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Figure 3: The CLs values for the SM Higgs boson hypothesis as a function of the Higgs boson
mass in the range 110–600 GeV (left) and 110–145 GeV (right).
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Figure 4: The 95% CL upper limits on the signal strength parameter µ = s/sSM H for the SM
Higgs boson hypothesis as a function of the Higgs boson mass in the range 110–600 GeV (left)
and 110–145 GeV (right).
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                                                    Higgs discovery: What does this figure really show ? 


Tuesday

๏ Statistical and Systematic Uncertainties

๏ Probability

๏ Parameter Estimation


Wednesday

๏ Hypothesis Testing

๏ Confidence Intervals

๏ Profile Likelihood Ratio


Friday

๏ Classification 

๏ Multivariate Analysis

๏ Machine Learning 
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Sources and Papers
Statistical Methods in Data Analysis”, Terascale, March 2023: https://www.desy.de/~ameyer/da_desy23/

A.B.Meyer

๏ Statistical Methods in Data Analysis”, KSETA lecture, Feb 2022: https://www.desy.de/~ameyer/da_kseta_22/

๏ Statistical Methods in Data Analysis”, KSETA lecture, March 2021: https://www.desy.de/~ameyer/da_kseta_21/

๏ “Moderne Methoden der Datenanalyse”, Course lecture at KIT, SoSe 2017, slides (in German): http://

ekpwww.etp.kit.edu/~ameyer/da_sose17/index.html        Access to slides and material: (user: Students.  pw: only)


Papers and Articles:

๏ Robert Cousins: "Why isn’t every physicist a Bayesian ?”, Am.J.Phys. 65 (1995).

๏ Robert Cousins: “Lectures on Statistics in Theory: Prelude to Statistics in Practice” [arXiv]

๏ G.Cowan, Particle Data Group [pdg] 2020, chapter 40 [pdf] or full PDG book for download (80MB) [pdf]

๏ G.Cowan, K.Cranmer, E.Gross, O.Vitells: “Asymptotic formulae for likelihood-based tests of new physics” [arXiv]

๏ ATLAS and CMS Collaborations: “Procedure for the LHC Higgs boson search combination" [CDS]

๏ T.Junk: "Confidence level computation for combining searches with small statistics”, NIM, A 434 (1999) 435-443

๏ A.Read: “Presentation of search results: the CLs technique“, J.Phys.G: 28 (2002)


Many thanks for discussions, material and help go to:

๏ G. Quast (KIT), R. Wolf (KIT), O. Behnke (DESY), C. Autermann (Aachen), Th. Keck (KIT), Jan Kieseler (CERN)

https://www.desy.de/~ameyer/da_desy23/
https://www.desy.de/~ameyer/da_kseta_22/
https://www.desy.de/~ameyer/da_kseta_21/
http://ekpwww.etp.kit.edu/~ameyer/da_sose17/index.html
http://ekpwww.etp.kit.edu/~ameyer/da_sose17/index.html
https://arxiv.org/abs/1807.05996
https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf
https://pdg.lbl.gov/2020/download/Prog.Theor.Exp.Phys.2020.083C01.pdf
https://arxiv.org/abs/1007.1727v3
https://cds.cern.ch/record/1379837


Recap
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The Scientific Cycle

3

Beispiel aus der Teilchenphysik

Entdeckung des Higgs-Bosons mit dem CMS-Experiment am CERN

Particle Physics

Experimental input to theory

measure and test theory predictions

(hypothesis testing)

Experiment: 

Theory: predict measurement

Statistical analysis and

data interpretation
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Statistical Uncertainties

๏ Spread of a single measurement for reasons that are                       
practically (e.g. cube) and/or principally (QM) untraceable 

• => Variance: distribution around mean


๏ Repeated measurements are independent (uncorrelated)


๏ Statistical uncertainties are theoretically well understood
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Quantitative relation between correctness of a theory ↔ and observation of actual data

Application in measurements

Probability that theory “A” 
is correct, given data “B” 

have been measured 


“Prior”
“Posterior”

P (A|B) = P (B|A) · P (A)

P (B)

` Thomas Bayes, 1763

“Likelihood”

Conditional probability 
to measure data “B” 

assuming that 

theory “A" is correct

“Evidence” 

Bayes’ Theorem



Maximum Likelihood
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Maximum Likelihood

65
Messung

Welche Verteilung passt am besten zu Messung ? 

๏ LS: Least Squares:              


๏ MLE: Maximum Likelihood Estimator  


๏ Example: 

• Decide between three hypotheses (PDF)


• Measured value: 1.9

➡   MLE and LS both prefer µ=1, σ=1

Maximise PDF value

In general, MLE and LS can lead to different results

Minimise distance from expectation
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Welche Verteilung passt am besten zur Messung ?

65
Messung

Welche Verteilung passt am besten zu Messung ? 

Maximum Likelihood

๏ LS: Least Squares:              


๏ MLE: Maximum Likelihood Estimator  


๏ Example: 

• Decide between three hypotheses (PDF)


• Measured value: 3.5

➡ MLE: µ=0, σ=2

➡ LS:    µ=1, σ=1

In general, MLE and LS can lead to different results

Minimize distance from expectation

Maximise PDF value
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Maximum Likelihood and Least Squares

๏ For Gaussian-distributed measurements, least-squares method and MLE are equivalent:


• Conditional Likelihood using a Gaussian-PDF:


• Negative logarithm of the likelihood:                                                                                  


๏ Thus, for the difference:


χ2 is a special case of Maximum Likelihood, for the assumption of a Gaussian PDF

f(xi|a) =
1p
2⇡�i

· exp

� (xi � a)2

2�2
i

�

F (a) = � ln
Y

i

f(xi|a)

const. w.r.t a (for fixed σi) 

77

Zusammenhang  -ln L und χ2  

Fehlerbestimmung:

              |Δ (-ln L)|  Δχ2

____________________________

   1σ       |   0.5      |   1 
   2σ       |   2.0      |   4 
   3σ       |   4.5      |   9 
   n σ      |   n2/2    |   n2

Für Gauß-förmig um f(xi; a) verteilte Messungen yi  ist die

        χ2 Methode äquivalent zur -lnL-Methode : 

χ2
const. bzgl. a

Minimieren von -ln L ↔ Minimieren von χ2   

   
                        ∆(-ln L)   =  ½ ∆χ2      

              ∂2(-ln L) / ∂ai∂aj  = ½ ∂χ2 / ∂ai∂aj

Bei anderen als Gauß-förmigen Fehlerverteilungen ist χ2 eine eigenständige Methode; 
  - bei unbekannter Fehlerverteilung haben wir keine bessere
  - χ2 ist optimal für die Anpassung von Linearkombinationen von Fit-Funktionen
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Comparison MLE and LS

๏ If MLE is test statistic for a Gaussian PDF:


๏ This is often the case <=> Wilks’ theorem


๏ Things are more difficult                                                             
if the PDF is not a Gaussian:

Maximum Likelihood Least Squares (Gaussian)

Method PDF value Distance from mean

Prerequisit PDF is known Mean and variance

Efficiency maximal maximal in linear problems

Difficulty difficult often solvable analytically

Goodness of Fit ? No Yes: e.g. χ2-probability

Robustness No No

Δ(-ln L) Δχ2

1σ 0.5 1
2σ 2 4
3σ 4.5 9
nσ n2/2 n2

�(� lnL) =
1

2
��2



Hypthesis Testing
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Hypothesis Testing

๏ Should I take an umbrella with me ?


