Why even more Higgs? A layman's guide to Beyond SM Higgs sectors

Henning Bahl

Max-Planck-Institut für Physik, München

IMPRS colloquium 26.4.2018, München

Extending the SM with a Higgs singlet

Extending the SM with a Higgs doublet

Minimal Supersymmetric Standard Model

Adding even more

Conclusions

SM Higgs sector - repetition

► SM Higgs potential:

$$V_{\rm SM}(\Phi) = \mu^2 \Phi^{\dagger} \Phi - \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2$$

 $\blacktriangleright \mu, \lambda > 0 \rightarrow \text{electroweak symmetry breaking},$ expand around $v = \sqrt{\mu^2/\lambda}$:

$$\Phi(x) = \begin{pmatrix} G^{+}(x) \\ v + \frac{1}{\sqrt{2}}(H(x) + iG^{0}(x)) \end{pmatrix}$$

Minimal Higgs sector to achieve massive fermions and gauge bosons

$$M_W^2 = \frac{v^2}{2}g^2$$
, $M_Z^2 = \frac{v^2}{2}(g^2 + g'^2)$, $M_f = y_f v$, $M_H^2 = 2\lambda v^2$

 $(g: SU(2)_L \text{ gauge coupling}, g': U(1)_Y \text{ gauge coupling})$

Intro

Why should we go beyond this?

- ► Higgs boson discovered @ LHC so far is the only known fundamental spin-0 particle
 - \rightarrow Why should there only be one such particle?
- ▶ Higgs sector not yet measured precisely
 - \rightarrow ample room for BSM physics
- ▶ Other SM sectors well explored. Still open problems (DM, neutrino masses, baryogenesis, ...)
 - \rightarrow Can a BSM Higgs sector help to solve them?

Idea - add an extra (real) Higgs singlet to the SM

- ► SM gauge singlet does not couple directly to SM gauge bosons
- ▶ Only interacts with SM Higgs

$$V(\Phi,S) = \mu^2 \Phi^\dagger \Phi - \frac{\lambda}{2} (\Phi^\dagger \Phi)^2 + \mu_S^2 S^2 - \frac{\lambda_S}{2} S^4 - \kappa S^2 \Phi^\dagger \Phi$$

Motivation:

- ► Simplest possible extension
- ▶ S can mediate between SM particles and other new particles \rightarrow Higgs portal
- rightharpoonup can be used to build e.g. DM models (add $y_{\chi} S \bar{\chi} \chi$ to Lagrangian)
- electroweak baryogenesis

Higgs mixing (I)

Also S can develop a vev:

$$S(x) = v_S + \frac{1}{\sqrt{2}}H_S(x)$$

Therefore, the Higgs mass terms read

$$V_{\text{mass}}(H, H_S) = \begin{pmatrix} H & H_S \end{pmatrix} \begin{pmatrix} 2\lambda v^2 & 2\kappa v v_S \\ 2\kappa v v_S & 2\lambda_S v_S^2 \end{pmatrix} \begin{pmatrix} H \\ H_S \end{pmatrix}$$

Introduce new states H_1, H_2 with

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H \\ H_S \end{pmatrix}$$

Choose α such that mass matrix is diagonal.

Higgs mixing (II)

with
$$\tan(2\alpha) = \frac{2\kappa v v_S}{\lambda v^2 - \lambda_S v_S^2}$$
 we get:

$$V_{\text{mass}}(H_1, H_2) = \begin{pmatrix} H_1 & H_2 \end{pmatrix} \begin{pmatrix} m_{H_1}^2 & 0 \\ 0 & m_{H_2}^2 \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \end{pmatrix}$$

Take home message

mass eigenstates are mixture of H and H_S

- ▶ similar to quark mixing, gauge boson mixing in SM
- ▶ immediate phenomenological consequences

Testing the model

- ▶ Search for second Higgs directly
- ► Check theoretical constraints (vacuum stability, unitarity, pertubativity, ...)
- ▶ Compare to electroweak precision data (W boson mass, Z width, ...)
- **•** ...

other possibility: compare to LHC Higgs boson measurements!

