Ayan Paul

AI RESEARCH | THEORETICAL AND COMPUTATIONAL PARTICLE PHYSICS | GENETICS

Building the Future with Interpretable and Robust AI

32 Williams St., Boston, MA 02119

🛛 +1 574 339 1593 📔 💌 apaul2@alumni.nd.edu 📔 🏶 desy.de/~apaul 📔 🖬 ayan--paul 📔 🎓 Google Scholar

Skills

- Neural Networks: 5+ years experience with TensorFlow: DNN for regression/classification, LSTM for time series prediction/signal classification.
- Machine Learning: Interpretable Machine Learning using Coalition Game Theory. Adept at BDT with XGBoost, SVM, RF, KNN, clustering.
- Data Analytics: Proficient in data extraction and parsing, multivariate analysis, Markov Chain Monte Carlo methods and Bayesian inference.
- Coding: Over 14 years of experience in developing open-source codes with C/C++, Python and FORTRAN. Familiar with R, Julia and Matlab.
- Parallel Computing: Extensive experience in parallelizing codes with MPI and OpenMP and simulations on large computer clusters (HPC).
- Innovation: Over 14 years of research experience in physics, mathematics, statistics, machine learning and coding for science.
- Critical Thinking: Highly trained in conceptualizing new ideas and building mathematical models for complex unexplored problems.
- Leadership: Co-founder of CoVis, shaping its technical and business foundations. Principal Investigator of several academic grants.
- Team Work: Involved in working with large teams and collaborations for planning and implementation of future collider projects.
- Communications: Recipient of teaching award and skilled in conveying scientific knowledge to non-experts. Native proficiency in English.

My contribution to open source codes: https://github.com/talismanbrandi.

Professional Experience

The Institute for Experiential AI, Electrical & Computer Enigineering, Northeastern University & Brigham and Women's Hospital, Harvard Medical School

Research Fellow

- Build Graph Neural Networks to study the genetic predisposition for Pulmonary Diseases (team at Harvard Medical School).
- Repurpose BERT models for extracting semantics from DNA sequences to understand formation of mRNA.
- Interpretable ML using CNN/ResNets for identifying anomalies from peripheral blood cell images to aid in rapid cancer detection.
- Supervise a team of PhD students and junior postdocs along with other scientists and professors in the team.

KarmaV

CO-FOUNDER AND CHIEF SCIENTIFIC OFFICER

- Design ML/AI algorithms (FairKarma™) for fair and ethical recruitment to be used with a customizable application tracking system.
- Take ownership of structuring and formation of the science division for KarmaV.

CoVis - a DESY Spin-Off

CO-FOUNDER AND CEO (FORMER CSO)

- Designed and implemented the backend algorithms for COVID-19 risk prediction using AI (LSTM/GRU) from prototyping to deployment.
- Defined research strategies and incorporated results from medical literature using Bayesian methods to combine emerging data.
 - Designed data streams using GraphQL/DynamoDB on AWS for regular updates and processing of data using ML algorithms.

Deutsches Elektronen-Synchrotron (DESY) & Humboldt Universität zu Berlin

Fellow & Senior Scientist

- Principal Investigator of a DESY Strategy Fund grant managing a team of 10 members for Technology Transfer R&D.
- Principal Investigator of a Volkswagen Foundation grant managing an interdisciplinary team of 7 members for academic research.
- Developed an Interpretable ML/AI framework for regression and signal-background classification for Higgs Physics using DNN and BDT.

Istituto Nazionale di Fisica Nucleare, Sezione di Roma I

POSTDOCTORAL FELLOW

- Developed the open-source codes **HEPfit** and **BAT** in C++ for Bayesian multivariate analyses using Markov Chain Monte Carlo.
- Reduced the runtime of **HEPfit** by a factor of 50 200 using MPI and software caching. Built automation for large computing clusters.
- Implemented statistical model selection with non-linear multi-parametric models on noisy experimental data from CERN.

Research.

- Particle Physics: Quantum Field Theory, Relativistic Quantum Mechanics, Higgs Productions and Decays, Symmetry Violation.
- Data & Statistics: Analytics for future physics colliders at CERN using Bayesian MCMC, Probabilistic Modeling, Simulations and ML.
- Mathematical Epidemiology: Automated Contact Tracing for COVID-19, Agent Based Models, ML applications, Multi-Layer Network Analysis.
- Intelligence: Structure and Dynamics of Intelligence and building fundamental frameworks for information processing.
- *Publications:* 30 papers in peer-reviewed high impact-factor journals with over 3100 citations. Top 1% most cited author in physics (10 yr).
- Public Speaking: Presented talks at more than 35 international conferences worldwide (Physics, Applied AI/ML, Mathematical Epidemiology).
- *Research Supervision:* Co-advisor for several masters and PhD students and supervised the work of several junior postdoctoral fellows.

Education

University of Notre Dame du Lac, Department of Physics

MS & PhD in Theoretical Particle Physics

- Physics Graduate Research and Dissertation Award for the best dissertation of the year.
- Founding Member of the Executive Board of Graduate Physics Society and GPS Spring Conferences.