๏ Is a therapy (medication) effective ?


๏ Is the discovered signal the Higgs boson               
predicted by the Standard Model ?

Assess plausibility of a hypothesis using data

๏ Hypothesis test: do the data agree, within a pre-defined significance, with the hypothesis (theory) ?

• Exclusion of hypothetical signals usually at 95% confidence level (p-value = 5%)


• Discovery of signals requires bigger significance, typically 5σ (p-value ~ 3⋅10-7)  


“Extraordinary claims require extraordinary evidence”
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PDG 2020:

Fig. 40.4

Exclusion/discovery: 1-sided interval: p-value = α/2
Measurements: 2-sided interval: p-value = α

Gaussian Quantiles <latexit sha1_base64="GFlLpg3NxuXAUdGPs1/Sg/O4ljE="></latexit>

1� ↵ ↵ ↵/2
1� 0.683 0.317 0.158

1.65� 0.90 0.10 0.05

1.96� 0.95 0.05 0.025

2� 0.9545 0.0455 0.0228

3� 0.9973 0.0027 0.0013

5� 3⇥ 10�7

๏ Hypothesis test: do the data agree, within a pre-defined significance, with the hypothesis (theory) ?

• Exclusion of hypothetical signals usually at 95% confidence level (CL): p-value = 5%


• Discovery of signals requires bigger significance, typically 5σ: p-value ~ 3⋅10-7  


“Extraordinary claims require extraordinary evidence”
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Hypothesis Testing

typical critical 
value chosen

๏ Single hypothesis: null hypothesis H0


• Example: test data for consistency with the Standard Model (H0)


• E.g. using goodness-of-fit tests using χ2 as test statistic

๏ Hypotheses are formulated as PDF              
of a test statistic t


๏ Comparison of a data sample with                  
one or several hypotheses Hi

data can be 

here or here: 
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Hypothesis Testing

๏ Hypotheses are formulated as PDF          
of a test statistic t


๏ Comparison of a data sample with                  
one or several hypotheses Hi

๏ Several hypotheses: H0 and alternative hypotheses Hi


• Example: Standard Model (H0) vs specific New Physics model (H1).


A hypothesis can never be proven, it can only be falsified: one counter-example is sufficient

๏ Single hypothesis: null hypothesis H0


• Example: test data for consistency with the Standard Model (H0)


• E.g. using goodness-of-fit tests using χ2 as test statistic
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Example: Particle Identification

๏ Hypotheses Hi:

• Pion: falsified


• Kaon: falsified


• Proton: consistent                                                                                                     
(but not proven) 

27 

Testing more than 2 hypotheses (π,K,p,D, etc.)  
A particle was measured with dE/dX = 510 
The H(K) vs H(π) test ruled out the pion hypothesis  

 
A H(p) vs H(K) test rules out the K hypothesis! 
Can never verify hypotheses, only exclude, unless one 
has excluded all other possible hypos (Sherlock Holmes)  

What to  
conclude?  

Energy-Loss Measurement

A hypothesis can never be proven, it can only be falsified: one counter-example is sufficient
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Hypothesis Testing
Procedure

1. Determine PDF g(t;Hi) for test statistic t

2. Define significance level α (typically 5%)


• critical value t0: reject null hypothesis or not

• in practice, α depends on goal


• high efficiency ε or high purity p ?


• separation power 1-β

p =
(1� ↵)N0

(1� ↵)N0 + �N1
✏ = 1� ↵

Note: trivially, no separation if no separation power 

=> large 1-β is fundamentally more important than small α 

3. Determine p-value of the measurement

p-value is probability that values t > t0 are measured, assuming that H0 is true.

(note: p-value is an estimator derived from the measurement, i.e. a random number)
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Receiver Operating Characteristic (ROC)

๏ Choice of "working point” depends on problem (purity vs. efficiency)

๏ Area Under Curve (“AUC”) is often used to quantify the performance of the separation algorithm

✏ = 1� ↵

p
=

(1
�

↵
)N

0

(1
�

↵
)N

0
+

�
N

1
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Two Hypotheses

๏ Is the Higgs boson a scalar particle ? 

• Null hypothesis: JP = 0+


• Alternative hypothesis: e.g. JP = 0-


๏ Construct a test statistic (here: likelihood ratio):

Example: Higgs Boson Properties

CP-properties of the  

Higgs boson from decays into  

in 4 leptons

)+0 / L-0
 ln(L× -2 

-30 -20 -10 0 10 20 30

ps
eu

do
 e

xp
er

im
en

ts

0

0.02

0.04

0.06

0.08

0.1

CMS -1 = 8 TeV, L = 19.7 fbs  -1 = 7 TeV, L = 5.1 fbs

+0
-0

CMS data

q = �2 ln(L0�/L0+)

JP = 0- excluded at 3.8σ observed (2.4σ expected)

https://arxiv.org/abs/1312.5353

https://arxiv.org/abs/1312.5353
https://arxiv.org/abs/1312.5353
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Neyman-Pearson Lemma

๏ For simple hypotheses, i.e. f(x|Hi) are completely known, the likelihood ratio λ(x) provides optimal 
separation power 1-β (for fixed significance α)


๏ Equivalently: log-likelihood difference:


๏ Notes: 

• Determination of optimal test statistic (signal-to-background separation) is called classification (next time)


• In practice, MC simulations are used to determine PDF für different hypotheses.


