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Sources and Papers

https://www.desy.de/~amever/da desy23/

A.B.Meyer

® Statistical Methods in Data Analysis”, KSETA lecture, Feb 2022: https://www.desy.de/~ameyer/da_kseta_22/

® Statistical Methods in Data Analysis”, KSETA lecture, March 2021: https://www.desy.de/~ameyer/da_kseta 21/

® “Moderne Methoden der Datenanalyse”, Course lecture at KIT, SoSe 2017, slides (in German): http://
ekpwww.etp.kit.edu/~ameyer/da_sose17/index.html Access to slides and material: (user: Students. pw: only)

Papers and Articles:

® Robert Cousins: "Why isn’t every physicist a Bayesian ?”, Am.J.Phys. 65 (1995).

® Robert Cousins: “Lectures on Statistics in Theory: Prelude to Statistics in Practice” [arXiv]

® G.Cowan, Particle Data Group [pdg] 2020, chapter 40 [pdf] or full PDG book for download (80MB) [pdf]

® G.Cowan, K.Cranmer, E.Gross, O.Vitells: “Asymptotic formulae for likelihood-based tests of new physics” [arXiv]
® ATLAS and CMS Collaborations: “Procedure for the LHC Higgs boson search combination" [CDS]

® T.Junk: "Confidence level computation for combining searches with small statistics”, NIM, A 434 (1999) 435-443
® A.Read: “Presentation of search results: the CLgtechnique®, J.Phys.G: 28 (2002)

Many thanks for discussions, material and help go to:
® G. Quast (KIT), R. Wolf (KIT), O. Behnke (DESY), C. Autermann (Aachen), Th. Keck (KIT), Jan Kieseler (CERN)
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The Scientific Cycle

Experiment: measure and test theory predictions
(hypothesis testing)

Theory: predict measurement
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Statistical Uncertainties

® Spread of a single measurement for reasons that are ' u
practically (e.g. cube) and/or principally (QM) untraceable

 => Variance: distribution around mean

® Repeated measurements are independent (uncorrelated)

® Statistical uncertainties are theoretically well understood -
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BayeS’ Theorem Thomas Bayes, 1763

“Likelihood” “Prior’

0s er<‘ / P(A)/

P(A|B) = P(B|A) - —=

7NN

“Evidence”

Probability that theory “A” Conditional probability
is correct, given data “B” to measure data “B”
have been measured assuming that
theory “A" is correct

Quantitative relation between correctness of a theory «» and observation of actual data
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Maximum Likelihood

® LS: Least Squares:
Minimise distance from expectation
® MLE: Maximum Likelihood Estimator

Maximise PDF value

® Example:
* Decide between three hypotheses (PDF)
* Measured value: 1.9
= MLE and LS both prefer y=1, o=1

06

flx:p.o)

04

0.2

DESY Andreas B. Meyer Statistical Methods in Data Analysis

X
In general, MLE and LS can lead to different results

Messung
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Maximum Likelihood

® LS: Least Squares:
Minimize distance from expectation
® MLE: Maximum Likelihood Estimator

Maximise PDF value

® Example:
* Decide between three hypotheses (PDF)
* Measured value: 3.5

= MLE: u=0, 0=2
= |S: =1, 0=1

o
=
2 06
—~
04

02

Messung

In general, MLE and LS can lead to different results

DESY Andreas B. Meyer Statistical Methods in Data Analysis
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Maximum Likelihood and Least Squares

® For Gaussian-distributed measurements, least-squares method and MLE are equivalent:

1 . [ (; — a)2]
. X —_
V210, P 207

» Negative logarithm of the likelihood: F(a)=—1In H f(z;la)

+ Conditional Likelihood using a Gaussian-PDF:  f(z;]a) =

1

F(a)=—InL(a) = %Z (s ;2&) + Zln(\/%ai)

() v ()

L

Z

1 X L
® Thus, for the difference: A(— In L) = §AX2 const. w.r.t a (for fixed o)

X2is a special case of Maximum Likelihood, for the assumption of a Gaussian PDF

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023 1



Comparison MLE and LS

A(-In L) Ax2
® If MLE is test statistic for a Gaussian PDF: 10 0.5 1
20 2 4
1
A(=InL) = = Ay 30 4.5 9
2 no n2/2 n2

® This is often the case <=> Wilks’ theorem

Maximum Likelihood Least Squares (Gaussian)

PDF value Distance from mean

® Things are more difficult

if the PDF is not a Gaussian: Prerequisit PDF is known Mean and variance
Efficiency maximal maximal in linear problems

Difficulty difficult often solvable analytically
Goodness of Fit ? |\[s] Yes: e.g. x2-probability

Robustness No No

DESY. Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023
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Hypothesis Testing

® Should | take an umbrella with me ?

7% 33% 38% 19% 12% 36% 24% 70%
@ |S a therapy (medlcatlon) effeCtlve ? .1;) 15:00 18:00 21:00 00:00 03:00 06:00 09:00
Mo. Di. Mi. Do. Fr. Sa. So. Mo.
® |s the discovered signal the Higgs boson » = e = e o . .
11°5 9°6 12%:1% 12° 6 16° 5 8° 4 11°7 10° 7

predicted by the Standard Model ?

