Statistical Methods in Data Analysis

Confidence Intervals

Menu

Confidence Intervals

Tuesday

- Statistical and Systematic Uncertainties
- Probability
- Parameter Estimation

Wednesday

- Hypothesis TestingConfidence Intervals
- Profile Likelihood Ratio

Friday

- Classification
- Multivariate Analysis
- Machine Learning

Higgs discovery: What does this figure really show ?

Sources and Papers

Statistical Methods in Data Analysis", Terascale, March 2023: <u>https://www.desy.de/~ameyer/da_desy23/</u>

A.B.Meyer

- Statistical Methods in Data Analysis", KSETA lecture, Feb 2022: <u>https://www.desy.de/~ameyer/da_kseta_22/</u>
- Statistical Methods in Data Analysis", KSETA lecture, March 2021: <u>https://www.desy.de/~ameyer/da_kseta_21/</u>
- "Moderne Methoden der Datenanalyse", Course lecture at KIT, SoSe 2017, slides (in German): <u>http://</u>
 <u>ekpwww.etp.kit.edu/~ameyer/da_sose17/index.html</u>
 Access to slides and material: (user: Students. pw: only)

Papers and Articles:

- Robert Cousins: "Why isn't every physicist a Bayesian ?", Am.J.Phys. 65 (1995).
- Robert Cousins: "Lectures on Statistics in Theory: Prelude to Statistics in Practice" [arXiv]
- G.Cowan, Particle Data Group [pdg] 2020, chapter 40 [pdf] or full PDG book for download (80MB) [pdf]
- G.Cowan, K.Cranmer, E.Gross, O.Vitells: "Asymptotic formulae for likelihood-based tests of new physics" [arXiv]
- ATLAS and CMS Collaborations: "Procedure for the LHC Higgs boson search combination" [CDS]
- T.Junk: "Confidence level computation for combining searches with small statistics", NIM, A 434 (1999) 435-443
- A.Read: "Presentation of search results: the CL_s technique", J.Phys.G: 28 (2002)

Many thanks for discussions, material and help go to:

• G. Quast (KIT), R. Wolf (KIT), O. Behnke (DESY), C. Autermann (Aachen), Th. Keck (KIT), Jan Kieseler (CERN)

The Scientific Cycle

Experiment: measure and test theory predictions (hypothesis testing)

Statistical Uncertainties

- Spread of a single measurement for reasons that are practically (e.g. cube) and/or principally (QM) <u>untraceable</u>
 - => Variance: distribution around mean

• Repeated measurements are <u>independent</u> (uncorrelated)

Statistical uncertainties are theoretically well understood

Bayes' Theorem

Application in measurements

Quantitative relation between correctness of a theory \leftrightarrow and observation of actual data

Statistical Methods in Data Analysis

Maximum Likelihood

Maximum Likelihood

• LS: Least Squares:

Minimise distance from expectation

• MLE: Maximum Likelihood Estimator

Maximise PDF value

• Example:

- Decide between three hypotheses (PDF)
- Measured value: 1.9
- → MLE and LS both prefer μ =1, σ =1

In general, MLE and LS can lead to different results

Maximum Likelihood

• LS: Least Squares:

Minimize distance from expectation

MLE: Maximum Likelihood Estimator

Maximise PDF value

• Example:

- Decide between three hypotheses (PDF)
- Measured value: 3.5
- ➡ MLE: μ=0, σ=2
- ➡ LS: μ=1, σ=1

In general, MLE and LS can lead to different results

Maximum Likelihood and Least Squares

- For Gaussian-distributed measurements, least-squares method and MLE are equivalent:
 - Conditional Likelihood using a Gaussian-PDF:

$$f(x_i|a) = \frac{1}{\sqrt{2\pi\sigma_i}} \cdot \exp\left[-\frac{(x_i - a)^2}{2\sigma_i^2}\right]$$

Negative logarithm of the likelihood:

$$F(a) = -\ln \prod_{i} f(x_{i}|a)$$

$$F(a) = -\ln \mathcal{L}(a) = \frac{1}{2} \sum_{i} \frac{(x_{i} - a)^{2}}{\sigma_{i}^{2}} + \sum_{i} \ln(\sqrt{2\pi}\sigma_{i})$$

$$L) = \frac{1}{2} \Delta \chi^{2}$$

$$(onst. w.r.t a (for fixed \sigma_{i}))$$

• Thus, for the difference:

χ^2 is a special case of Maximum Likelihood, for the assumption of a Gaussian PDF