• The Neyman-Pearson lemma does not generally hold for composite hypotheses, i.e. hypotheses with free 
parameters, e.g.: f(x|H(λi,µi)) with λi known und µi free

�(x) =
f(x|H0)

f(x|H1)

q(x) = �2 ln�(x) = 2(ln f(x|H1)� ln f(x|H0))

Jerzy Neyman, Egon Pearson, 1933
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Wilks’ Theorem

๏ For large samples with n data points xi, n → ∞ (and for a null hypothesis H0 that 
determines r=m-m(0) parameters), the distribution of the log-likelihood ratio q = -2 ln λ 
asymptotically approaches a χ2 distribution (with r degrees of freedom).


• r = difference in the number of free parameters for H1 and H0
S.S. Wilks, The large-sample 
distribution of the likelihood ratio 
for testing composite hypotheses.                           
Ann. Math. Stat. 9, 60–62 (1938) 

��2 = �2 ln� = �2 ln

✓
L(s+ b)

L(b)

◆
H1

H0
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Wilks’ Theorem

๏ Signal (s) above background (b):

๏ PDF for each bin in m: n(m) = b(m) + s(m)


• b: Poisson distributed in each bin -> Gauss for large b


• s: Number of events in mass peak (fixed mass and width)


๏ Two hypotheses:

• H0 (background only): s=0    =>    fit of 1 free parameter b → χ2(b)


• H1 signal-Hypothesis: s≠0     =>    fit of 2 free parameters b+s → χ2(b+s)

Counting Experiment
Peak significance  

49 

Assumptions: 
¾ known background  
¾ fixed signal position & σ 
¾ ~asympotics (large n) 

 =1000 

According to Wilks’ 
theorem get local 
signal significance from   

-∆    should follow χ2 distribution with 1 ndf if H0 correct 
                     = 8.5 is the gaussian z-score, p-value: 2∙10-16 

= -73 (for above case)  

The bible: “Asymptotic formulae for likelihood-based tests of new physics”  
 G. Cowan, K. Cranmer, E. Gross, O. Vitells, arXiv:1007.1727 

= -73 in this specific case

Apply Wilks’ theorem: 

If H0 true, then Δχ2 is a χ2 - distribution mit 1 d.o.f: p(χ2 = 73) = 2x10-16, corresponds to z = 8.5 σ


Backup: for small signals and large n 

��2 = �2 ln� = �2 ln

✓
L(s+ b)

L(b)

◆

z =
p
��2 =

p
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https://arxiv.org/abs/1007.1727


Confidence Intervals
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Frequentist vs Bayesian

๏ Frequentist definition: also referred to as “objective” or “classical” definition

• Probability is identified as rate of occurrence (relative frequency) of events

• For repeatable events or in case of symmetries (e.g. dice)


๏ Bayes probability: also referred to as “subjective” definition

• “Degree of Belief”

• Also applicable for one-time only events, e.g. probability that it is going to rain tomorrow

• Does not exclude a Frequentist interpretation

• But priors often consist of non-Frequentist prior assumptions 

Physicists mostly take a pragmatic approach:

E.g. a profile likelihood fit using nuisance parameters


is a Frequentist method with “quasi-Bayesian” components  
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Confidence Interval
Coverage

Coverage: 

probability 1-α-β that true value 
is contained in the interval

๏ Use measurement of â and uncertainty to determine interval 
in which the true value a lies for chosen confidence level (CL)


๏ Typical CL: 68.3%, 90% or 95%.
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Interval Estimation

๏ Previously discussed: estimation of points

๏ Usual presentation of measurements:                        


• Estimator with uncertainty: â ± σa


๏ Interpretation: 

• The interval [â - σa, â + σa] covers the true value a at 68.3% confidence.

data point â 

with error bars

true 
value a
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Interval Estimation

๏ Actual meaning: 

• The measured parameter â is a random number, given the true value a. 


• PDF g(â|a) ist distributed around the true value a.


๏ Both are equivalent if g(â|a) is a Gaussian. 

• This is frequently the case (→ central limit theorem), but not always

data point â 


true 
value a

data point â 

with error bars

true 
value a

PDF g(â|a)


๏ Previously discussed: estimation of points

๏ Usual presentation of measurements:                        


• Estimator with uncertainty: â ± σa


๏ Interpretation: 

• The interval [â - σa, â + σa] covers the true value a at 68.3% confidence.
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Confidence Interval

๏ Measurement of a data point θ̂obs of an observable θ̂ (detector has Gaussian response) 


๏ Construction of a two-sided confidence interval:

Example: Gaussian distribution

Upper limit b                                                              
For assumed true value b, the probability to               
measure a value θ̂obs or smaller is β,                          
e.g. for 1σ: β = (1 – 68%)/2 = 16%

Cowan page 122

Lower limit a                                                              
For assumed true value a, the probability to               
measure a value θ̂obs or bigger is α,                          
e.g. for 1σ: α = (1 – 68%)/2 = 16%
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Confidence Interval

๏ Determine two-sided 90% confidence interval in a counting experiment with n = 9 observed events

๏ Poisson probability: p(n|µ) = e-µ µn / n!

µupper = 15.7

Example: Poisson distribution
Blobel/Lohrmann, Section 6.7

๏ For a 95% CL, 1-sided interval, the 
interval border is determined                        
by varying the hypothetical true value µ 
such that the observed signal                       
is excluded with a p-value of 5%.

Determination of confidence intervals can be viewed as scan of hypothesis tests

๏ Do this from both sides to obtain the 2-
sided 90% CL interval

µlower = 4.7

nmeasured = 9
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18Statistische Methoden der Datenanalyse    - 10 Konfidenz-Intervalle

a

ââ-σ â+σ

v(a)

u(a)

Neyman-Konstruktion

→Für hypothetische wahre Werte a 
    gibt es (Verteilungen von) 
    Messungen â

→mit Unsicherheiten σ 
    â-σ und â+σ sind Funktionen von a.
        

In 16% of cases

measure < â-σ

In 16% of cases

measure > â+σ

๏ For a true value of a, there is a measurement â   
with an uncertainty σ.


๏ â-σ und â+σ are functions of a,                                      
here u(a) and v(a).

Neyman Construction
Frequentist approach



    Andreas B. Meyer                                                          Statistical Methods in Data Analysis                                                             Introduction to the Terascale,  6-10 March 2023                                 33

20Statistische Methoden der Datenanalyse    - 10 Konfidenz-Intervalle

→Für hypothetische wahre Werte a 
    gibt es (Verteilungen von) 
    Messungen â

→mit Unsicherheiten σ 
    â-σ und â+σ sind Funktionen von a.
 
→Für eine konkrete Messung â
    kann ein Konfidenzintervall
    konstruiert werden.