® Hypothesis test: do the data agree, within a pre-defined significance, with the hypothesis (theory) ?
» Exclusion of hypothetical signals usually at 95% confidence level (p-value = 5%)
» Discovery of signals requires bigger significance, typically 50 (p-value ~ 3-10-7)
“Extraordinary claims require extraordinary evidence”

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023



Gaussian Quantiles
l—a | « a/?2

1o | 0.683 | 0.317 | 0.158)
1.650 | 0.90 | 0.10 | 0.05 )
1.960 | 0.95 | 0.05 | 0.025

20 | 0.9545 | 0.0455 | 0.0228
30 | 0.9973 | 0.0027 | 0.0013
(5o 3% 107

flx; n,0)

PDG 2020:
Fig. 40.4

/ Measurements: 2-sided interval: p-value = a
Exclusion/discovery: 1-sided interval: p-value = a/2

(x—u)/c

® Hypothesis test: do the data agree, within a pre-defined significance, with the hypothesis (theory) ?

» Exclusion of hypothetical signals usually at 95% confidence level (CL): p-value = 5%

» Discovery of signals requires bigger significance, typically 5o: p-value ~ 3-10-7

“Extraordinary claims require extraordinary evidence”

DESY. Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023
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data can be

Hypothesis Testing

g(t) A here  or here:
® Hypotheses are formulated as PDF
of a test statistic t woical oritical
ICal Critica
g(t;Ho) \yaﬁue chosen:a=0.05
® Comparison of a data sample with
one or several hypotheses H;

@ Single hypothesis: null hypothesis Hg

« Example: test data for consistency with the Standard Model (Ho)

« E.g. using goodness-of-fit tests using X2 as test statistic

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023
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Hypothesis Testing

® Hypotheses are formulated as PDF
of a test statistic t

® Comparison of a data sample with
one or several hypotheses H;

@ Single hypothesis: null hypothesis Hg

« Example: test data for consistency with the Standard Model (Ho)

« E.g. using goodness-of-fit tests using X2 as test statistic

® Several hypotheses: Ho and alternative hypotheses H;

 Example: Standard Model (Ho) vs specific New Physics model (H1).

A hypothesis can never be proven, it can only be falsified: one counter-example is sufficient

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023 17



Example: Particle Identification

Energy-Loss Measurement

® Hypotheses Hi:
* Pion: falsified
« Kaon: falsified

* Proton: consistent
(but not proven)

."“l
Q
Q

dE [keV/300um]

- = -

— F
o -

momentum [GeV/c]

107

A hypothesis can never be proven, it can only be falsified: one counter-example is sufficient

DESY. Andreas B. Meyer

Statistical Methods in Data Analysis

Introduction to the Terascale, 6-10 March 2023
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Hypothesis Testing

1. Determine PDF g(t;Hi) for test statistic t
2. Define significance level a (typically 5%)

* critical value to: reject null hypothesis or not

* in practice, a depends on goal
* high efficiency € or high purity p ?
(1 —a)Ng
1 —a)Ny + BNy

e=1—-« p =
(

« separation power 1-8 Note: trivially, no separation if no separation power
=> large 1-B is fundamentally more important than small a

3. Determine p-value of the measurement
p-value is probability that values t > tp are measured, assuming that Ho is true.
(note: p-value is an estimator derived from the measurement, i.e. a random number)

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023 19



Receiver Operating Characteristic (ROC)

Background rejection versus Signal efficiency

TMVA
‘_1 IE 1 E Ll [T T 1T I T T T T T T T IE
. S o09r St
SR D E
Z € § 0.8 - N
/X o - \ ]
d - 5 0.7 - ]
= ¥ \ .
3 - ]
| /g g 0.6 n .
o 0.5 - -
| —  MVA Method: N

™ 0.4 e Fisher
~ - ——— Likelihood ‘t
|| 0.3 ————— nearestNeighbour 1
& 0-2 L1 I I I I | L1 11 L1 11 I L1 11 L1 11 L]
0 o1 02 03 04 05 06 07 08 09 1

Signal efficiency € — 1 — (X

® Choice of "working point” depends on problem (purity vs. efficiency)
® Area Under Curve (“AUC") is often used to quantify the performance of the separation algorithm
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Two Hypotheses

® |s the Higgs boson a scalar particle ?
* Null hypothesis: JP = 0+
 Alternative hypothesis: e.g. JP =0-

® Construct a test statistic (here: likelihood ratio):

¢ =—2In(Lo-/Lo+)

CP-properties of the
Higgs boson from decays into
in 4 leptons

g(q)

DESY Andreas B. Meyer

Statistical Methods in Data Analysis

pseudo experiments

https://arxiv.org/abs/1312.5353

Vs=7TeV,L=5.1fb"' ys=8TeV,L=19.7 f5"

0.1

0.08

0.06

0.04

0.02

ol 1 el N1 1| I

-30 -20

IIII|IIII|IIII|IIII|IIII+

— CMS data

I

10 20 30
2x I 1L)

JP = 0- excluded at 3.80 observed (2.40 expected)
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Neyman-Pearson Lemma Jerzy Neyman, Egon Pearson, 1933

® For simple hypotheses, i.e. f(x|Hi) are completely known, the likelihood ratio A(x) provides optimal
separation power 1-8 (for fixed significance a)

(x| Ho)
(x| H1)

A(z) = ;

® Equivalently: log-likelihood difference:
g(x) = -2InX(x) = 2(In f(x|H1) — In f(z|Hp))

® Notes:
» Determination of optimal test statistic (signal-to-background separation) is called classification (next time)
* In practice, MC simulations are used to determine PDF fur different hypotheses.

« The Neyman-Pearson lemma does not generally hold for composite hypotheses, i.e. hypotheses with free
parameters, e.qg.: f(x|H(A,ui)) with A; known und i free

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023



Wilks’ Theorem

® For large samples with n data points x;, n — <« (and for a null hypothesis Ho that
determines =m-m(0) parameters), the distribution of the log-likelihood ratio g =-2 In A
asymptotically approaches a x?2 distribution (with r degrees of freedom).