Comparison MLE and LS

• If MLE is test statistic for a Gaussian PDF:

$$\Delta(-\ln L) = \frac{1}{2}\Delta\chi^2$$

	$\Delta(-\ln L)$	$\Delta \chi^2$
1σ	0.5	1
2σ	2	4
3σ	4.5	9
nσ	n²/2	<i>n</i> ²

• This is often the case <=> Wilks' theorem

 Things are more difficult if the PDF is not a Gaussian:

	Maximum Likelihood	Least Squares (Gaussian)
Method	PDF value	Distance from mean
Prerequisit	PDF is known	Mean and variance
Efficiency	maximal	maximal in linear problems
Difficulty	difficult	often solvable analytically
Goodness of Fit ?	No	Yes: e.g. χ^2 -probability
Robustness	No	No

Hypthesis Testing

Hypothesis Testing

Assess plausibility of a hypothesis using data

- Should I take an umbrella with me?
- Is a therapy (medication) effective ?
- Is the discovered signal the Higgs boson predicted by the Standard Model ?

7%	33%	38%	19%	12%	36%	24%	70%
12:00	15:00	18:00	21:00	00:00	03:00	06:00	09:00
Mo.	Di.	Mi.	Do.	Fr.	Sa.	So.	Mo.
11-				11-	, <u>, , , , , , , , , , , , , , , , , , </u>		
11° 5°	9° 6°	12° 11°	12° 6°	15° 5°	8° 4°	11° 7°	10° 7°

• Hypothesis test: do the <u>data</u> agree, within a pre-defined significance, with the hypothesis (<u>theory</u>)?

- Exclusion of hypothetical signals usually at 95% confidence level (*p*-value = 5%)
- Discovery of signals requires bigger significance, typically 5σ (*p*-value ~ 3 · 10⁻⁷)

"Extraordinary claims require extraordinary evidence"

Statistical Methods in Data Analysis

Gaussian Quantiles

• Hypothesis test: do the <u>data</u> agree, within a pre-defined significance, with the hypothesis (<u>theory</u>)?

- Exclusion of hypothetical signals <u>usually at 95%</u> confidence level (CL): *p*-value = 5%
- Discovery of signals requires bigger significance, typically 5σ : *p*-value ~ $3 \cdot 10^{-7}$

"Extraordinary claims require extraordinary evidence"

Hypothesis Testing

- Hypotheses are formulated as PDF of a test statistic t
- Comparison of a data sample with one or several hypotheses H_i
- \odot Single hypothesis: <u>null hypothesis H₀</u>
 - Example: test data for consistency with the Standard Model (H₀)
 - E.g. using goodness-of-fit tests using χ^2 as test statistic

Hypothesis Testing

- Hypotheses are formulated as PDF of a test statistic t
- Comparison of a data sample with one or several hypotheses H_i
- Single hypothesis: null hypothesis H₀
 - Example: test data for consistency with the Standard Model (H₀)
 - E.g. using goodness-of-fit tests using χ^2 as test statistic
- ${\scriptstyle \odot}$ Several hypotheses: H_0 and alternative hypotheses H_i
 - Example: Standard Model (H₀) vs specific New Physics model (H₁).

A hypothesis can never be proven, it can only be falsified: one counter-example is sufficient

Example: Particle Identification

Energy-Loss Measurement

- Hypotheses H_i:
 - Pion: falsified
 - Kaon: falsified
 - Proton: <u>consistent</u> (but not proven)

A hypothesis can never be proven, it can only be falsified: one counter-example is sufficient

Hypothesis Testing

Procedure

- 1. Determine PDF $g(t;H_i)$ for test statistic t
- 2. Define significance level α (typically 5%)
 - critical value t₀: reject null hypothesis or not
 - in practice, α depends on goal
 - high efficiency ε or high purity p ?

$$\epsilon = 1 - \alpha$$
 $p = \frac{(1 - \alpha)N_0}{(1 - \alpha)N_0 + \beta N_1}$

• separation power $1-\beta$

Note: trivially, no separation if no separation power => large $1-\beta$ is fundamentally more important than small α

3. Determine *p*-value of the measurement

p-value is probability that values $t > t_0$ are measured, assuming that H₀ is true. (note: *p*-value is an estimator derived from the measurement, i.e. a random number)

Receiver Operating Characteristic (ROC)

• Choice of "working point" depends on problem (purity vs. efficiency)

• Area Under Curve ("AUC") is often used to quantify the performance of the separation algorithm