→Die Funktionen a
min

(â) und a
max

(â) 

    sind der Konfidenzgürtel

    D.h. der Gürtel wird horizontal für
    angenommene wahre Werte a        
    konstruiert. Für eine konkrete          
    Messung â wird das Konfidenz-  
    Intervall vertikal abgelesen

        

a

ââ-σ â+σ

a
min

a
max

a
max

(â)=u-1(â)

Neyman-Konstruktion

a
min

(â)=v-1(â)

In 16% of cases

true value < amin

๏ For a true value of a, there is a measurement â   
with an uncertainty σ.


๏ â-σ und â+σ are functions of a,                                      
here u(a) and v(a).


๏ For a concrete measurement â, a confidence 
interval is constructed.

Neyman Construction
16% of cases:

true value > amax

Frequentist approach

In repeated experiments the true value of a would be 
contained in the interval [amin, amax] in 68% of the cases
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â

a

amax(â)

amin(â)

aML(â)

In this sketch, we also put the most probable value aML. 

However, in a strictly frequentist view, the true value has no uncertainty

Neyman Construction
Frequentist approach

๏ For a true value of a, there is a measurement â   
with an uncertainty σ.


๏ â-σ und â+σ are functions of a,                                      
here u(a) and v(a).


๏ For a concrete measurement â, a confidence 
interval is constructed. The functions amin(â) und 
amax(â) are the confidence belt


๏ The belt is constructed horizontally for assumed  
true values of a. For a concrete measurement â,       
the confidence interval can be read off vertically


๏ Note: the confidence belt is an estimate
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๏ For a true value of a, there is a measurement â   
with an uncertainty σ.


๏ â-σ und â+σ are functions of a,                                      
here u(a) and v(a).


๏ For a concrete measurement â, a confidence 
interval is constructed. The functions amin(â) und 
amax(â) are the confidence belt


๏ The belt is constructed horizontally for assumed  
true values of a. For a concrete measurement â,       
the confidence interval can be read off vertically


๏ Note: the confidence belt is an estimate

Neyman Construction

a

amax(â)

amin(â)

â

aML(â)

Frequentist approach

In this sketch, we also put the most probable value aML. 

However, in a strictly frequentist view, the true value has no uncertainty
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Neyman Construction

a

amax(â)

amin(â)

â

aML(â)

Frequentist approach

In this sketch, we also put the most probable value aML. 

However, in a strictly frequentist view, the true value has no uncertainty

๏ For a true value of a, there is a measurement â   
with an uncertainty σ.


๏ â-σ und â+σ are functions of a,                                      
here u(a) and v(a).


๏ For a concrete measurement â, a confidence 
interval is constructed. The functions amin(â) und 
amax(â) are the confidence belt


๏ The belt is constructed horizontally for assumed  
true values of a. For a concrete measurement â,       
the confidence interval can be read off vertically


๏ Note: the confidence belt is an estimate
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[σ] [σ]

Confidence interval for a Gaussian distributed estimator 125 

Consider a central confidence interval with a =.(3 = ,/2. The confidence level 
1-, is often chosen such that the quantile is a small integer, e.g. cI>-1(1-,/2) = 
1,2,3, .... Similarly, for one-sided intervals (limits) one often chooses a small 
integer for cI>-1 (1 - a). Commonly used values for both central and one-sided 
intervals are shown in Table 9.1. Alternatively one can choose a round number 
for the confidence level instead of for the quantile. Commonly used values are 
shown in Table 9.2. Other possible values can be obtained from [Bra92, Fr079 , 
Dud88] or from computer routines (e.g. the routine GAUSIN in [CER97]). 

Table 9.1 The values of the confidence level for different values of the quantile of the standard 
Gaussian for central intervals (left) the quantile (1-,/2) and confidence level 1-,; 
for one-sided intervals (right) the quantile - Q) and confidence level 1- Q. 

cI> (1 - ,/2) 
1 
2 
3 

0.6827 
0.9544 
0.9973 

cI> (1-0') 
1 
2 
3 

1 - a 
0.8413 
0.9772 
0.9987 

Table 9.2 The values of the quantile of the standard Gaussian for different values 
of the confidence level: for central intervals (left) the confidence level 1 - , and the quan-
tile (1 - ,/2); for one-sided intervals (right) the confidence level I - Q and the quantile 

(I - Q). 

0.90 
0.95 
0.99 

-1.645 
1.960 
2.576 

1 - a 
0.90 
0.95 
0.99 

1.282 
1.645 
2.326 

For the conventional 68.3% central confidence interval one has a = {3 = ,/2, 
with cI>-1 (1-, /2) = 1, i.e. a' 1 (J' error bar'. This results in the simple prescription 

(9.13) 

Thus for the case of a Gaussian distributed estimator, the 68.3% central confi-
dence interval is given by the estimated value plus or minus one standard de-
viation. The final result of the measurement of () is then simply reported as 
Oobs±(J'o· 

If the standard deviation (J'o is not known a priori but rather is estimated 
from the data, then the situation is in principle somewhat more complicated. 
If, for example, the estimated standard deviation (;-0 had been used instead of 
(J'o' then it would not have been so simple to relate the cumulative distribution 
G(e; (), (;-g) to cI>, the cumulative distribution of the standard Gaussian, since (;-{} 
depends in general on O. In practice, however, the recipe given above can still 

â

For a Gaussian distribution

â

Confidence Belt

aa

Cowan: table 9.2

๏ The confidence belt of a Gaussian PDF is a straight line with a slope of 1. 

• Gauss PDF is symmetric, σ (width) does not depend on µ (mean).


• This is why it is ok to draw the error bar on the data point, and to interpret it as interval for the true value
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Confidence Belt

๏ 90% CL interval for an unknown Poisson-distributed signal with a background of 3 events

๏ In this case, the band for â=0 is empty. 

Poisson distribution

ââ

aa
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1-Sided Limits and 2-Sided Intervals F.James

๏ In practice, the confidence level is often chosen depending on the result of the analysis

• â > 3σ → Measurement (2-sided confidence belt, 1-α-β, 68% C.L.)


• â < 3σ → Upper Limit (1-sided confidence belt, 1-α, 90% or 95% C.L.)

[σ]

a

â

๏ Define before the measurement:

• 1-sided limit 1-α or                                    

2-sided interval 1-α-β


• confidence level (e.g. 68, 90 or 95%)
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Flip-Flopping

40

F.James, Abb. 9.71-Sided Limits and 2-Sided Intervals

[σ]

a

â

Figure: for a = 2.5:

AC: 90% CL 2-sided

B∞: 90% CL 1-sided

BC: 85% CL


In the interval 1.2 < a < 4.3, only 85% 
coverage

 

More importantly: 

the interval for e.g. â = – 2 is “empty”

๏ In practice, the confidence level is often chosen depending on the result of the analysis

• â > 3σ → Measurement (2-sided confidence belt, 1-α-β, 68% C.L.)


