed to discriminate between different possible realization of 
BSM physics ⇒ calculation of loop corrections crucial.

• One of the main challenges: large logarithms.

This talk: identify a new source of large logarithms related to external leg corrections.



Large logarithms in precision predictions

• In many calculations, large logarithms appear spoiling the reliability of the perturbative 
expansion.

• Different types of large logarithms are known (non-comprehensive list):
1. Logarithms containing heavy mass scale appearing in prediction of low-scale observable

• E.g. prediction of SM-like Higgs mass in the MSSM → ln!!"!#
$

"%
$ .

• Resum by integrating out the heavy particles.
2. Logarithms involving light quark mass

• E.g. heavy Higgs boson decay to fermions.
• Resum large logarithms by involving Yukawa coupling to heavy mass scale.

3. Sudakov logarithms
• E.g. thrust 𝑇 distribution in QCD  → ln#(1 − 𝑇) appears in integrated distribution.
• Resum by exponentiation or using Soft Collinear Field Theory (SCET).



Recap: infrared divergencies

• Consider e.g. 𝑒$𝑒% → 𝜇$𝜇%.

• 1L virtual QED correction is IR divergent; i.e., contains ln# "&
$

&$
and ln' "&

$

&$
terms 

(𝑚(: photon mass, 𝑄: ren. scale).

• Real emission contribution of photons with energy below detector resolution 
also contains IR divergencies.

• Sum of virtual and real corrections IR finite.

IR finite.



Electroweak Sudakov logarithms
• Sudakov logarithms also appear in electroweak corrections in the form

• Example: heavy Higgs boson decay into 𝑏"𝑏 (see e.g. [Domingo,Paßehr, 1907.05468]).

• Sudakov logarithms related to infrared limit (𝑀! → 0); cancel in combined ℎ" → 𝑏"𝑏, ℎ" → 𝑏"𝑏 + 𝑍/ℎ#, ℎ" → 𝑡"𝑏 +𝑊$ amplitude.

• If additional ⁄𝑍 ⁄ℎ# 𝑊 radiation can be resolved analytically → large logarithms remain in result.

∼ %!

&'(!
ln) *"

!

+
and     ∼ %!

&'(!
ln*"

!

+
where 𝑀! is a gauge or Higgs boson mass.

This talk: Sudakov-like logarithms arising from external leg corrections.



External leg corrections: LSZ factor

• Need to ensure that external particles have correct OS properties ⇒ LSZ formalism!

• For non-mixing particles, this accounts to multiplying the amplitude by factors of 𝑍) for every external 
particle 𝜙,

𝑍) = '

'$*+''
( ℳ'

$
,

where 1Σ))- is the momentum derivative of the 𝜙𝜙 self energy. 



External leg corrections: 𝑍-matrix formalism
[Fuchs,Weiglein,1610.06193] 

In general, we also need to consider mixing:

With                               and

Δ./ is the 𝑖𝑗 element of the propagator matrix, ℳ0
# is the complex pole and

for three particles 𝑖, 𝑗, 𝑘.

e.g. for three Higgs boson ℎ, 𝐻, 𝐴:



External leg corrections as a 
source of large logarithms



Toy model
• Three real scalars and one Dirac fermion: 𝜙&, 𝜙), 𝜙, and χ
• ℤ) symmetry: 𝜙& → − 𝜙&, 𝜙) → − 𝜙), 𝜙, → 𝜙,, 𝜒 → 𝜒

• For the present study, we are mainly interested in the trilinear couplings (especially 𝐴&),). 



The 𝜙! → 𝜒̅𝜒 decay process

Tree-level:

One-loop virtual:

No mixing & no vertex corrections proportional to 𝐴123 !

Γ1(𝜙2 → 𝜒̅𝜒) = '
34
𝑚2 1 − 5")

$

"*
$

2/#
𝑦2#

(𝑘 ≡ 4𝜋 #$)



Infrared limits

1. 𝜙# and 𝜙2 are almost mass-degenerate, 𝜙'is light (𝑚# → 𝑚2, 𝑚' → 0)

with 𝜖 ≡ 𝑚2
# −𝑚#

# and 𝑚'
# ∼ 𝜖.

2. 𝜙# and 𝜙2 are almost mass-degenerate, 𝜙'is massless (𝑚' = 0,𝑚# → 𝑚2)

Infrared divergencies appear in external leg corrections



Regulating the IR divergency I:
resummation of 𝜙" contributions
Idea: give 𝜙'an effective mass by resuming 𝜙' self-energy insertions (like for the Goldstone boson catastrophe).

with

IR divergence regulated, but physical interpretation unclear.



Regulating the IR divergency II:
soft 𝜙" radiation
Include soft 𝜙' radiation (here: 𝑚' ≠ 0 with 𝑚# = 𝑚2; 𝜖 ≠ 0 with 𝑚' = 0 case follows analogously):

Infrared divergencies are regulated with clear physical interpretation!