Two Hypotheses

Example: Higgs Boson Properties

- Is the Higgs boson a scalar particle ?
 - Null hypothesis: $J^{P} = 0^{+}$
 - Alternative hypothesis: e.g. J^P = 0⁻

• Construct a test statistic (here: likelihood ratio):

 $\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^1 \sqrt{s} = 8 \text{ TeV}, L = 19.7 \text{ fb}^1$

0

CMS data

21

CMS

0.1

0.08

Neyman-Pearson Lemma

• For simple hypotheses, i.e. $f(x|H_i)$ are completely known, the likelihood ratio $\lambda(x)$ provides optimal separation power 1- β (for fixed significance α)

$$\lambda(x) = \frac{f(x|H_0)}{f(x|H_1)}$$

• Equivalently: log-likelihood difference:

$$q(x) = -2\ln\lambda(x) = 2(\ln f(x|H_1) - \ln f(x|H_0))$$

- Notes:
 - Determination of optimal test statistic (signal-to-background separation) is called classification (next time)
 - In practice, MC simulations are used to determine PDF für different hypotheses.
 - The Neyman-Pearson lemma does not generally hold for <u>composite</u> hypotheses, i.e. hypotheses with free parameters, e.g.: $f(x|H(\lambda_i,\mu_i))$ with λ_i known und μ_i free

Wilks' Theorem

- For large samples with *n* data points x_i , $n \to \infty$ (and for a null hypothesis H₀ that determines r=m-m(0) parameters), the distribution of the log-likelihood ratio $q = -2 \ln \lambda$ <u>asymptotically</u> approaches a χ^2 distribution (with *r* degrees of freedom).
 - r = difference in the number of free parameters for H₁ and H₀

S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938)

$$\Delta \chi^2 = -2\ln\lambda = -2\ln\left(\frac{\mathcal{L}(s+b)}{\mathcal{L}(b)}\right) \quad \overset{\mathrm{H_1}}{_{\mathrm{H_0}}}$$

Wilks' Theorem

Counting Experiment

- Signal (s) above background (b):
- PDF for each bin in m: n(m) = b(m) + s(m)
 - b: Poisson distributed in each bin -> Gauss for large b
 - s: Number of events in mass peak (fixed mass and width)
- Two hypotheses:
 - H₀ (background only): s=0 => fit of 1 free parameter $b \rightarrow \chi^2(b)$
 - H₁ signal-Hypothesis: $s \neq 0$ => fit of 2 free parameters $b+s \rightarrow \chi^2(b+s)$

$$\Delta \chi^2 z = \sqrt{2 \ln \chi} = -2 \ln \left(\frac{\mathcal{L}(s+b)}{\mathcal{L}(b)} \right) = -73 \text{ in this specific case}$$

Apply Wilks' theorem:

If H₀ true, then $\Delta \chi^2$ is a χ^2 - distribution mit 1 d.o.f: $p(\chi^2 = 73) = 2x10^{-16}$, corresponds to $z = 8.5 \sigma$

Backup: for small signals and large n $z=\sqrt{\Delta\chi^2}=\sqrt{q}=s/\sqrt{b}$

Confidence Intervals

Frequentist vs Bayesian

- Frequentist definition: also referred to as "objective" or "classical" definition
 - Probability is identified as rate of occurrence (relative frequency) of events
 - For repeatable events or in case of symmetries (e.g. dice)
- Bayes probability: also referred to as "subjective" definition
 - "Degree of Belief"
 - Also applicable for one-time only events, e.g. probability that it is going to rain tomorrow
 - Does not exclude a Frequentist interpretation
 - But priors often consist of non-Frequentist prior assumptions

Physicists mostly take a pragmatic approach: E.g. a profile likelihood fit using nuisance parameters is a Frequentist method with "quasi-Bayesian" components

Statistical Methods in Data Analysis

Confidence Interval

Coverage

- Use measurement of â and uncertainty to determine interval in which the true value a lies for chosen confidence level (CL)
- Typical CL: 68.3%, 90% or 95%.

Coverage: probability $1-\alpha-\beta$ that true value is contained in the interval

Interval Estimation

- Previously discussed: estimation of points
- Usual <u>presentation</u> of measurements:
 - Estimator with uncertainty: $\hat{a} \pm \sigma_a$
- Interpretation:
 - The interval $[\hat{a} \sigma_a, \hat{a} + \sigma_a]$ covers the true value *a* at 68.3% confidence.