• â < 3σ → Upper Limit (1-sided confidence belt, 1-α, 90% or 95% C.L.)
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๏ Feldman-Cousins a.k.a. "unified approach”: 
“automatic” decision if measurement or limit


๏ Construct interval using an ordering principle, 
based on the likelihood ratio R


where abest = a for which g(â|a) is largest

R(â|a) = g(â|a)
g(â|abest)

F.James, Abb. 9.8

1-Sided Limits and 2-Sided Intervals: Unified Approach

[σ]

a

â

๏ Recipe:

• Sum up values of â for decreasing values of R until g(â|a) reaches the chosen confidence level

• For â < 0: add contributions to the left side (no empty interval) Example in backup
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Frequentist and Bayesian Approaches

๏ Frequentist approach: there is a true value a 

• True values are true, they have no uncertainty (!)


• Statements about probability are made only about the interval, not the true value itself.


• The interval is a measured (i.e. random) quantity


• For a confidence level CL = p%, the confidence interval covers the true value in p% of all cases.


• Neyman construction to determine interval around true value (coverage by construction)


๏ Bayesian approach: depends on the conditions

• The “prior” describes the degree of belief that a can take certain values.


• The true value has an uncertainty that depends on the measurement.


• The posterior density distribution of a, namely f(a|â), is product of the likelihood 𝓛(â|a) and the prior π(a)


• Coverage must be checked explicitly (e.g. using toy-MC)

f(a|â) / L(â|a) · ⇡(a)
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Frequentist and Bayesian Approaches

f(a|â) / L(â|a) · ⇡(a)

https://xkcd.com/1132/

https://xkcd.com/1132/
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๏ Frequentist approach: there is a true value a 

• True values are true, they have no uncertainty (!)


• Statements about probability are made only about the interval, not the true value itself.


• The interval is a measured (i.e. random) quantity


• For a confidence level CL = p%, the confidence interval covers the true value in p% of all cases.


• Neyman construction to determine interval around true value (coverage by construction)


๏ Bayesian approach: depends on the conditions

• The “prior” describes the degree of belief that a can take certain values.


• The true value has an uncertainty that depends on the measurement.


• The posterior density distribution of a, namely f(a|â), is product of the likelihood 𝓛(â|a) and the prior π(a)


• Coverage must be checked explicitly (e.g. using toy-MC)
44

Frequentist and Bayesian Approaches

quote by Louis Lyons (?)

Bayesians address questions everyone is interested in, 
by using assumptions no one believes


f(a|â) / L(â|a) · ⇡(a)

Frequentists use impeccable logic to deal with issues 
of no interest to anyone 
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Impact of the Prior

๏ Choice of prior is important! 

• For π(a) = const → Bayesian f(a|â) and 

Frequentist 𝓛(â|a) approach give the 
same result.


๏ Figure (n=3 observed events)

• top: flat prior


• bottom: 1/µ prior

Example: Bayesian intervals

central

  α=β

shortest

shortestcentral

  α=β

R. Cousins, „Why isn't every Physicist a Bayesian?“

f(a|â) / L(â|a) · ⇡(a)
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Upper limit on the mean of Poisson variable with background 141 
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Fig. 9.9 Upper limits at a confidence level of 1 - f3 = 0.95 for different numbers of events 
observed nabs and as a function of the expected number of background events Vb. (a) The 
classical limit. (b) The Bayesian limit based on a uniform prior density for Vs' 

Taking rr(vs ) to be constant for Vs 2:: 0 and zero for Vs < 0, the upper limit 
at a confidence level of 1 - j3 is given by 

1- j3 = 

= 

f;:P L( nobs Ivs ) dvs 

fooo 
L(nobslvs)dvs 

(9.53) 

The integrals can be related to incomplete gamma functions (see e.g. [Arf95]), 
or since nobs is a positive integer, they can be solved by making the substitution 
x = Vs + Vb and integrating by parts nobs times. Equation (9.53) then becomes 

(9.54) 

This can be solved numerically for the upper limit The upper limit as a 
function of Vb is shown in Fig. 9.9(b) for various values of nobs. For the case 
without background, setting Vb = 0 gives 

nob. ( Up)n 
j3 _vup L Vs -e' ---- n! ' 

n=O 
(9.55) 

which is identical to the equation for the classical upper limit (9.16). This can 
be seen by comparing Figs 9.9(a) and (b). The Bayesian limit is always greater 
than or equal to the corresponding classical one, with the two agreeing only for 
Vb = O. 

46

Poisson Signal and Background

๏ Typical search analysis, i.e. number of signal events 𝜈s is small 


• Signal + background is Poisson distributed: p(n| 𝜈s, 𝜈b) = p(n|𝜈 = 𝜈s + 𝜈b)


• Determine n and subtract 𝜈b,exp to estimate 𝜈s


• Upper limit (95% CL) for 𝜈s as a function of the expected background 𝜈b,exp, for different nobs

C
ow

an Fig. 9.9
No Prior: “Frequentist”

140 Statistical errors, confidence intervals and limits 

(9.47) 

fhe ML estimator for Vs is 

(9.48) 

which has zero bias since E[n] = Vs + Vb. Equations (9.15), which are used to 
determine the confidence interval, become 

P(v > vObs . v 1o) = '""""' s_ s , s L...J n! 
(9.49) 

j3 P(v < vobs . V UP ) - '""""' s_ s 'S - L...J n! 

These can be solved numerically for the lower and upper limits v!o and 
Comparing with the case Vb = 0, one sees that the limits from (9.49) are related 
to what would be obtained without background by 

v!O(no background) - Vb, 

background) - Vb. 
(9.50) 

The difficulties here are similar to those encountered in the previous example. 
The problem occurs when the total number of events observed nobs is not large 
compared to the expected number of background events Vb. Values of for 
1 - j3 = 0.95 are shown in Fig. 9.9(a) as a function of the expected number 
of background events Vb. For small enough nobs and a high enough background 
level Vb, a non-negative solution for does not exist. This situation can occur, 
of course, because of fluctuations in ns and nb. 