⇒ sum of virtual and real corrections is infrared finite:

detector 
resolution



The appearance of large logarithms

If the mass of 𝜙' is large enough (or the mass difference 𝜖), 𝜙2 → 𝜒𝜒 and 𝜙2 → 𝜒𝜒𝜙' processes 
can be distinguished experimentally.

Then, we will have terms like
𝐴'#2#

𝑚2
# ln

𝑚2
#

𝑚'
#

appearing in our amplitude.

For many BSM theories trilinear couplings are of the order of the BSM mass scale (𝐴'#2 ∼ 𝑚2).

Large unsuppressed logarithms appear in the prediction of the decay width!

How large is the impact of these logarithms at higher orders?



External leg corrections at the 2L level I

• Resummation could be feasible using SCET approach (see e.g. [Alte,König,Neubert,1902.04593]).

• We take a more direct approach by explicitly evaluating 2L corrections.

with the two-loop diagrams (including only corrections leading in powers of 𝐴'#2)



External leg corrections at the 2L level II

𝑇''#25 and 𝑇'#257 are the finite parts of

With 𝑚'
# = 𝜖,𝑚#

# = 𝑚2
# = 𝑚# we obtain



Evaluation of 2L integrals

• 2L integrals can be evaluated numerically using e.g. TSIL [Martin,Robertson,0501132].

• We want to extract the large logarithms ⇒ analytic expansion in infrared limits. 

(using expressions from [Martin,Robertsion,0312092,0307101,0501132])

• Example result for 𝑇''#25 (with 𝑚'
# = 𝜖,𝑚#

# = 𝑚2
# = 𝑚#):

• Terms of 𝒪( ⁄' 8 , I' 8) appear! (Jlnx = ln 𝑥 /𝑄# and ren. scale 𝑄)



𝑀𝑆 2L result (for 𝑚!
" = 𝜖,𝑚"

" = 𝑚#
" = 𝑚")

We obtain

Terms enhanced by 𝒪( ⁄' 8 , I' 8) appear in result! Can we absorb them into the renormalization of the 
masses and 𝐴'#2?



Mass renormalization

Renormalize 𝑚' and 𝑚# in the OS scheme:

Cancels 𝒪( ⁄' 8 , I' 8) terms!

Similar issues are known to appear e.g. in the MSSM: non-decoupling of gluino corrections.
(see e.g. [9812472, 0105096,1606.09213, 1912.04199, 1912.10002])

OS mass renormalization essential to avoid unphysically large corrections!



Renormalization of 𝐴"#!
• Three options for renormalization of 𝐴'#2 (CT is scale independent at leading order in 𝐴'#2):

• 𝐴%$& 𝑀𝑆:

• 𝐴%$& OS via 𝜙$ → 𝜙%𝜙& amplitude:

• Choose 𝐴%$& counterterm such that ln$ 𝜖 in -Γ(𝜙& → 𝜒𝜒̅) cancels (“no-log-sq” scheme):



Numerical analysis – 1L level     (𝑚# = 𝑚2 = 1 TeV, 𝐴'#2 = 3 TeV)

Large logarithm if no real 
radiation is included.

• If 𝜙' radiation can be resolved 
experimentally, large 1L corrections are 
possible!

• Resumming 𝜙' contributions results in 
substantial scale dependence (also no clear 
physical interpretation).



Numerical analysis – 2L level     (𝑚# = 𝑚2 = 1 TeV, 𝐴'#2 = 3 TeV)

2L corrections can have substantial impact close to IR limit.
Only moderate differences between 𝐴'#2 schemes.



Numerical analysis – 2L level    (𝑚' = 0 TeV, 𝑚2 = 0.5 TeV, 𝐴'#2!9 = 1.5 TeV)

2L corrections can have substantial impact close to IR limit.



Applications



Stop-Higgs couplings in the MSSM
Higgs bosons: 𝒞𝒫-even ℎ, 𝐻 bosons, 𝒞𝒫-odd 𝐴 boson, charged 𝐻± bosons.

For simplicity: neglect all contributions proportional to the electroweak gauge couplings.

Then, the stop mass matrix is given by (𝑋; = 𝐴; − 𝜇/ tan𝛽)

In the unbroken phase of the theory (𝒗 = 𝟎 → 𝑚; = 0), the stops do not mix (𝑡̃< and 𝑡̃= are mass eigenstates).

In this approximations, the stop-Higgs couplings are given by (𝑌; = 𝐴; + 𝜇 tan𝛽)
ℎ!: top-Yukawa coupling,
tan 𝛽: ratio of vevs
𝑐" ≡ cos𝛽,
𝑠" ≡ sin 𝛽

Note: 
no couplings involving 
two identical stops.



