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MSSM Higgs sector

» In the MSSM, we have at 5 physical Higgs bosons.
P tree-level mass eigenstates

(obtained via diagonalization of mass matrices):
® CP-even h and H
® CP-odd A
® charged H*
» loop corrections lead to mixing between h and H
and A in case of CP-violation (and Goldstone boson G°)
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How to we determine the Higgs pole masses?

1. Calculate Higgs self-energies
2. Construct inverse Higgs propagator matrix

3. Find poles of inverse propagator matrix
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How to we determine the Higgs pole masses?

1. Calculate Higgs self-energies
— most work intensive

2. Construct inverse Higgs propagator matrix
— trivial

3. Find poles of inverse propagator matrix
— straightforward??
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1. Calculate Higgs self-energies

Hybrid approach of FeynHiggs:

$;(p%) = ﬁjg)(ﬁ) + f]g) (0) ’g:g’:() + higher-order logs

» 1L and 2L self-energies obtained in diagrammatic
fixed-order approach

» approximation of vanishing electroweak gauge couplings
and external momentum @ 2L,
(p2 # 0 can be included for QCD corrections)

» large logarithms resummed in EFT approach

(full LL+NLL, O(as, a¢) NNLL)
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2. Construct inverse Higgs propagator matrix

IATL(p?) = P —mj + S (p?) ihH(pAz)
hH Sha(p?) p* —my + Xuu(p?)
General remarks:

» Discussion here restricted to 2 x 2 mixing between CP even
states h and H
(but also applies for 3 x 3 mixing)

» Pole masses labelled by M}, < My, (< Mp,)
> Mj — h-like state, My — H-like state
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3. Find poles of inverse propagator matrix

Have to solve
det (A,:é(p%) =0
How to solve this equation?
1. Numerical determination

2. Fixed-order determination

3. Numerical determination with finite field renormalization
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Numerical pole determination

» Conceptionally very easy
> “Just” have to employ numerical algorithm

Solutions:

1 (2
M, = mj, — EELh)( n) — Eﬁzfz(o)’g:gvzg

2(1)( 2) 2
( h2H th) N

SN2y (1) 2
+ X (M), () + m2 —m?,

M} determined by same equation with (h <> H)
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Problems of numerical pole determination

For Mgysy > M, we have

i(l) — 2(1),SM + 2(1),n0nSM
Comparison between EFT and hybrid approach showed
> E(l) nonsw(m%)igh) (m3) is cancelled by parts of subloop
renormalization contained in fl;fh) 0)]._.._
g=g'=0

» cancellation incomplete, since terms are included at
different orders of accuracy

» similar incomplete cancellation at higher orders

— easy to solve in decoupling limit, but what’s for low M47
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First proposed solution: Fixed-order determination

Determination of h-like state:

1. Expand ZA}:}{ around 1L solution
1)) 2 1
(A7) = mi = 43 (m3)

2. Get eigenvalues of expanded matrix
AT DT 1 &N(2 logs
(185" @) = (7 —m)au + £ (md) + £ (0) + AL

Sl RG]

jk

3. Pick h-like eigenvalue corresponding to
2 _ .2 _ (1), 2
My = mj, — X/ (mj) + .
other eigenvalue would be mH — ESH(mi) + ...

Determination of H-like state analogously, just have to h < H
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Assement of the numerical pole determination

» brought hybrid and EFT approach to much better
agreement

» faster since no numerical pole search is required

— everything fine?
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But: MH125 scenario

» new benchmark scenario under development in the

LHCHXSWG

» parameters:
Mgsusy =2 TeV, Mg, = My, =700 GeV,
uw=06TeV, Mj =675 GeV, My =1 TeV, M3 =2.5 TeV,
Ay =450 GeV, Apcsua = 0.

» scan over Mpy+ and tan 3

My, is suppossed to play role of SM-like Higgs boson
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But: MH125 scenario
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What’s going on?

MWy
138 = exp around mi - f);llh)(miL h-like
136 — exp around m3 — 500 (m2), H-like
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Solid lines: “right” solutions;

dashed lines: “wrong” solutions
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What’s going on?

e,
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Assement of the fixed-order pole determination

» Algorithm works as wanted
» 2L truncation, however, introduces “unphysical” jumps

» Could be associated with high theoretical uncertainty

— Still unsatisfying, can we find better method?
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What is the origin of the observed cancellation?

» uncancelled terms originate from p? dependence of
non-SM contributions to 1L self-energies

S(p?) = B(p?) + 6Z (p* — m?) — om? =
— ynonSM )2y | 32SM ()
+6Z (p? —m?) — dm? + O(v/Msysy) =
_ EnonSM(mQ) + <2n0nSMl(m2) + 52) (2 — m?)
+ 3 (p?) — dm® + O(v/Msusy)

» higher derivatives of 3nonSM suppressed by v/Mgyusy

— p? dep. of “heavy” contributions ~ field (re)normalization
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Change of field normalization

Field (re)normalization

Should drop out if calculating physical observables order by
order!

Prevent numerical det. from inducing terms oc 3m0"SM (12) by
> chosing 67 = —3romSM/(12) e
5(1)Zhh — —iEzHSM/(O)
0V Zny = =355 (0)

» can be evaluated at arbitrary momentum < Msgysy

P> evaluating at zero convenient
— no unphysical thresholds are introduced
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MH125 scenario
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Comparison to other methods

Compare in the limit M4 > M;:
» numerical pole determination:

A

M2 = 42 S md) + .
» fixed-order determination:
&SM, (1 & (1
ME =+ [PV i) ) (mi)}gzg,zo

» numerical pole determination with finite field
renormalization:

AS A
ME =+ SN ) S (md) + .
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Implications for high-scale scenario

all SUSY particles at common scale Mgygsy, tan 8 = 10. Solid: XPR = 0; dashed: XPR =6
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Implications for high-scale scenario

all SUSY particles at common scale Mgygy, tan 8 = 10. Solid: X?R = 0; dashed: XPR =6
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— even better agreement with EFT
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Further implications

Definition of tan g:

» finite field renormalization affects definition of tan j:

tan BMSSM(MR) — tan gTHPM (My)

» prevent this by introducing independent finite tan 3
counterterm

» also have to introduce finite counterterms for
mixing angles «, B, B¢

Z matrix connecting physical and tree-level mass states:
» definition would change from MSSM to THDM

» prevent this by using numerical pole determination without
finite field renormalization for Z matrix
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Further implications - scale variation
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Conclusion

Compared three different methods to determine Higgs pole
masses:
1. Numerial pole determination:

® Conceptionally easy
® Incomplete cancellation of higher order
“field-normalization-like” terms X

2. Fixed-order pole determination:
® Complete cancellation
® Can lead to jumps in Higgs mass predictions X
3. Numerial pole det. with finite field renormalization:
® Complete cancellation
® No jumps
® Better agreement with pure EFT calculations for high
scales
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