» r = difference in the number of free parameters for H1 and Ho
S.S. Wilks, The large-sample

distribution of the likelihood ratio
for testing composite hypotheses.
Ann. Math. Stat. 9, 60—-62 (1938)

£(S -+ b) H1
L(b) Ho

Ax? = —2InA = —21In

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023



Wilks’ Theorem e 10

60 RMS 0.5451

50 Ns =100.41+ 12.06

e input data
® Signal (s) above background (b): — fit h
® PDF for each bin in m: n(m) = b(m) + s(m)

* b: Poisson distributed in each bin -> Gauss for large b

40 Nb =1000

%%ndof = 159.6/98 = 1.63

30

Bl |+:+

* s: Number of events in mass peak (fixed mass and width)

® Two hypotheses:
* Ho (background only): s=0 => fit of 1 free parameter b — x2(b)
* Hi signal-Hypothesis: s#0 => fit of 2 free parameters b+s — x2(b+s)

L(s+b)
L(b)

Ax? = —2In\=—2In ( ) = -73 in this specific case

Apply Wilks’ theorem:
If Ho true, then Ax2 is a x2 - distribution mit 1 d.o.f: p(x2 = 73) = 2x10-16, corresponds toz=8.50

Backup: for small signals and largen 2z = 4/ AXZ — \/a = S/\/E

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023
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based tests of new physics” https://arxiv.org/abs/1007.1727
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Frequentist vs Bayesian

® Frequentist definition: also referred to as “objective” or “classical” definition
» Probability is identified as rate of occurrence (relative frequency) of events
» For repeatable events or in case of symmetries (e.g. dice)

® Bayes probability: also referred to as “subjective” definition
« “Degree of Belief”
Also applicable for one-time only events, e.g. probability that it is going to rain tomorrow
Does not exclude a Frequentist interpretation
But priors often consist of non-Frequentist prior assumptions

Physicists mostly take a pragmatic approach:
E.g. a profile likelihood fit using nuisance parameters
Is a Frequentist method with “quasi-Bayesian” components

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023

26



Confidence Interval

® Use measurement of & and uncertainty to determine interval
in which the true value a lies for chosen confidence level (CL)

® Typical CL: 68.3%, 90% or 95%.

g(a; a)

a»

v(a) u(a)

DESY Andreas B. Meyer Statistical Methods in Data Analysis

Coverage:
probability 1-a-@ that true value
is contained in the interval

Introduction to the Terascale, 6-10 March 2023
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Interval Estimation y A

@ Previously discussed: estimation of points true e
value a : ?(x;a)
® Usual presentation of measurements: /'/
’
- Estimator with uncertainty: & + 0, ¢ data point a
P with error bars
® Interpretation: '
» The interval [a - 04, & + O3] covers the true value a at 68.3% confidence. v :'

DESY. Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023



Interval Estimation

® Previously discussed: estimation of points

® Usual presentation of measurements:

« Estimator with uncertainty: & = o,

® Interpretation:

» The interval [ - 04, & + O3] covers the true value a at 68.3% confidence.

® Actual meaning:
 The measured parameter & is a random number, given the true value a.
* PDF g(a|a) ist distributed around the true value a.

® Both are equivalent if g(a|a) is a Gaussian.

» This is frequently the case (— central limit theorem), but not always

DESY Andreas B. Meyer Statistical Methods in Data Analysis

true ="

value;;/ y

f(;;a)

4
r |

|

4 data point &
with error bars

> o

data point &

<

X

!
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Confidence Interval

Cowan page 122

® Measurement of a data point Bobs Of an observable 6 (detector has Gaussian response)

® Construction of a two-sided confidence interval:

Upper limit b

For assumed true value b, the probability to
measure a value Bobs or smaller is B,
e.g.for1o0: B=(1-68%)/2 = 16%

Lower limit a

For assumed true value a, the probability to
measure a value Bobs Or bigger is q,
e.g.for1oc:a=(1-68%)/2 =16%

DESY Andreas B. Meyer Statistical Methods in Data Analysis

g9(8:b)

9(6:a)

05 r

05 r

(b)

(a)

30



Confidence Interval Blobel/Lohrmann, Section 6.7

® Determine two-sided 90% confidence interval in a counting experiment with n = 9 observed events
® Poisson probability: p(n|u) = e+ un/ n!

0.2 | Miower = 4.7 @
I I a
® For a 95% CL, 1-sided interval, the
interval border is determined ol
by varying the hypothetical true value '- I
such that the observed signal : H
is excluded with a p-value of 5%. 0 mH W
0 Hu 10 20 30
: . . 01k | Mupper = 15.7 (b)
® Do this from both sides to obtain the 2- ol 1
sided 90% CL interval | HH HHH
NSRRI 1 L e
0 10 o 20 30

Determination of confidence intervals can be viewed as scan of hypothesis tests

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023 31



Neyman Construction

® For a true value of a, there is a measurement a
with an uncertainty o. A

® 4-0 und 4+0 are functions of a,
here u(a) and v(a).