Interval Estimation

- Previously discussed: estimation of points
- Usual presentation of measurements:
 - Estimator with uncertainty: $\hat{a} \pm \sigma_a$
- Interpretation:
 - The interval $[\hat{a} \sigma_a, \hat{a} + \sigma_a]$ covers the true value *a* at 68.3% confidence.

• Actual meaning:

- The measured parameter \hat{a} is a random number, given the true value a.
- PDF $g(\hat{a}|a)$ ist distributed around the true value a.
- Both are equivalent if $g(\hat{a}|a)$ is a Gaussian.
 - This is frequently the case (\rightarrow central limit theorem), but not always

Confidence Interval

Example: Gaussian distribution

- Measurement of a data point $\hat{\theta}_{obs}$ of an observable $\hat{\theta}$ (detector has Gaussian response)
- Construction of a two-sided confidence interval:

Upper limit *b* For assumed true value *b*, the probability to measure a value $\hat{\theta}_{obs}$ or smaller is β , e.g. for 1 σ : $\beta = (1 - 68\%)/2 = 16\%$

Lower limit *a* For assumed true value *a*, the probability to measure a value $\hat{\theta}_{obs}$ or bigger is α , e.g. for 1 σ : $\alpha = (1 - 68\%)/2 = 16\%$

Confidence Interval

Example: Poisson distribution

- Determine two-sided 90% confidence interval in a counting experiment with n = 9 observed events
- Poisson probability: $p(n|\mu) = e^{-\mu} \mu^n / n!$
- For a 95% CL, 1-sided interval, the interval border is determined by varying the <u>hypothetical true</u> value μ such that the <u>observed signal</u> is excluded with a *p*-value of 5%.
- Do this from both sides to obtain the 2sided 90% CL interval

Determination of confidence intervals can be viewed as scan of hypothesis tests

Frequentist approach

- For a true value of *a*, there is a measurement \hat{a} with an uncertainty σ .
- â-σ und â+σ are functions of a, here u(a) and v(a).

Frequentist approach

- For a true value of *a*, there is a measurement \hat{a} with an uncertainty σ .
- â-σ und â+σ are functions of a, here u(a) and v(a).
- For a concrete measurement *â*, a confidence interval is constructed.

In repeated experiments the true value of *a* would be contained in the interval $[a_{min}, a_{max}]$ in 68% of the cases

In 16% of cases true value $< a_{min}$

Frequentist approach

- For a true value of *a*, there is a measurement *â* with an uncertainty σ.
- â-σ und â+σ are functions of a, here u(a) and v(a).
- For a concrete measurement â, a confidence interval is constructed. The functions a_{min}(â) und a_{max}(â) are the confidence belt
- The belt is constructed horizontally for assumed true values of *a*. For a concrete measurement *â*, the confidence interval can be read off vertically

• Note: the confidence belt is an estimate

In this sketch, we also put the most probable value a_{ML} . However, in a strictly frequentist view, the true value has no uncertainty

Frequentist approach

- For a true value of *a*, there is a measurement *â* with an uncertainty σ.
- â-σ und â+σ are functions of a, here u(a) and v(a).
- For a concrete measurement â, a confidence interval is constructed. The functions a_{min}(â) und a_{max}(â) are the confidence belt
- The belt is constructed horizontally for assumed true values of *a*. For a concrete measurement *â*, the confidence interval can be read off vertically

Note: the confidence belt is an estimate

In this sketch, we also put the most probable value a_{ML} . However, in a strictly frequentist view, the true value has no uncertainty

Frequentist approach

- For a true value of *a*, there is a measurement â with an uncertainty σ.
- â-σ und â+σ are functions of a, here u(a) and v(a).
- For a concrete measurement â, a confidence interval is constructed. The functions a_{min}(â) und a_{max}(â) are the confidence belt
- The belt is constructed horizontally for assumed true values of *a*. For a concrete measurement *â*, the confidence interval can be read off vertically
- $\begin{array}{c} a_{max}(\hat{a}) \\ und \\ a_{ML}(\hat{a}) \\ a_{min}(\hat{a}) \end{array}$

а

• Note: the confidence belt is an estimate

In this sketch, we also put the most probable value a_{ML} . However, in a strictly frequentist view, the true value has no uncertainty

Confidence Belt

For a Gaussian distribution

- Gauss PDF is symmetric, σ (width) does not depend on μ (mean).
- This is why it is ok to draw the error bar on the data point, and to interpret it as interval for the true value

Confidence Belt

Poisson distribution

90% CL interval for an unknown Poisson-distributed signal with a background of 3 events
In this case, the band for â=0 is empty.