Because of these difficulties, the classical limit is not recommended in this 
case. As previously mentioned, one should always report vs and an estimate 
of its variance even if vs comes out negative. In this way the average of many 
experiments will converge to the correct value. If, in addition, one wishes to 
report an upper limit on V s , the Bayesian method can be used with, for example, a 
uniform prior density [HeI83]. The likelihood function is given by the probability 
(9.47), now regarded as a function of V s , 

(9.51 ) 

The posterior probability density for Vs is obtained as usual from Bayes' theorem, 

(9.52) 

๏ No positive limit for nobs small against 𝜈b: 


Experiment with large background could 
be lucky and measure better limit


𝜈b,exp = 8 and 3 observed, i.e. 𝜈s = -5 => upper limit 𝜈s,up is 0

𝜈b,exp = 0 and 0 observed => upper limit 𝜈s,up is 3

𝜈b,exp
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Poisson Signal and Background

๏ Typical search analysis, i.e. number of signal events 𝜈s is small 


• Signal + background is Poisson distributed: p(n| 𝜈s, 𝜈b) = p(n|𝜈 = 𝜈s + 𝜈b)


• Determine n and subtract 𝜈b,exp to estimate 𝜈s


• Upper limit (95% CL) on 𝜈s as a function of the expected background 𝜈b,exp, for different nobs

C
ow

an Fig. 9.9
Prior: “Bayesian”

140 Statistical errors, confidence intervals and limits 

(9.47) 

fhe ML estimator for Vs is 

(9.48) 

which has zero bias since E[n] = Vs + Vb. Equations (9.15), which are used to 
determine the confidence interval, become 

P(v > vObs . v 1o) = '""""' s_ s , s L...J n! 
(9.49) 

j3 P(v < vobs . V UP ) - '""""' s_ s 'S - L...J n! 

These can be solved numerically for the lower and upper limits v!o and 
Comparing with the case Vb = 0, one sees that the limits from (9.49) are related 
to what would be obtained without background by 

v!O(no background) - Vb, 

background) - Vb. 
(9.50) 

The difficulties here are similar to those encountered in the previous example. 
The problem occurs when the total number of events observed nobs is not large 
compared to the expected number of background events Vb. Values of for 
1 - j3 = 0.95 are shown in Fig. 9.9(a) as a function of the expected number 
of background events Vb. For small enough nobs and a high enough background 
level Vb, a non-negative solution for does not exist. This situation can occur, 
of course, because of fluctuations in ns and nb. 

Because of these difficulties, the classical limit is not recommended in this 
case. As previously mentioned, one should always report vs and an estimate 
of its variance even if vs comes out negative. In this way the average of many 
experiments will converge to the correct value. If, in addition, one wishes to 
report an upper limit on V s , the Bayesian method can be used with, for example, a 
uniform prior density [HeI83]. The likelihood function is given by the probability 
(9.47), now regarded as a function of V s , 

(9.51 ) 

The posterior probability density for Vs is obtained as usual from Bayes' theorem, 

(9.52) 
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Fig. 9.9 Upper limits at a confidence level of 1 - f3 = 0.95 for different numbers of events 
observed nabs and as a function of the expected number of background events Vb. (a) The 
classical limit. (b) The Bayesian limit based on a uniform prior density for Vs' 

Taking rr(vs ) to be constant for Vs 2:: 0 and zero for Vs < 0, the upper limit 
at a confidence level of 1 - j3 is given by 

1- j3 = 

= 

f;:P L( nobs Ivs ) dvs 

fooo 
L(nobslvs)dvs 

(9.53) 

The integrals can be related to incomplete gamma functions (see e.g. [Arf95]), 
or since nobs is a positive integer, they can be solved by making the substitution 
x = Vs + Vb and integrating by parts nobs times. Equation (9.53) then becomes 

(9.54) 

This can be solved numerically for the upper limit The upper limit as a 
function of Vb is shown in Fig. 9.9(b) for various values of nobs. For the case 
without background, setting Vb = 0 gives 

nob. ( Up)n 
j3 _vup L Vs -e' ---- n! ' 

n=O 
(9.55) 

which is identical to the equation for the classical upper limit (9.16). This can 
be seen by comparing Figs 9.9(a) and (b). The Bayesian limit is always greater 
than or equal to the corresponding classical one, with the two agreeing only for 
Vb = O. 

𝜈b,exp

๏ Bayesian prior:                                                          
π(𝜈s < 0) = 0 and π(𝜈s ≥ 0) = const                                  

has good properties:

• For 𝜈b = 0: same limit on 𝜈s


• For 𝜈b > 0: higher (i.e. worse) limit on 𝜈s than flat prior 
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“Modified Frequentist Approach”: CLS

๏ Consider two hypotheses:

• H1: Measured event sample contains both background and signal


• d = s + b                       → p-value  = “CLs+b”


• H0: Measured event sample contains just background


• d = b, d.h. s=0              → p-value   = “CLb”


๏ CLs renormalizes measured limit to the background estimate

• Quantitatively similar effect as Bayesian prior


• Make experiments with different background conditions comparable.


• CLs is always bigger than CLs+b → over-coverage 

A Frequentist countermeasure

G.Cowan, PDG, 

Section 40.4.2.4

CLs =
CLs+b

CLb
=

Pd
k=0 P (k; s+ b)
Pd

k=0 P (k; b)

Also: T.Junk or A.L.Read
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Example: measurement d = 7

49

Decisions and Tests Limits CLs Tools Exercises

Particle physics: Signal and Background Hypotheses

In particle-physics the „Null-hypothesis” is usually the expectation, that
the observed data will follow the predictions of the Standard Model.

The Standard Model predicts the process cross-sections. With the
integrated luminosity and the selection efficiency the background
probability density function is determined.

The test-statistic is usually the event yield in a given selection.

Example:

background expectation:

b = 4

signal expectation:

s = 11

observed data:

d = 7

event yield
0 2 4 6 8 10 12 14 16 18 20

ar
bi
tra
ry

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 = 4bλNull-Hypothesis (background-only):  

Observation d = 7

α

β

 = 15s+bλAlternative hypothesis: 
(signal + background)

Limit determination II Christian Autermann 11/ 43

๏ H0: expected background b=4


๏ H1: expected signal s=11 ⟶ s+b=15


๏ What is the upper limit                                                                                                                               
at 95% confidence level                                                                                                                                                 
for CLs+b and CLs ?                                                                                                                          
(answer: supper = 8.5 and 8.7)

CLb+s � =

Z d

0
P (x|b+ s)dx

         1-CLb ↵ = 1�
Z d

0
P (x|b)dx

C
hristian A

uterm
ann, R

W
TH

 A
achen

CLs
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๏ Scan for different signal hypotheses and compare with measurement 

๏ For Poisson-distributed  b = 4  and  d = 7: 


๏ Upper limit on s for CLS+B = 95%:                                             sCLs+b,95% = 8.5

๏ Upper limit on s for CLS = 95%:                                                   sCLs,95% = 8.7