In 16% of cases
measure < 3-0

DESY. Andreas B. Meyer Statistical Methods in Data Analysis

In 16% of cases
measure > 3+0

Introduction to the Terascale, 6-10 March 2023
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Neyman Construction

16% of cases:
true value > amax
® For a true value of a, there is a measurement a

ith an uncertainty o. A A=y 1-1(A

wi u inty a a__(a)=u(a)
® 4-o0 und 4+o are functions of a AN (A
, a_(d)=via

here u(a) and v(a). a | min(Q)=VH3)

max

® For a concrete measurement 4, a confidence
interval is constructed. min

In 16% of cases
In repeated experiments the true value of a would be true value < amin
contained in the interval [amin, @max] in 68% of the cases

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023
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Neyman Construction

® For a true value of a, there is a measurement a
with an uncertainty o.

a A
® 4-0 und &+0 are functions of a, amax(8)
here u(a) and v(a). .
(@) ( amL(a)
. i amin(é)
® For a concrete measurement &, a confidence —
interval is constructed. The functions amin(8) und ,
amax(8) are the confidence belt i
® The belt is constructed horizontally for assumed - >
true values of a. For a concrete measurement 4, a
the confidence interval can be read off vertically
] . . . In this sketch, we also put the most probable value am..
© Note: the confidence belt is an estimate However, in a strictly frequentist view, the true value has no uncertainty

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023 34



Neyman Construction

® For a true value of a, there is a measurement a
with an uncertainty o.

® 4-0 und 4+0 are functions of a,
here u(a) and v(a).

® For a concrete measurement 4, a confidence
interval is constructed. The functions amin(8) und
amax(8) are the confidence belt

® The belt is constructed horizontally for assumed
true values of a. For a concrete measurement 4,
the confidence interval can be read off vertically

® Note: the confidence belt is an estimate

amax(a)

amL(a)

d min (é ) B -

Qy

In this sketch, we also put the most probable value am..
However, in a strictly frequentist view, the true value has no uncertainty

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023 35



Neyman Construction

® For a true value of a, there is a measurement a
with an uncertainty o.

® 4-0 und 4+0 are functions of a,
here u(a) and v(a).

® For a concrete measurement 4, a confidence
interval is constructed. The functions amin(8) und
amax(8) are the confidence belt

® The belt is constructed horizontally for assumed
true values of a. For a concrete measurement 4,
the confidence interval can be read off vertically

® Note: the confidence belt is an estimate

amax(é)

amL(a) —

amin(é)

In this sketch, we also put the most probable value am..
However, in a strictly frequentist view, the true value has no uncertainty

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023 36



Confidence Belt

Cowan: table 9.2

ll'lill'l'l

FTTTTT T =y 0 (1—7/2) [1—a @& (1-a)
sE . 0.90 1.645 0.90 1.282
1095 1.960 0.95 1.645
4 L 0.99 2.576 0.99 2.326
3 i
®

S
o

I
1
|
|
!
!
|
1

T 90%

|

confidence

"“region ,

| ! ! !
llllllllllllllllllll

>
e IIIIIIIIIIIYUII"'IIUIIUI'UU

0

() Lol

-2 -

Measured 8

0

) 3

Measured 3

® The confidence belt of a Gaussian PDF is a straight line with a slope of 1.

» Gauss PDF is symmetric, o (width) does not depend on p (mean).

LA

lllllllllllllllllll

’ o

wahrer : e

-

We;./ fca)

’
4 Datenpunkt
’ mit Fehlerbalken

L.
’ an

w

» This is why it is ok to draw the error bar on the data point, and to interpret it as interval for the true value
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Confidence Belt

Poisson distribution
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® 90% CL interval for an unknown Poisson-distributed signal with a background of 3 events

0 is empty.

® |n this case, the band for a
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1-Sided Limits and 2-Sided Intervals F.James

@®©
® Define before the measurement: E
:

e 1-sided limit 1-a or
2-sided interval 1-a- 4

» confidence level (e.g. 68, 90 or 95%) 3

0.9-upper-limit

4
9 \ T T T T > [G]
-2 -1 0 1 2 3 4 B 6
measnured mean a

® In practice, the confidence level is often chosen depending on the result of the analysis
« 4> 30 — Measurement (2-sided confidence belt, 1-a-8, 68% C.L.)
* 4 <30 — Upper Limit (1-sided confidence belt, 1-a, 90% or 95% C.L.)
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1-Sided Limits and 2-Sided Intervals F.James, Abb. 9.7

Figure: for a = 2.5: )
AC: 90% CL 2-sided
Be: 90% CL 1-sided 4-
BC: 85% CL

In the interval 1.2 < a < 4.3, only 85% 2-
coverage

More importantly: — T4 11 1 —I[0]
. N " ” -2 -1 0 1 2 3 4 5 ¢
the |nterva| fOF eg a-—— 2 IS empty measured mean é

® In practice, the confidence level is often chosen depending on the result of the analysis
« 4> 30 — Measurement (2-sided confidence belt, 1-a-8, 68% C.L.)
* 4 <30 — Upper Limit (1-sided confidence belt, 1-a, 90% or 95% C.L.)
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1-Sided Limits and 2-Sided Intervals: Unified Approach

F.James. Abb. 9.8
® Feldman-Cousins a.k.a. "unified approach”. A

“automatic” decision if measurement or limit

mean A

® Construct interval using an ordering principle, 3
based on the likelihood ratio R

R(ala) = géﬁzg

where avest = a for which g(a|a) is largest

I-C

>

o]

I I
3

|
4
measured mean J

[erep—
(S

® Recipe:
* Sum up values of & for decreasing values of R until g(&|a) reaches the chosen confidence level

* For & < 0: add contributions to the left side (no empty interval) Example in backup
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Frequentist and Bayesian Approaches

® Frequentist approach: there is a true value a

 True values are true, they have no uncertainty (!)

Statements about probability are made only about the interval, not the true value itself.