1-Sided Limits and 2-Sided Intervals

- 1-sided limit 1-α or
 2-sided interval 1-α-β
- confidence level (e.g. 68, 90 or 95%)

• In practice, the confidence level is often chosen depending on the result of the analysis

- $\hat{a} > 3\sigma \rightarrow$ Measurement (2-sided confidence belt, 1- α - β , 68% C.L.)
- $\hat{a} < 3\sigma \rightarrow$ Upper Limit (1-sided confidence belt, 1- α , 90% or 95% C.L.)

AC: 90% CL 2-sided B∞: 90% CL 1-sided

BC: 85% CL

Figure: for a = 2.5:

Flip-Flopping

In the interval 1.2 < a < 4.3, only 85% coverage

More importantly: the interval for e.g. $\hat{a} = -2$ is "empty"

• In practice, the confidence level is often chosen depending on the result of the analysis

- $\hat{a} > 3\sigma \rightarrow$ Measurement (2-sided confidence belt, 1- α - β , 68% C.L.)
- $\hat{a} < 3\sigma \rightarrow$ Upper Limit (1-sided confidence belt, 1- α , 90% or 95% C.L.)

40

1-Sided Limits and 2-Sided Intervals

1-Sided Limits and 2-Sided Intervals: Unified Approach

- Feldman-Cousins a.k.a. "unified approach": "automatic" decision if measurement or limit
- Construct interval using an ordering principle, based on the likelihood ratio R

$$R(\hat{a}|a) = \frac{g(\hat{a}|a)}{g(\hat{a}|a_{\text{best}})}$$

where $a_{\text{best}} = a$ for which $g(\hat{a}|a)$ is largest

• Recipe:

- Sum up values of \hat{a} for decreasing values of R until $g(\hat{a}|a)$ reaches the chosen confidence level
- For $\hat{a} < 0$: add contributions to the left side (no empty interval)

Example in backup

Frequentist and Bayesian Approaches

- Frequentist approach: there is a true value a
 - True values are true, they have no uncertainty (!)
 - Statements about probability are made only about the interval, not the true value itself.
 - The interval is a measured (i.e. random) quantity
 - For a confidence level CL = p%, the confidence interval covers the true value in p% of all cases.
 - Neyman construction to determine interval around true value (coverage by construction)
- Bayesian approach: depends on the conditions
 - The "prior" describes the degree of belief that a can take certain values.
 - The true value has an uncertainty that depends on the measurement.
 - The posterior density distribution of a, namely $f(a|\hat{a})$, is product of the likelihood $\mathcal{L}(\hat{a}|a)$ and the prior $\pi(a)$

 $f(a|\hat{a}) \propto \mathcal{L}(\hat{a}|a) \cdot \pi(a)$

• Coverage must be checked explicitly (e.g. using toy-MC)

Statistical Methods in Data Analysis

Frequentist and Bayesian Approaches

Frequentist and Bayesian Approaches

- Frequentist
 - True values
 Statements
 Frequentists use impeccable logic to deal with issues of no interest to anyone
 - The interva
 - For a configured level of pro, the configured interval covers the trac value in pro of all cases.
 - Neyman construction to determine interval around true value (coverage by construction)
- Bayesian approximation

Bayesians address questions everyone is interested in, by using assumptions no one believes

• The true va

• The "prior"

The posteri

he prior $\pi(a)$

$f(a|\hat{a}) \propto \mathcal{L}(\hat{a}|a) \cdot \pi(a)$

• Coverage must be checked explicitly (e.g. using toy-MC)

Impact of the Prior

Example: Bayesian intervals

- $f(a|\hat{a}) \propto \mathcal{L}(\hat{a}|a) \cdot \pi(a)$
- Choice of prior is important!
 - For π(a) = const → Bayesian f(a|â) and Frequentist L(â|a) approach give the same result.
- Figure (n=3 observed events)
 - top: flat prior
 - bottom: 1/µ prior

R. Cousins, "Why isn't every Physicist a Bayesian?"

Poisson Signal and Background

No Prior: "Frequentist"

- Typical search analysis, i.e. number of signal events ν_s is small $\hat{\nu}_s = n \nu_b$
 - Signal + background is Poisson distributed: $p(n|\nu_s, \nu_b) = p(n|\nu = \nu_s + \nu_b)$
 - Determine n and subtract $\nu_{b,exp}$ to estimate ν_s
 - Upper limit (95% CL) for v_s as a function of the expected background $v_{b,exp}$, for different n_{obs}