CLs
Example

CLb+s� =

Z d

0
P (x|b+ s)dx

Low background: similar limits on s for CLS+B and CLS
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๏ Scan for different signal hypotheses and compare with measurement 

๏ For Poisson-distributed  b = 7  and  d = 7: 


๏ Upper limit on s for CLS+B = 95%:                                             sCLs+b,95% = 5.5

๏ Upper limit on s for CLS = 95%:                                                   sCLs,95% = 6.6

CLs
Example

CLb+s� =

Z d

0
P (x|b+ s)dx

Medium background: CLS  gives worse limit on s than CLS+B
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๏ Scan for different signal hypotheses and compare with measurement 

๏ For Poisson-distributed  b = 10  and  d = 7: 


๏ Upper limit on s for CLS+B = 95%:                                             sCLs+b,95% = 2.5

๏ Upper limit on s for CLS = 95%:                                                   sCLs,95% = 5.5

CLs
Example

CLb+s� =

Z d

0
P (x|b+ s)dx

High background: CLS  gives much worse limit on s than CLS+B
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Confidence Intervals

๏ Interval in which true value lies with pre-defined confidence level.

๏ Frequentist (or classical) approach:


• Neyman Construction: correct coverage by construction


• Unified Frequentist approach: use likelihood ratio as ordering principle to avoid “flip-flopping" (when 
switching between 1-sided and 2-sided intervals) and empty intervals.


๏ Bayesian prior:

• E.g. to avoid unphysical results. 


• Shape of prior has direct impact on result and coverage.


๏ Modified frequentist approach CLS:

• Robust method to suppress possible effects from downward fluctuations of the background.


• Price to pay: over-coverage

Summary



Profile-Likelihood Ratio
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Signal Strength µ

๏ Likelihood in a counting experiment


๏ Product of Poisson likelihoods to measure ni events in bin i


๏ Signal strength µ: modifies expected signal using data  

• µ=0: H0   background only


• µ=1: H1   expected signal

Poisson(data|µ · s+ b) =
Y

i

(µ · si + bi)ni

ni!
e�(µ·si+bi)

L(data|µ) = Poisson(data|µ · s+ b)
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Signal Strength µ

๏ Likelihood in a counting experiment


๏ Nuisance parameters θ: parameters that are not of 
primary interest, but needed for the determination of 
signal and background, i.e. systematic uncertainties


๏ Typical particle physics data analyses use many 
nuisance parameters (order 100)

L(data|µ) = Poisson(data|µ · s(✓) + b(✓))

Nuisance parameters θ 

impact measurement of s and b
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Signal Strength µ

๏ Likelihood in a counting experiment


๏ PDF(θ): prior knowledge from ancillary measurements                       
used as constraints for the Frequentist likelihood of the main 
measurement

L(data|µ) = Poisson(data|µ · s(✓) + b(✓)) · PDF (✓)

“Priors”, i.e. PDF determined 

in other measurements
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๏ Profile likelihood: determine the interval for the (true) signal strength µ, for optimal nuisance 
parameters θ̂µ, normalized to the global maximum of the likelihood.


๏ “Profile” = scan, determine qµ for all µ

58

Profile-Likelihood Ratio

CCGV section 2.5 and 
CMS+ATLAS 2.1

Best-fit values of 
all parameters

Signal strengthTest statistic
Nuisance parameter θ̂µ: maximises 𝓛(data|µ,θ̂µ) for µ

qµ = �2 ln
L(data|µ, ⇥̂µ)

L(data|µ̂, ⇥̂)
, 0  µ̂  µ
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Profile-Likelihood Ratio

๏ In the limit of high statistics (Wilks),                       
qµ follows χ2-distribution (parabola)


๏ Profile-likelihood distribution has all estimators:

• Best fit of µ at minimum


• 2-sided confidence interval: e.g. 68%


• Exclusion of Null-hypothesis:     


• q(µ=0) = z2 = (Significance)2


• here: z ~ √2.4 ≈ 1.5


• Upper limit µ95:

�2� lnL(µ95) = 1.6452 = 2.71

Large-Sample Approximation

C
C

G
V, section  3.7

qµ =� 2 ln�(µ) = �2� lnL

⇡ (µ� µ̂)2

�2

For 1-sided limit set qµ=0 für µ<µ̂

  µ68        µbest            µ68         µ95         µ

In general: 2-sided interval
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๏ Number of events depends on invariant mass


๏ Blind analysis: software and all criteria were fixed before looking at the data

60

Higgs Discovery
History: Status December 2011

Excess at a mass of ~124 GeV

Higgs boson mass > 127 GeV

Excluded at 95% confidence level

Distribution of 

pseudo experiments

using expected 
(background-only) limit 
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Higgs Discovery

๏ Determine µ95, i.e. signal strength excluded at 95% CLs  

๏ Pseudo-experiments to determine the distribution around the 95% limit for the background-only 

hypothesis, i.e. median and intervals for ±1σ und ±2σ around µ95.

Brazilian-Flag Figure

Eur. Phys. J. C (2011) 71: 1554 Page 17 of 19

Fig. 10 (Color online) The distributions f (qµ|0) (red) and f (qµ|µ)
(blue) as in Fig. 9 and the 15.87% quantile of f (qµ|0) (see text)

Fig. 11 Distribution of the upper limit on µ at 95% CL, assuming data
corresponding to the background-only hypothesis (see text)

the hypothesized µ, as shown shaded in green. The upper
limit on µ at a confidence level CL = 1−α is the value of µ

for which the p-value is pµ = α. Figure 9 shows the distrib-
utions for the value of µ that gave pµ = 0.05, corresponding
to the 95% CL upper limit.

In addition to reporting the median limit, one would like
to know how much it would vary for given statistical fluctu-
ations in the data. This is illustrated in Fig. 10, which shows
the same distributions as in Fig. 9, but here the vertical line
indicates the 15.87% quantile of the distribution f (qµ|0),
corresponding to having µ̂ fluctuate downward one standard
deviation below its median.

By simulating the experiment many times with Monte
Carlo, we can obtain a histogram of the upper limits on µ

at 95% CL, as shown in Fig. 11. The ±1σ (green) and ±2σ

(yellow) error bands are obtained from the MC experiments.
The vertical lines indicate the error bands as estimated di-
rectly (without Monte Carlo simulation) using (87) and (88).
As can be seen from the plot, the agreement between the for-
mulae and MC predictions is excellent.