The interval is a measured (i.e. random) quantity

For a confidence level CL = p%, the confidence interval covers the true value in p% of all cases.

Neyman construction to determine interval around true value (coverage by construction)

® Bayesian approach: depends on the conditions
» The “prior” describes the degree of belief that a can take certain values.
* The true value has an uncertainty that depends on the measurement.

» The posterior density distribution of a, namely f(a|ad), is product of the likelihood £(4|a) and the prior mr(a)
flala) o< L(ala) - w(a)

» Coverage must be checked explicitly (e.g. using toy-MC)

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023
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Frequentist and Bayesian Approaches

https://xkcd.com/1132/

DID THE JUST EXPLODE?
D(rrs MG%O\IERENO\' SURE.) FREQUENTIST STATISTICIAN: BAYESIAN STATISTIOAN:
THIS NEUTRINO DETECTOR MEASURES THE PROBABILITY OF THIS RESULT
vasicneoeon | | e oraa s g o7 00 450
( BOTH COME UP Six, TLUESTOUS. | | GNCE p<0.05, T CONCLUDE. T HANT
OTHERWISE,, IT TELLS THE. TRU. ‘|'HAT‘IF{E SUN HAS EXPLODED. )
LETS TRY.
DETECTOR! HAS THE
)

I,

] a

DESY Andreas B. Meyer
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Frequentist and Bayesian Approaches

® Frequentist

- T lues : : ' ith i
rue value Frequentists use impeccable logic to deal with issues

of no interest to anyone

Statements

The interva

For a COan(‘UI VW Iwv VUV Vi NIU, LI WUUILHITIVWITWVWD 1TV VUL UV VWUV LW LU UWw VvVUIJUWw 111 PIU i1 ull UuSeS-

Neyman construction to determine interval around true value (coverage by construction)

® Bayesian af : : L :
, Bayesians address questions everyone is interested in,

» The “prior” . ] .
. The true va by using assumptions no one believes

» The posteri - - e prior 17(a)
f(ala) o< L(ala) - m(a)

« Coverage must be checked explicitly (e.g. using toy-MC) quote by Louis Lyons (?)
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R. Cousins, ,Why isn't every Physicist a Bayesian?”

Impact of the Prior

0.24 | L BN SRR NP 0.24 B LA BN B
Example: Bayesian intervals ] :
0.2 (@) - 0.2 (b) .
o8| | Pluin=3) 0.18 Plain=3) ]
" " § central ] shortest ]
f(ala) < L(ala) - 7(a) orzf a=p 1 o :
5 ] b
0.08 Eg, - 0.08 -
By \ ]
® Choice of prior is important! 0.04 -l B . 0.04
» For m(a) = const — Bayesian f(ala) and e s o g i
Frequentist £(&|a) approach give the 8 .
same result. okl MR B B BN BN
-
® Figure (n=3 observed events) PG 1 nemS) ;

« top: flat prior shortest

* bottom: 1/u prior

xljjlllll

15
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Poisson Signal and Background

® Typical search analysis, i.e. number of signal events vs is small v = n — 1y
« Signal + background is Poisson distributed: p(n| vs, vb) = p(n|v = vs + vp)
« Determine n and subtract vy exp to estimate vs

« Upper limit (95% CL) for vs as a function of the expected background vp exp, for different nops

12 1 T 1 T T

6 events observed

® No positive limit for nobs small against ve:

Experiment with large background could
be lucky and measure better limit

classical v (1-8=0.95)
6'6 B14 uemo)

Vb,exp = 0 and 0 observed => upper limit vsup is 3

0 1
Voexp = 8 and 3 observed, i.e. vs = -5 => upper limit vs ypis 0 —o0—2 4 6 & 10 12

DESY Andreas B. Meyer Statistical Methods in Data Analysis Vb,exp 12023 46




Poisson Signal and Background

® Typical search analysis, i.e. number of signal events vs is small g = n —

« Signal + background is Poisson distributed: p(n| vs, vb) = p(n|v = vs + vp)

» Determine n and subtract vp exp t0 estimate vs

» Upper limit (95% CL) on vs as a function of the expected background vy exp, for different nops

o

o

o

cI'IL

® Bayesian prior: =
m(vs < 0) = 0 and n(vs 2 0) = const im
. -

has good properties: %
 For v, = 0: same limit on vs §

» For vy > 0: higher (i.e. worse) limit on vs than flat prior

DESY Andreas B. Meyer Statistical Methods in Data Analysi

12

1 T i

6 events observed

12

'ch 2023

6'6 B14 uemo)
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“Modified Frequentist Approach”: CLs

® Consider two hypotheses:
* H1: Measured event sample contains both background and signal
e d=s+b — p-value = “Cls+b”
* Ho: Measured event sample contains just background
« d=b, d.h.s=0 — p-value =“Cly’

CLsyb _ 3opeo Pk;s +)
CLy, S P(k;b)

CL, =

® CLs renormalizes measured limit to the background estimate

* Quantitatively similar effect as Bayesian prior

» Make experiments with different background conditions comparable.