Poisson Signal and Background

Prior: "Bayesian"

- Typical search analysis, i.e. number of signal events $\nu_{
 m s}$ is small $\hat{
 u}_{
 m s}=nu_{
 m b}$
 - Signal + background is Poisson distributed: $p(n|\nu_s, \nu_b) = p(n|\nu = \nu_s + \nu_b)$
 - Determine n and subtract $\nu_{\text{b,exp}}$ to estimate ν_{s}
 - Upper limit (95% CL) on ν_s as a function of the expected background $\nu_{b,exp}$, for different nobs

• Bayesian prior:

 $\pi(\nu_{s} < 0) = 0$ and $\pi(\nu_{s} \ge 0) = const$

has good properties:

- For v_b = 0: same limit on v_s
- For $v_b > 0$: higher (i.e. worse) limit on v_s than flat prior

 ${
u}_{ ext{b,exp}}$

"Modified Frequentist Approach": CLs

A Frequentist countermeasure

- Consider two hypotheses:
 - H₁: Measured event sample contains both background and signal
 - d = s + b $\rightarrow p$ -value = "CL_{s+b}"
 - H₀: Measured event sample contains just background
 - d = b, d.h. s=0 $\rightarrow p$ -value = "CL_b"

$$CL_{s} = \frac{CL_{s+b}}{CL_{b}} = \frac{\sum_{k=0}^{d} P(k; s+b)}{\sum_{k=0}^{d} P(k; b)}$$

 \odot CL_s renormalizes measured limit to the background estimate

- Quantitatively similar effect as Bayesian prior
- Make experiments with different background conditions comparable.
- CL_s is always bigger than $CL_{s^{+b}} \rightarrow over\text{-}coverage$

G.Cowan, PDG, Section 40.4.2.4 Also: T.Junk or A.L.Read

CL_s

Example: measurement d = 7

- H₀: expected background b=4
- H₁: expected signal s=11 \longrightarrow s+b=15

-CL_b
$$\alpha = 1 - \int_0^d P(x|b) dx$$

CL_{b+s} $\beta = \int_0^d P(x|b+s) dx$

 What is the upper limit at 95% confidence level for CL_{s+b} and CL_s? (answer: supper = 8.5 and 8.7)

Introduction to the Terascale, 6-10 March 2023

CL_s Example

$$\mathsf{CL}_{\mathsf{b+s}} = \int_0^d P(x|b+s)dx$$

- Scan for different signal hypotheses and compare with measurement
- For Poisson-distributed b = 4 and d = 7:

• Upper limit on s for $CL_{S+B} = 95\%$:

• Upper limit on s for $CL_S = 95\%$:

 $S_{CLs+b,95\%} = 8.5$ $S_{CLs,95\%} = 8.7$

Low background: similar limits on s for $CL_{S^{+}B}$ and CL_{S}

Statistical Methods in Data Analysis

CL_s Example

$$\mathsf{CL}_{\mathsf{b+s}} = \int_0^d P(x|b+s)dx$$

- Scan for different signal hypotheses and compare with measurement
- For Poisson-distributed b = 7 and d = 7:

• Upper limit on s for $CL_{S+B} = 95\%$:

• Upper limit on s for $CL_S = 95\%$:

 $S_{CLs+b,95\%} = 5.5$ $S_{CLs,95\%} = 6.6$

Medium background: $CL_{\mbox{\scriptsize S}}$ gives worse limit on s than $CL_{\mbox{\scriptsize S+B}}$

Statistical Methods in Data Analysis

CL_s Example

$$\mathsf{CL}_{\mathsf{b+s}} = \int_0^d P(x|b+s)dx$$

- Scan for different signal hypotheses and compare with measurement
- For Poisson-distributed b = 10 and d = 7:

High background: CL_S gives much worse limit on s than CL_{S+B}

Statistical Methods in Data Analysis

Confidence Intervals

Summary

- Interval in which true value lies with pre-defined confidence level.
- Frequentist (or classical) approach:
 - Neyman Construction: correct coverage by construction
 - Unified Frequentist approach: use likelihood ratio as ordering principle to avoid "flip-flopping" (when switching between 1-sided and 2-sided intervals) and empty intervals.
- Bayesian prior:
 - E.g. to avoid unphysical results.
 - Shape of prior has direct impact on result and coverage.
- Modified frequentist approach CLs:
 - Robust method to suppress possible effects from downward fluctuations of the background.
 - Price to pay: over-coverage