Gluino decay in the MSSM: 𝑌$ terms
Consider first corrections leading corrections in 𝑌;:

Non-SM Higgs bosons 𝐻, 𝐴, 𝐻± have the mass 𝑚>, which plays the role of 𝑚' in the toy model (and 𝑚 ?;+,- ↔ 𝑚#,2).

Assuming 𝑚 ?;- = 𝑚 ?;+ = 𝑀9A9B and renormalising all masses and 𝑌; on-shell, we obtain ( 1𝑌; ≡ ⁄𝑌; 𝑀9A9B ∼ 𝒪(1))



Gluino decay in the MSSM: 𝑌$ terms

• We set 𝑀> = 500 GeV ⇒ _𝑔 → 𝑡 + 𝑡̃<,= probably 
distinguishable from _𝑔 → 𝑡 + 𝑡̃<,= + 𝐻, 𝐴, 𝐻±.

• Large logarithms have sizeable impact at the one-
loop level (i.e., for right-handed stop); two-loop 
corrections only moderate.

• Suggests that fixed-order treatment is sufficient.



Gluino decay in the MSSM: 𝑋$ terms
Next, consider corrections leading corrections in 𝑋;:

In the gaugeless limit, SM-like scalars ℎ, 𝐺, 𝐺± are massless and 𝜖 = 𝑚 ?;-
# −𝑚 ?;+

# .

Renormalizing all masses and 𝑋; in the OS scheme, we obtain ( 1𝑋; ≡ ⁄𝑋; 𝑀9A9B ∼ 𝒪(1))



Gluino decay in the MSSM: 𝑋$ terms

• Large logarithms have sizeable impact at the one-
loop level close to IR limit; two-loop corrections 
only moderate.

• Suggests that fixed-order treatment is sufficient.



Gluino decay in the MSSM: 𝑋$ terms (𝑣 ≠ 0 )
We can also consider leading corrections in 𝑋; for 𝑣 ≠ 0 (assuming 𝑚 ?;- = 𝑚 ?;+):

• stops mix → 𝑡̃' and 𝑡̃# mass eigenstates,

• 𝑚 ?;.
# = 𝑀9A9B

# +𝑚;
# −𝑚; 𝑋; and 𝑚 ?;$

# = 𝑀9A9B
# +𝑚;

# +𝑚; 𝑋;

• For 𝑀9A9B ≫ 𝑚;, stop mass difference 𝜖 = 2𝑚;𝑋; will be small with respect to 𝑀9A9B
# .

• Additional infrared divergency because of couplings involving two identical stops.

⇒ need to introduce infrared regulator mass 𝑚C=
# .



Gluino decay in the MSSM: 𝑋$ terms (𝑣 ≠ 0 )
Virtual amplitude: 

Real emission amplitude: Note:
Real emission of ℎ boson does 
not affect large logarithms.



Gluino decay in the MSSM: 𝑋$ terms (𝑣 ≠ 0 )

Large logarithms are not an artifact of 
assuming 𝑣 = 0, but also appear in the 

broken phase (𝑣 ≠ 0). 



Heavy Higgs decay in the N2HDM

• Extend SM Higgs sector by second doublet as well as a real singlet Φ9:

• No ℤ# symmetry transforming Φ9 imposed ⇒ trilinear couplings.

• Consider decay of heaviest three 𝒞𝒫-even mass eigenstate ℎ2 (which is mostly doublet-
like) to tau leptons.

• ℎ2 → 𝜏$𝜏% decay width will receive external leg corrections proportional to trilinear 
couplings; focus on 𝑋0 here.



ℎ! → 𝜏%𝜏& decay in the N2HDM

Considered scenario with 

𝑚D.
# ∼ 𝑚D$

# ∼ 𝑚E
# ∼ 𝑚E±

# ∼ 𝜖, 𝑚D*
# = 𝑚>

# = 𝑚F±
# = 𝑚#

and chose

tan 𝛽 = 1.26, sin 𝛼2 = 0.94 , 𝑋0 = 3𝑚 .

⇒ Sizeable one- and two-loop corrections.



Conclusions



Conclusions

• If a new BSM particle is discovered, precise theoretical predictions will be a crucial to unravel its nature.
• Identified new source of large Sudakov-like logarithmic contributions:

• Appear on external legs of heavy scalar particles.
• At least one light scalar particle needs to present.
• Large trilinear coupling between scalars needed.

• Discussed toy model containing one light and two heavy scalars at the one- and two-loop level:
• Occurrence of large logarithms related to infrared limit.
• Infrared divergencies can be regulated by including radiation of the light scalar particle.
• If additional radiation can be resolved experimentally → large logarithms appear.
• On-shell renormalization of masses crucial at the 2L level.

• Exemplary applications: gluino decay in the MSSM, heavy Higgs decay in the N2HDM
• Found sizeable 1L corrections; only moderate 2L effects → no resummation needed.

Thanks for your attention!



Mass configuration 1



Mass configuration 2



N2HDM: analytic results