► LHC found a Higgs boson \rightarrow assume it is H_1 $H_1 = \cos \alpha H + \sin \alpha H_S$

- ► LHC found a Higgs boson \rightarrow assume it is H_1 $H_1 = \cos \alpha H + \sin \alpha H_S$
- ► Higgs couplings are modified in comparison to SM, e.g. $y_{\tau}H\bar{\tau}\tau \rightarrow y_{\tau}\cos\alpha H_1\bar{\tau}\tau + y_{\tau}\sin\alpha H_2\bar{\tau}\tau$

- ► LHC found a Higgs boson \rightarrow assume it is H_1 $H_1 = \cos \alpha H + \sin \alpha H_S$
- ▶ Higgs couplings are modified in comparison to SM, e.g. $y_{\tau}H\bar{\tau}\tau \rightarrow y_{\tau}\cos\alpha H_1\bar{\tau}\tau + y_{\tau}\sin\alpha H_2\bar{\tau}\tau$
- ▶ "global" effect:
 - decay width $\Gamma_{H_1 \to f} = \cos^2 \alpha \cdot \Gamma_{H_1 \to f}^{SM}$
 - production cross section $\sigma_i = \cos^2 \alpha \cdot \sigma_i^{\text{SM}}$

- ► LHC found a Higgs boson \rightarrow assume it is H_1 $H_1 = \cos \alpha H + \sin \alpha H_S$
- ► Higgs couplings are modified in comparison to SM, e.g. $y_{\tau}H\bar{\tau}\tau \rightarrow y_{\tau}\cos\alpha H_1\bar{\tau}\tau + y_{\tau}\sin\alpha H_2\bar{\tau}\tau$
- ▶ "global" effect:
 - decay width $\Gamma_{H_1 \to f} = \cos^2 \alpha \cdot \Gamma_{H_1 \to f}^{SM}$
 - production cross section $\sigma_i = \cos^2 \alpha \cdot \sigma_i^{\text{SM}}$

What is measured @ LHC?

Higgs couplings (I)

- ▶ LHC found a Higgs boson \rightarrow assume it is H_1 $H_1 = \cos \alpha H + \sin \alpha H_S$
- ▶ Higgs couplings are modified in comparison to SM, e.g. $y_{\tau}H\bar{\tau}\tau \rightarrow y_{\tau}\cos\alpha H_1\bar{\tau}\tau + y_{\tau}\sin\alpha H_2\bar{\tau}\tau$
- "global" effect:
 - decay width $\Gamma_{H_1 \to f} = \cos^2 \alpha \cdot \Gamma_{H_1 \to f}^{SM}$
 - production cross section $\sigma_i = \cos^2 \alpha \cdot \sigma_i^{\text{SM}}$

What is measured @ LHC?

▶ Neither σ_i nor $\Gamma_{H_1 \to X}$

Higgs couplings (I)

- ► LHC found a Higgs boson \rightarrow assume it is H_1 $H_1 = \cos \alpha H + \sin \alpha H_S$
- ► Higgs couplings are modified in comparison to SM, e.g. $y_{\tau}H\bar{\tau}\tau \rightarrow y_{\tau}\cos\alpha H_1\bar{\tau}\tau + y_{\tau}\sin\alpha H_2\bar{\tau}\tau$
- ▶ "global" effect:
 - decay width $\Gamma_{H_1 \to f} = \cos^2 \alpha \cdot \Gamma_{H_1 \to f}^{SM}$
 - production cross section $\sigma_i = \cos^2 \alpha \cdot \sigma_i^{\text{SM}}$

What is measured @ LHC?

- ▶ Neither σ_i nor $\Gamma_{H_1 \to X}$
- ▶ Instead $\sigma_i \times BR_{H_1 \to f} = \sigma_i \times \frac{\Gamma_{H_1 \to f}}{\Gamma_{H_1}^{\text{tot}}}$ is measured

Higgs singlet

- ▶ LHC found a Higgs boson \rightarrow assume it is H_1 $H_1 = \cos \alpha H + \sin \alpha H_S$
- ▶ Higgs couplings are modified in comparison to SM, e.g. $y_{\tau}H\bar{\tau}\tau \rightarrow y_{\tau}\cos\alpha H_1\bar{\tau}\tau + y_{\tau}\sin\alpha H_2\bar{\tau}\tau$
- "global" effect:
 - decay width $\Gamma_{H_1 \to f} = \cos^2 \alpha \cdot \Gamma_{H_1 \to f}^{SM}$
 - production cross section $\sigma_i = \cos^2 \alpha \cdot \sigma_i^{SM}$

What is measured @ LHC?

- ▶ Neither σ_i nor $\Gamma_{H_1 \to X}$
- ▶ Instead $\sigma_i \times BR_{H_1 \to f} = \sigma_i \times \frac{\Gamma_{H_1 \to f}}{\Gamma_{H_1}^{\text{tot}}}$ is measured
- Often signal strength is given:

$$\mu_i^f = \frac{\sigma_i \times BR_{H_1 \to f}}{(\sigma_i \times BR_{H_1 \to f})_{SM}} = \frac{\sigma_i}{\sigma_i^{SM}} \frac{\Gamma_{H_1 \to f}}{\Gamma_{H_1 \to f}^{SM}} \frac{\Gamma_{H_1}^{\text{tot},SM}}{\Gamma_{H_1}^{\text{tot}}} = \cos^2 \alpha$$

Higgs couplings (II)

- \Rightarrow Measurement of signal strength directly constrains α (or κ)
 - $ightharpoonup \cos^2 \alpha \le 1 \Rightarrow \mu_i^f \le 1$

Higgs couplings (II)

- \Rightarrow Measurement of signal strength directly constrains α (or κ)
 - $ightharpoonup \cos^2 \alpha \le 1 \Rightarrow \mu_i^f \le 1$

► caveats: no non-SM loop corrections considered, assumption of no additional decay/production channels, ...