Profile-Likelihood Ratio

Signal Strength µ

• Likelihood in a counting experiment

 $\mathcal{L}(\text{data}|\mu) = \text{Poisson}(\text{data}|\mu \cdot s + b)$

• Product of Poisson likelihoods to measure n_i events in bin i

$$\text{Poisson}(\text{data}|\mu \cdot s + b) = \prod_{i} \frac{(\mu \cdot s_i + b_i)^{n_i}}{n_i!} e^{-(\mu \cdot s_i + b_i)}$$

 ${\ensuremath{\,\overline{v}}}$ Signal strength ${\ensuremath{\mu}}$: modifies expected signal using data

- μ =0: H_0 background only
- μ =1: H₁ expected signal

Signal Strength µ

• Likelihood in a counting experiment

Nuisance parameters θ impact measurement of *s* and *b*

 $\mathcal{L}(\text{data}|\mu) = \text{Poisson}(\text{data}|\mu \cdot s(\bar{\theta}) + b(\bar{\theta}))$

- Nuisance parameters θ: parameters that are not of primary interest, but needed for the determination of signal and background, i.e. systematic uncertainties
- Typical particle physics data analyses use many nuisance parameters (order 100)

	$\hat{r} = 1.31 \pm 0.719$
AS_scale_t_tautau_8TeV	
CMS_eff_t_tt_8TeV	
higgs_8TeV_ZTT_bin_12	
higgs_8TeV_ZTT_bin_11	
QCDscale_ggH1in	
DSyst_tauTau_vbf_8TeV	
pdf_gg	
et_high_highhiggs_8TeV	
higgs_8TeV_ZTT_bin_13	
au_vbf_8TeV_ZTT_bin_6	
high_mediumhiggs_8TeV	
high_mediumhiggs_8TeV	
ap_ztt_tauTau_vbf_8TeV	
higgs_8TeV_ZTT_bin_20	
Nggs_8TeV_ZTT_bin_12	
CMS_htt_zttNorm_8TeV	
Nggs_8TeV_ZTT_bin_13	
lumi_8TeV	
higgs_8TeV_ZTT_bin_14	
MS_htt_scale_met_8TeV	
QCDscale_ggH2in	
et_high_highhiggs_8TeV	
hhiggs_8TeV_ZTT_bin_6	
higgs_8TeV_ZTT_bin_5	
pdf_qqbar	
UEPS	
au_vbf_8TeV_ZTT_bin_9	
higgs_8TeV_ZTT_bin_21	
au_vbf_8TeV_ZTT_bin_7	
et_high_highhiggs_8TeV	
-	-0.1 0 0.1
)	A 🏠
,	Δr

Signal Strength µ

• Likelihood in a counting experiment

 $\mathcal{L}(\text{data}|\mu) = \text{Poisson}(\text{data}|\mu \cdot s(\theta) + b(\theta)) \cdot PDF(\theta)$

in other measurements

• $PDF(\theta)$: prior knowledge from ancillary measurements used as constraints for the <u>Frequentist</u> likelihood of the main measurement

Profile-Likelihood Ratio

- Profile likelihood: determine the interval for the (true) signal strength μ , for optimal nuisance parameters $\hat{\theta}_{\mu}$, normalized to the global maximum of the likelihood.
- "Profile" = scan, determine q_{μ} for all μ

CCGV section 2.5 and CMS+ATLAS 2.1

Profile-Likelihood Ratio

$$q_{\mu} = -2\ln\lambda(\mu) = -2\Delta\ln\mathcal{L}$$
$$\approx \frac{(\mu - \hat{\mu})^2}{\sigma^2}$$

• In the limit of high statistics (Wilks), q_{μ} follows χ^2 -distribution (parabola)

- Profile-likelihood distribution has all estimators:
 - Best fit of $\boldsymbol{\mu}$ at minimum
 - 2-sided confidence interval: e.g. 68%
 - Exclusion of Null-hypothesis:
 - $q(\mu=0) = z^2 = (Significance)^2$
 - here: z ~ √2.4 ≈ 1.5
 - Upper limit µ95:
 - $-2\Delta \ln \mathcal{L}(\mu_{95}) = 1.645^2 = 2.71$

Higgs Discovery

History: Status December 2011

Number of events depends on invariant mass

• Blind analysis: software and all criteria were fixed before looking at the data

Higgs Discovery Brazilian-Flag Figure

- \odot Determine $\mu_{95},$ i.e. signal strength excluded at 95% CL_s
- Pseudo-experiments to determine the distribution around the 95% limit for the background-only hypothesis, i.e. median and intervals for $\pm 1\sigma$ und $\pm 2\sigma$ around μ_{95} .