Figures 9 through 11 correspond to finding an upper limit
on µ for a specific value of the peak position (mass). In a

Fig. 12 (Color online) The median (central blue line) and error bands
(±1σ in green, ±2σ in yellow) for the 95% CL upper limit on the
strength parameter µ (see text)

search for a signal of unknown mass, the procedure would
be repeated for all masses (in practice in small steps). Fig-
ure 12 shows the median upper limit at 95% CL as a func-
tion of mass. The median (central blue line) and error bands
(±1σ in green, ±2σ in yellow) are obtained using (87) and
(88). The points and connecting curve correspond to the up-
per limit from a single arbitrary Monte Carlo data set, gen-
erated according to the background-only hypothesis. As can
be seen, most of the plots lie as expected within the ±1σ

error band.

6 Implementation in RooStats

Many of the results presented above are implemented or
are being implemented in the RooStats framework [18],
which is a C++ class library based on the ROOT [19] and
RooFit [20] packages. The tools in RooStats can be used
to represent arbitrary probability density functions that in-
herit from RooAbsPdf, the abstract interfaces for proba-
bility density functions provided by RooFit.

The framework provides an interface with minimization
packages such as Minuit [21]. This allows one to obtain
the estimators required in the profile likelihood ratio: µ̂, θ̂ ,

and ˆ̂
θ . The Asimov dataset defined in (24) can be determined

for a probability density function by specifying the Ex-
pectedData() command argument in a call to the gen-
erateBinnedmethod. The Asimov data together with the
standard HESSE covariance matrix provided by Minuit
makes it is possible to determine the Fisher information ma-
trix shown in (28), and thus obtain the related quantities
such as the variance of µ̂ and the noncentrality parameter
Λ, which enter into the formulae for a number of the distri-
butions of the test statistics presented above.

The distributions of the various test statistics and the re-
lated formulae for p-values, sensitivities and confidence in-
tervals as given in Sects. 2, 3 and 4 are being incorporated

-2σ -1σ µ95 +1σ +2σ
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Higgs Discovery

๏ Public announcement of the discovery at CERN


๏ Exclusion of signals between 131(128) GeV and 523(600) GeV

15
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Figure 3: The CLs values for the SM Higgs boson hypothesis as a function of the Higgs boson
mass in the range 110–600 GeV (left) and 110–145 GeV (right).
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and 110–145 GeV (right).

CMS-PAS-HIG-12-028

4 July 2012
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Higgs Discovery

๏ Public announcement of the discovery at CERN


๏ Determine signal significance and local p-value by comparison with background hypothesis
SATLAS=5.9 σ SCMS=5.0 σ

4 July 2012
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Look-Elsewhere Effect

๏ Local p-value: probability that the excess is due to a statistical background fluctuation                                
at a specific value of the Higgs candidate mass (or another observable)


๏ In global searches (e.g. over the whole mass range) the probability for a fluctuation somewhere 
increases with the size of the search range → “Look-Elsewhere Effect”


                                           global p = trial factor × local p

๏ The trial factor is generally proportional to the range and inverse proportional to the (mass) resolution

๏ Determination: 


• Usually by pseudo-experiments: requires a lot of CPU, because fluctuations are rare.


• Or estimate from frequency of fluctuations in data

0
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Figure 3: Distribution f(q0|0, ✓̂obs0 ) of the test statistic q0 as obtained by generating
pseudo-data (toys) for the background-only hypotheses.
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Figure 4: An illustration of a hypothetical scan of the test statistic q0 vs mH for some
data. Up-crossings for a given threshold value u are shown with blue points.
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Summary

๏ Maximum Likelihood (MLE)

• Least-squares method is an important special case of MLE, for the (usually good) assumption of Gaussian behaviour 


๏ Hypothesis testing

• Neyman-Pearson lemma: likelihood ratio is the best test statistic


๏ Confidence intervals: 

• Frequentist Neyman construction, coverage by design

• Wilks’ Theorem, asymptotic approach 

• Feldman-Cousins Unified approach

• Bayesian priors

• Modified Frequentist approach: CLS method


๏ Profile-likelihood ratio

• Optimal separation

• Higgs discovery figures: “Brazilian-Flag” and p-value



Backup
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Counting Experiment with Known Background

๏ Observation of n events with small signal s


๏ Background b then n = b + s:


๏ For s ≪ b: 


๏ In Wilks’ approximation: for a single degree of freedom, the significance of the signal s,                
expressed by the Gaussian quantile z is:

q = 2(b+ s) ln
⇣
1 +

s

b

⌘
� 2s

p
q = s/

p

b+O((s/b)2)

z =
p
��2 =

p
q = s/

p
b

P0(n; b) =
1

n!
bne�b P1(n; s+ b) =

1

n!
(s+ b)ne�(s+b)

q = �2 ln� = 2(n ln(1 +
s

b
� s))
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๏ Construct interval using an ordering principle,                        
based on the likelihood ratio R(n|µ):


and µbest = µ for which g(n|µ) is biggest


• Calculate R(n|µ=4) for each measurable value of n


• R defines order of bins


• Sum up bins until in decreasing order of R until                      
coverage is reached

1-Sided Limits and 2-Sided Intervals: Unified Approach

๏ Recipe:

• Sum up values of â for decreasing values of R until g(â|a) reaches the chosen confidence level

• For â < 0: add contributions to the left side (no empty interval)

Poisson distribution for µ=4

g(n|µ) = e�µµn

n!
<latexit sha1_base64="nlJnBd9WXTRgSQ3SG/vuBzzE8uM="></latexit>

R(n|µ) = g(n|µ)
g(n|µbest)

<latexit sha1_base64="ZJI5J3Yu9gHUDR60uYl9x2oezww="></latexit>

where

Example: Poisson Distribution with µ=4 (95% CL)
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๏ Construct interval using an ordering principle,                        
based on the likelihood ratio R(n|µ):


and µbest = µ for which g(n|µ) is biggest


• Calculate R(n|µ=4) for each measurable value of n


• R defines order of bins


• Sum up bins until in decreasing order of R until                      
coverage is reached

Example: Poisson Distribution with µ=4 (95% CL)
1-Sided Limits and 2-Sided Intervals: Unified Approach

๏ Result:

• Confidence interval [1,8] provides coverage of 96%

• More complex distributions → more computing

Poisson distribution for µ=4

g(n|µ) = e�µµn

n!
<latexit sha1_base64="nlJnBd9WXTRgSQ3SG/vuBzzE8uM="></latexit>

R(n|µ) = g(n|µ)
g(n|µbest)

<latexit sha1_base64="ZJI5J3Yu9gHUDR60uYl9x2oezww="></latexit>

where

n R(n|µ) g(n|µ)
X

g
<latexit sha1_base64="QgBdiI0RQva+o5s+nQIRocDACXA="></latexit>