Idea: Add a second Higgs doublet to the SM

$$\begin{split} V_{\text{THDM}}(\Phi_{1},\Phi_{2}) &= \\ m_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} - m_{12}^{2}(\Phi_{1}^{\dagger}\Phi_{2} + \Phi_{2}^{\dagger}\Phi_{1}) \\ &+ \frac{1}{2}\lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{1}{2}\lambda_{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} \\ &+ \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \frac{1}{2}\lambda_{5}\left((\Phi_{1}^{\dagger}\Phi_{2})^{2} + (\Phi_{2}^{\dagger}\Phi_{1})^{2}\right) \\ &+ \lambda_{6}(\Phi_{1}^{\dagger}\Phi_{1})\left((\Phi_{1}^{\dagger}\Phi_{2}) + (\Phi_{2}^{\dagger}\Phi_{1})\right) + \lambda_{7}(\Phi_{2}^{\dagger}\Phi_{2})\left((\Phi_{1}^{\dagger}\Phi_{2}) + (\Phi_{2}^{\dagger}\Phi_{1})\right) \end{split}$$

with

$$\begin{split} \Phi_1(x) &= \begin{pmatrix} G_1^+(x) \\ v_1 + \frac{1}{\sqrt{2}}(H_1(x) + iG_1^0(x)) \end{pmatrix}, \\ \Phi_2(x) &= \begin{pmatrix} G_2^+(x) \\ v_2 + \frac{1}{\sqrt{2}}(H_2(x) + iG_2^0(x)) \end{pmatrix} \end{split}$$

Motivation

- ▶ might help to explain matter-antimatter assymetry of the universe
 - additional source of \mathcal{CP} violation $(m_{12}^2, \lambda_{5,6,7} \text{ can be complex})$
 - electroweak baryogenisis
- ▶ can provide a DM candidate
- ▶ flavour violation

Particle spectrum

- two complex doublets $\rightarrow 2 \cdot 4$ degrees of freedom
- gauge bosons 'eat' 3 degrees of freedom $\rightarrow 8 - 3 = 5$ physical Higgs bosons
- \triangleright \mathcal{CP} -even h and H, \mathcal{CP} -odd A, charged H^{\pm}
- ▶ h and H are mixtures of H_1 and H_2

Minimal Supersymmetric Standard Model (I)

- ► SUSY relates bosons and fermions
- ► Each SM particle gets a superpartner with same properties apart of spin shifted by 1/2

▶ Motivation: hierarchy problem, DM, gauge coupling unification, baryogenesis, flavour violation, EWSB, ...

Minimal Supersymmetric Standard Model (II)

MSSM also contains two Higgs doublets

supersymmetry fixes couplings:

$$\lambda_1 = \lambda_2 = \frac{1}{4}(g^2 + g'^2), \lambda_3 = \frac{1}{4}(g^2 - g'^2), \lambda_2 = -\frac{1}{2}g^2, \lambda_{5,6,7} = 0$$

Higgs sector completely determined by M_A and $\tan \beta = v_2/v_1$ at tree-level

Minimal Supersymmetric Standard Model (III)

What's about SM-like Higgs mass?

$$m_h^2 \lesssim M_Z^2 \cos(2\beta)^2 \leq M_Z^2 \rightarrow \text{ ruled out!}?$$

No. Loop corrections from supersymmetric top partners yield a large upwards shift:

$$\begin{split} M_h^2 &= M_Z^2 \cos(2\beta)^2 + \tfrac{3}{4\pi^2} m_t^2 y_t^2 \ln\left(\tfrac{M_S^2}{m_t^2}\right) + \dots \\ \text{with the stop mass scale } M_S^2 &= m_{\tilde{t}_1} m_{\tilde{t}_2} \end{split}$$

▶ Present status: corrections up to N³LO, NNLL

Other models

- ▶ add doublet and singlet
 - e.g. NMSSM (MSSM+singlet)
 - up to 5 Higgs bosons mix
- ▶ add triplet
 - can be used to explain neutrino masses
 - exotic states like H^{++}
- ▶ ..

Conclusions

- ▶ plenty of BSM Higgs models (singlet extension, THDM, MSSM, ...)
- ▶ BSM Higgs sectors may help to explain open problems of SM
- ► High experimental precision allows to probe them even without direct detection
- ► Experimental precision has to be matched by theoretical calculations (see MSSM Higgs mass)