» CLs is always bigger than CLs+, — over-coverage

DESY Andreas B. Meyer Statistical Methods in Data Analysis

G.Cowan, PDG,
Section 40.4.2.4

Also: T.Junk or A.L.Read

Introduction to the Terascale, 6-10 March 2023
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CLs

® Ho: expected background b=4

® H1: expected signal s=11 — s+b=15

® What is the upper limit
at 95% confidence level

for CLs+v and CLs ?
(answer: Sypper = 8.5 and 8.7)

DESY Andreas B. Meyer

1-Clp

CLb+s

d
a=1 —/ P(x|b)dx
0

d
B:/O P(z|b+ s)dx

0.2

arbitrary

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Observationd =7

Alternative hypothesis: A_ , =15
(signal + background)

Statistical Methods in Data Analysis

6 8 10 12 14 16 18 20
event vield

Introduction to the Terascale, 6-10 March 2023
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CLs

d
Clpss = | P(z|b+ s)dx

® Scan for different signal hypotheses and compare with measurement
® For Poisson-distributed b=4 and d=7:

signals=0
— CLb =0.916
= CLs+b = 0.916

Cls=1

Aarbitrary

0.14

0.12

0.1

0.08

0.06

0.04

0.02

1 1 I 1 1 1 1 I 1 1 1 1
5 10 15 20 25
expected yield <d >

OO

confidence level

[y

0

—

10

0
E ® ClLs
B e ClLs+b
i 90%
- 95%
99%
L1 1 I L1 1 I L1 1 I L1 1 I L1 1 I L1 1 I L1 1 I 1
0 2 4 6 8 10 12 14

signal yield s

® Upper limit on s for CLs+s = 95%:
® Upper limit on s for CLs = 95%:

Low background: similar limits on s for CLs+g and CLs

DESY

Andreas B. Meyer

Statistical Methods in Data Analysis

SCLs+b.95% = 8.5
ScLs,95% = 8.7

Introduction to the Terascale, 6-10 March 2023
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CLs

d
Clpss = | P(z|b+ s)dx

® Scan for different signal hypotheses and compare with measurement
® For Poisson-distributed b=7 and d=7:

arbitrary
i =
(]

[
[

e
=
=)

0.14

0.12

0.1

0.08

0.06

0.04

0.02

signal s =0
=== CLb = 0.524816
= CLs+b = 0.524816
CLs=1

(=)

1
10 15 20 25
expected yield <d >

confidence level

0!

—_

107

0
E ® CLs
B e ClLs+b
: 90%
- 95%
99%
Illllllllllllllllllllllllllll
0 2 4 6 8 10 12 14

signal yield s

® Upper limit on s for CLs+s = 95%:
® Upper limit on s for CLs = 95%:

Medium background: CLs gives worse limit on s than CLs+s

DESY

Andreas B. Meyer

Statistical Methods in Data Analysis

SCLs+b,95% = 9.9
ScLs,95% = 6.6

Introduction to the Terascale, 6-10 March 2023
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d
CLs Clpss = | Plz|b+ s)dx

0
® Scan for different signal hypotheses and compare with measurement
® For Poisson-distributed b =10 and d=7:
go.z’— signal s =0.3 g 1?
z2 F ~ CLb = 0.173005 ? * Cls
18- = CLs+b = 0.151184 S o Cls+b
o1sf- CLs = 0.873872 £ [
X °h
0.14:— 101 —90%
0.2 C
- - 95%
01 _
0.085—
0.06:— Ll 99%
- 10°F
0.04— :
0.025—
00- B ll‘llollll‘llsllll20 lII25 0lll‘l-lIl.I‘IlIélIlélll‘llolll‘llzlllll.'l
expected yield <d > signal yield s
® Upper limit on s for CLs+s = 95%: SCLs+b,95% = 2.9
® Upper limit on s for CLs = 95%: SCLs,95% = 9.D

High background: CLs gives much worse limit on s than CLs+s
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Confidence Intervals

® Interval in which true value lies with pre-defined confidence level.
® Frequentist (or classical) approach:
 Neyman Construction: correct coverage by construction

» Unified Frequentist approach: use likelihood ratio as ordering principle to avoid “flip-flopping” (when
switching between 1-sided and 2-sided intervals) and empty intervals.

® Bayesian prior:
« E.g. to avoid unphysical results.

» Shape of prior has direct impact on result and coverage.

® Modified frequentist approach ClLs:
» Robust method to suppress possible effects from downward fluctuations of the background.

 Price to pay: over-coverage

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023
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Profile-Likelihood Ratio



Signal Strength p

® Likelihood in a counting experiment

L(data|u) = Poisson(data|u - s + b)

® Product of Poisson likelihoods to measure n; events in bin j

Poisson(datalu - s + b) = H (- i ' i) o~ (w-sitbi)
® Signal strength u: modifies expected signal using data
« u=0: Ho background only

 u=1: H1 expected signal

DESY Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023
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Signal Strength p

® Likelihood in a counting experiment

Nuisance parameters 6
impact measurement of sand b

v

L(data|u) = Poisson(data|u - s(6) + b(0))

® Nuisance parameters 6: parameters that are not of
primary interest, but needed for the determination of
signal and background, i.e. systematic uncertainties

® Typical particle physics data analyses use many

nuisance parameters (order 100)

DESY. Andreas B. Meyer Statistical Methods in Data Analysis

#S_scale ! tautau BTeV

CMS _oft 1 1t 8TeV
higgs_8TeV_ZTT bin 12
Nggs_BTeV_ZTT bin 11

QCOscale_ggMin
DSyst_tauTau vt _8TeV
pat_o9
|ot_high_highhiggs 8TeV
Nggs_BTeV_ZTT bin 13
ol 8TeV ZTT bin 6
Ngh mediumhigps BTeV
Ngh mediumiuggs 8TeV
"ot auTau vbi 8TeV
Nggs ATeV_ZTT bin 20
Nggs_BTeV _ZTT bin 12
CMS _htt_mNorm 8TeV
Moo ATeV ZTT bin 13
umi_8TeV