Notre Dame, Indiana 2005 - 2012

November 2021 - PRESENT

USA & Singapore

USA & Germany

April 2020 - June 2022

Hamburg & Berlin, Germany

November 2017 - April 2022

November 25, 2022

Roma, Italy September 2012 - October 2017

May 2022 - PRESENT

Boston, USA

Selected Publications

Total no. of publications (journals & proceedings): 40 [citations: 3187, h-index: 22]

Notable journals published in: Nature Reviews Physics, Nature Scientific Reports, Journal of High Energy Pysics, Pysical Review D, European Physical Journal C, Journal of the Royal Society: Interface, Journal of Physics: Complexity.

Note: Authors are always listed alphabetically arranged by their last name in Particle Physics and Computational Socioeconomics papers.

Machine Learning:

- L. Alasfar, R. Gröber, C. Grojean, A. Paul and Z. Qian, *Machine learning the trilinear and light-quark Yukawa couplings from Higgs pair kinematic shapes*. JHEP**11** (2022) 045. [arXiv:2207.04157].
- C. Grojean, A. Paul, Z. Qian and I. Strümke, Lessons on interpretable machine learning from particle physics. Nat Rev Phys 4, 284–286 (2022). DOI:10.1038/s42254-022-00456-0.
- C. Grojean, A. Paul and Z. Qian, Resurrecting bbh with kinematic shapes. JHEP04 (2021) 139. [arXiv:2011.13945]. [arXiv:2011.13945]
- T. Banerjee, A. Paul, V. Srikanth and I Strümke, *Causal connections between socioeconomic disparities and COVID-19 in the USA*, Sci. Rep. **11**, 18891 (2022). DOI:10.1038/s41598-022-18725-4.
- A. Paul, P Englert and M. Varga, Socio-economic disparities and COVID-19 in the USA, J. Phys. Complex. 2 (2021) no. 3, 035017. DOI:10.1088/2632-072X/ac0fc7.

Bayesian Inference using Markov Chain Monte Carlo:

- A. Paul and M. Valli, Violation of custodial symmetry from W-boson mass measurements, Phys. Rev. D 106 (2022) 013008. [arXiv:2204.05267].
- M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini and M. Valli, *Lessons from the* $B^{0,+} \rightarrow K^{*0,+}\mu^+\mu^-$ angular analysis, Phys. Rev. D **103** (2021) 1, 015030. [arXiv:2011.01212].
- L. Alasfar, A. Azatov, J. de Blas, A. Paul, M. Valli, *B anomalies under the lens of electroweak precision*, JHEP**12** (2020) 116. [arXiv:2007.04400].
- J. De Blas, G. Durieux, C. Grojean, J. Gu and A. Paul, On the future of Higgs, electroweak and diboson measurements at lepton colliders. JHEP12 (2019) 117. [arXiv:1907.04311].
- J. de Blas et. al., HEPfit: a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models. Eur. Phys. J. C80 (2020) no.5, 456. [arXiv:1910.14012].
- M. Ciuchini, A. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini and M. Valli, New Physics in $b \rightarrow s\ell^+\ell^-$ confronts new data on Lepton Universality, Eur. Phys. J. **C79** (2019) no.8, 719. [arXiv:1903.09632]
- M. Ciuchini, A. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini and M. Valli, On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation, Eur. Phys. J. C77 (2017) no.10, 688. [arXiv:1704.05447].
- A. Paul and D. Straub, Constraints on new physics from radiative B decays, JHEP04 (2017) 027. [arXiv:1608.02556.]
- M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini and M. Valli, $B \rightarrow K^* \ell^+ \ell^-$ decays at large recoil in the Standard Model: a theoretical reappraisal. JHEP**06** (2016) 116. [arXiv:1512.07157].

Workshop Papers & Preprints_

ML/AI Research:

- F. Bishara, A. Paul, J. Dy, *High-Precision Regressors for Particle Physics*. Paper submitted to ICLR 2023 for peer-review.
- F. Bishara, A. Paul, J. Dy, *Skip Connections for High Precision Regressors*. Machine Learning and the Physical Sciences, Workshop at the 36th conference on Neural Information Processing Systems (NeurIPS 2022).

Grants & Awards_

2020	Corona Crisis and Beyond (119,200€) , Volkswagen Stiftung. PI with a team of 3 scientists. Project: "Talisman: Intelligent Algorithms for COVID-19 mitigation casting virtual safety nets to	Berlin, Germany
	protect and empower the society" (Duration: 21 months, Project overheads borne by DESY)	
2020	DESY Strategy Fund for COVID-19 (100,000€), DESY, PI with a multidisciplinary team of 7.	Hamburg, Germany
	Project: "CoVis: empowering health decisions, delivered by intelligent algorithms to contain	
	COVID-19" (Duration: 16 months) – Leading to a DESY Spin-off (Technology Transfer): Covis Inc.	
2012	Research and Dissertation Award, Dept. of Physics, University of Notre Dame du Lac	Notre Dame, IN USA
2011	Notebaert Prof. Dev. Fund, Graduate School, University of Notre Dame du Lac	Notre Dame, IN USA
2011	Joseph F. Downes Memorial Award, Graduate School, University of Notre Dame du Lac	Notre Dame, IN USA
2010	W. & L. Stavropoulos Fellowship, Graduate School, University of Notre Dame du Lac	Notre Dame, IN USA
2010	Kaneb Outstanding Graduate Teaching Assistant Award, University of Notre Dame du Lac	Notre Dame, IN USA
2009	Reilly Fellowship, Graduate School, University of Notre Dame du Lac	Notre Dame, IN USA
	NOVEMBER 25, 2022	