Higgs Discovery 4 July 2012

Public announcement of the discovery at CERN

• Exclusion of signals between 131(128) GeV and 523(600) GeV

Higgs Discovery 4 July 2012

Public announcement of the discovery at CERN

• Determine signal significance and local *p*-value by comparison with background hypothesis $S_{ATLAS}=5.9 \sigma$ $S_{CMS}=5.0 \sigma$

Statistical Methods in Data Analysis

- The trial factor is generally proportional to the range and inverse proportional to the (mass) resolution
 Determination:
 - Usually by pseudo-experiments: requires a lot of CPU, because fluctuations are rare.
 - Or estimate from frequency of fluctuations in data

- Maximum Likelihood (MLE)
 - Least-squares method is an important special case of MLE, for the (usually good) assumption of Gaussian behaviour
- Hypothesis testing
 - Neyman-Pearson lemma: likelihood ratio is the best test statistic
- Confidence intervals:
 - Frequentist Neyman construction, coverage by design
 - Wilks' Theorem, asymptotic approach
 - Feldman-Cousins Unified approach
 - Bayesian priors
 - Modified Frequentist approach: CL_S method
- Profile-likelihood ratio
 - Optimal separation
 - Higgs discovery figures: "Brazilian-Flag" and p-value

Backup

Counting Experiment with Known Background

• Observation of n events with <u>small</u> signal s

$$P_0(n;b) = \frac{1}{n!}b^n e^{-b} \qquad P_1(n;s+b) = \frac{1}{n!}(s+b)^n e^{-(s+b)}$$
$$q = -2\ln\lambda = 2(n\ln(1+\frac{s}{b}) - s)$$

• Background *b* then n = b + s:

$$q = 2(b+s)\ln\left(1+\frac{s}{b}\right) - 2s$$

• For *s* < *b*:

DESY.

$$\sqrt{q} = s/\sqrt{b} + \mathcal{O}((s/b)^2)$$

• In Wilks' approximation: for a single degree of freedom, the significance of the signal s, expressed by the Gaussian quantile z is: $\sqrt{\Delta x^2} = \sqrt{1}$

$$z = \sqrt{\Delta \chi^2} = \sqrt{q} = s/\sqrt{b}$$

1-Sided Limits and 2-Sided Intervals: Unified Approach

Example: Poisson Distribution with µ=4 (95% CL)

 Construct interval using an ordering principle, based on the likelihood ratio R(n|µ):

$$R(n|\mu) = \frac{g(n|\mu)}{g(n|\mu_{\text{best}})}$$

and $\mu_{\text{best}} = \mu$ for which $g(n|\mu)$ is biggest

- Calculate $R(n|\mu=4)$ for each measurable value of n
- R defines order of bins
- Sum up bins until in decreasing order of R until coverage is reached

where $g(n|\mu) = rac{e^{-\mu}\mu^n}{n!}$

• Recipe:

- Sum up values of a for decreasing values of R until g(a|a) reaches the chosen confidence level
- For $\hat{a} < 0$: add contributions to the left side (no empty interval)

1-Sided Limits and 2-Sided Intervals: Unified Approach

Example: Poisson Distribution with µ=4 (95% CL)

 Construct interval using an ordering principle, based on the likelihood ratio R(n|µ):

$$R(n|\mu) = \frac{g(n|\mu)}{g(n|\mu_{\text{best}})}$$

where
$$g(n|\mu) = rac{e^{-\mu}\mu^n}{n!}$$

and $\mu_{\text{best}} = \mu$ for which $g(n|\mu)$ is biggest

n	$R(n \mu)$	$g(n \mu)$	$\sum g$
4	1.000	0.195	0.195
5	0.891	0.156	0.352
3	0.872	0.195	0.547
6	0.649	0.104	0.651
2	0.541	0.147	0.798
7	0.400	0.060	0.857
8	0.213	0.030	0.887
1	0.199	0.073	0.960
	n 4 5 3 6 2 7 8 1	$\begin{array}{ccc} n & R(n \mu) \\ 4 & 1.000 \\ 5 & 0.891 \\ 3 & 0.872 \\ 6 & 0.649 \\ 2 & 0.541 \\ 7 & 0.400 \\ 8 & 0.213 \\ 1 & 0.199 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Poisson distribution for μ =4

- Confidence interval [1,8] provides coverage of 96%
- [•] More complex distributions → more computing

 \bigcirc