Ngos ATeV_ZTT bn 14
MS_ht_scale_met 8TeV
QCOscale gghHdn
ot_Ngh_hghhvggs 8TeV
hggs BTeV ZTT bn 6
hivggs_BTeV_ZTT bin 8
ot qubar

VEPS

M vol BTeV ZTT bin 9
Nggs ATeV_ZTT bin 21
M vol_BTeV _ZTT bin 7

ot_high_highhiggs_8TeV
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Signal Strength p

® Likelihood in a counting experiment

“Priors”, i.e. PDF determined
in other megsurements

L(data|u) = Poisson(data|u - s(6) + b(0)) - PDF(0)

® PDF(6): prior knowledge from ancillary measurements
used as constraints for the Frequentist likelihood of the main

measurement

DESY. Andreas B. Meyer Statistical Methods in Data Analysis

#S_scale ! tautau 8TeV

CMS _off t 1t 8TeV
higgs_8TeV_ZTT bin_12
Nggs_8TeV_ZTT bin_11

QCOscale_gghin
DSyst_tauTau_vbt_8TeV
pat_o9
[ot_high_highhiggs_8TeV
hggs_BTeV_ZTT bin 13
hu_vol 8TeV _ZTT bin 6
“gh mediumhiges 8TeV

Ngh_mediumhiggs 8TeV
"ot auTau vbi 8TeV

Nggs ATeV _ZTT bin 20
Nggs_BTeV _ZTT bin 12
CMS _htt_mNorm 8TeV
Nggs ATeV ZTT bin 13
umi_8TeV

Ngos ATeV ZTT bin 14
MS_ht_scale_met 8TeV
QCOscale gghtan
ot_hgh_hghhvggs 8TeV
hggs BTeV ZTT bn 6
hhiggs 8TeV_ZTT bin 6
P _qabar

VEPS

M vl BTeV ZTT bin 9
Nggs ATeV_ZTT bin 21
e vol BTeV _ZTT bin 7

ot_high_highhuggs _8TeV
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Profile-Likelihood Ratio

® Profile likelihood: determine the interval for the (true) signal strength u, for optimal nuisance
parameters 6,, normalized to the global maximum of the likelihood.

® “Profile” = scan, determine q, for all y

DESY

Test statistic

Signal strength

Nuisance parameter 6,: maximises £(data|u,6,) for u

\

q, = —2In

Andreas B. Meyer

.

E(data’:ua M)

L(datalfi, ©)

/

Best-fit values of
all parameters

Statistical Methods in Data Analysis

CCGV section 2.5 and
CMS+ATLAS 2.1

Introduction to the Terascale, 6-10 March 2023
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Profile-Likelihood Ratio
2In A(p) = —2AIn L

(p — f1)?
g2
® In the limit of high statistics (Wilks),
qu follows x2-distribution (parabola)

du

Y
Y

® Profile-likelihood distribution has all estimators:

» Best fit of y at minimum
» 2-sided confidence interval: e.g. 68%
» Exclusion of Null-hypothesis:

* q(p=0) = z2 = (Significance)?

« here:z~\2.4=15
» Upper limit pos:

—2A1n L(pgs) = 1.645% = 2.71

DESY Andreas B. Meyer Statistical Methods in Data Analysis

Large-Sample Approximation

LIl L III

Profile Likelihood

. 95%CLLimit:7.57

68% CL Interval: 1.08 - 5.71

\ \ Minimum: 3.237 %
| Ll l | | l | | l | Ll Ll l | Ll l Ll Ll | l |
1 \2

3 4 5 6 7 8
M5 M
In general: 2-sided interval

Mes best Mes

For 1-sided limit set q,=0 flr p<

Introduction to the Terascale, 6-10 March 2023
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Higgs Discovery

History: Status December 2011

® Number of events depends on invariant mass

Excess at a mass of ~124 GeV

= AT T T T I e
» 10 cMm =7 TeV e = :
ok f—i,S\Esfb"e = (E)bse;::j(%o/) - Higgs boson mass > 127 GeV
b - -_— . . (<] — 0 .
c - Epected 5% | |— | EXcluded at 95% confidence level
E |
—
O
&\‘; Distribution of
2 pseudo experiments
using expected
(background-only) limit
10-1 __I Il | 1 | | 1 | 1 | | 1 1 | I 1 | 1 | | 1 | | 1 | 1 1 | 1 | 1 1 1 I__ <

110 115 120 125 130 135 140 145
Higgs boson mass (GeV)

® Blind analysis: software and all criteria were fixed before looking at the data

DESY. Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023
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Higgs Discovery

Brazilian-Flag Figure

® Determine Jgs, i.e. signal strength excluded at 95% CLs

® Pseudo-experiments to determine the distribution around the 95% limit for the background-only
hypothesis, i.e. median and intervals for 10 und 20 around pos.

350
300f
250¢F

200¢f

Events

150F
100}

50F

0' R . .
-2 -1 25410 Mos +10 +20
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Higgs Discovery

4 July 2012

® Public announcement of the discovery at CERN

95% <L Limit on n

—_
<

T T llll]l

ATLAS 2011-2012 i1
(5=7TeV: JLdt=46afp” 120

i . e 4 —Observed
(s=8TeV: [Lat=58591" Sk, B

| lllllll'

o~

107 (a) CL, Limits _
110 150 200 300 400 500
m,, [GeV]

95% CL limit on o/og,,,

-
o

—

10

CMS-PAS-HIG-12-028

CMS Preliminary —=— Observed g
[ Vs=7TeV.L=5.1fo" 555 Expected (68%)|]
| Vs=8TeV,L=5.3f" |~ Expected (95%)||
: 1 1 11 | ) N I N I | L1111l ||||| 1111 | 111 I:
00 200 300 400 500

Higgs boson mass (GeV)

® Exclusion of signals between 131(128) GeV and 523(600) GeV

DESY.

Andreas B. Meyer Statistical Methods in Data Analysis
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Higgs Discovery

4 July 2012

® Public announcement of the discovery at CERN

O J T 1 T
E— 10 s =7TeV (2011), [Ldt=4.8fb" % 1 H
8 /s =8 TeV (2012), [Ldt=5.9 b I 10'1E
9 2102
5 Q1%
‘_8 10
9 107 E
10'5E \o.
EPS July 2011 6 .
-4 [ — Observed 10° N e .. 450
107 Bpectes 3 | T 4o 1g7
107 £ ceRN Seminar 1272011 108
—— Observed
108 - Exs:cr:\t/:d 3 - 10° : CMS Preliminary 6o
_______________________________ L SR B o3 ¢ | ) = Combined abs. H-sZZ +
Ly R 4 Jduly 2012 10 0L ... Exp. for SMH Higgs 1
10 oy g SO \ 3 I \s=7TeV,L=5.11b"
served : Observed *-.__ 10—11 —=vY 1
10-8 ------ Expected I I \I-\\----- E>|<pected ] N il H— ZZ \s = ? TeV, I.- = 5-31fb 76
110 115 120 125 130 135 140 145 150 9 {16 118 120 122 124 126 128 130
m,, [GeV] Higgs boson mass (GeV)

® Determine signal significance and local p-value by comparison with background hypothesis
Satas=5.9 0 Scvs=5.0 0
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Look-Elsewhere Effect

® Local p-value: probability that the excess is due to a statistical background fluctuation
at a specific value of the Higgs candidate mass (or another observable)

® In global searches (e.g. over the whole mass range) the probability for a fluctuation somewhere
increases with the size of the search range — “Look-Elsewhere Effect”

global p = trial factor x local p
® The trial factor is generally proportional to the range and inverse proportional to the (mass) resolution
® Determination:

» Usually by pseudo-experiments: requires a lot of CPU, because fluctuations are rare.
* Or estimate from frequency of fluctuations in data

 81nbl4 ‘SYT1LV+SIND

Observed ¢,

p—
—

Higgs boson mass
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Summary

® Maximum Likelihood (MLE)

» Least-squares method is an important special case of MLE, for the (usually good) assumption of Gaussian behaviour

® Hypothesis testing
* Neyman-Pearson lemma: likelihood ratio is the best test statistic

® Confidence intervals:
* Frequentist Neyman construction, coverage by design

Wilks’ Theorem, asymptotic approach

Feldman-Cousins Unified approach

Bayesian priors

Modified Frequentist approach: CLs method

® Profile-likelihood ratio
» Optimal separation
 Higgs discovery figures: “Brazilian-Flag” and p-value

DESY Andreas B. Meyer Statistical Methods in Data Analysis
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Counting Experiment with Known Background

® Observation of n events with small signal s

1
Po(n;b) = %bnfﬁ_b Pi(n;s+b) = E(S +b)te(sTY)

q=—2In\=2(nln(1 + %)— s)

® Background bthen n=b + s:

q:2(b—|—8)ln(1—|—%> — 2s

® For s « b:

Va = s/Vb+O((s/b)?)
® In Wilks” approximation: for a single degree of freedom, the significance of the signal s,

expressed by the Gaussian quantile z is:
2= /Ax2=/qg=s5/Vb

DESY. Andreas B. Meyer Statistical Methods in Data Analysis Introduction to the Terascale, 6-10 March 2023

Cowan, Cranmer, Gross and Vitelis “Asymptotic formulae for likelihood-
based tests of new physics” https://arxiv.org/abs/1007.1727
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1-Sided Limits and 2-Sided Intervals: Unified Approach

Example: Poisson Distribution with p=4 (95% CL)

® Construct interval using an ordering principle,
based on the likelihood ratio R(n|u): g(n’#)

Blnlu) = g(n|pbest)
and ppest = J for which g(n|p) is biggest est

e Hu
where g(n|u) = 0

Poisson distribution for y=4

0.2F" ' h
» Calculate R(n|u=4) for each measurable value of n Entries 11
* R defines order of bins 0.151 Mean 3.979
« Sum up bins until in decreasing order of R until : RMS 1'962_

coverage is reached 0.1F

0.05}

® ReCipe: 0 0 5 10
* Sum up values of a for decreasing values of R until g(a|a) reaches the chosen confidence level

* For a < 0: add contributions to the left side (no empty interval)
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1-Sided Limits and 2-Sided Intervals: Unified Approach

Example: Poisson Distribution with p=4 (95% CL)

® Construct interval using an ordering principle,
based on the likelihood ratio R(n|u): g(n’#)

) = S aliest)
and Jpest = M for which g(n|u) is biggest ost

where g(n|u) = 0

Poisson distribution for y=4

n R(nlp) g(nlp) Y g 02FT T [k
» Calculate R(n|u=4] Z - Entries 11
+ R defines order of| % 1.0000.195 0.195 0.15F Mean 3.979
_ o 5 0.891 0.156 0.352 RMS  1.962
« Sum up bins until i| 3 0.872 ©0.195 0.547 -
coverage is reache 6 0.649 0.104 0.651 0.1¢ g
2 0.541 0.147 0.798 -
7 0.400 ©0.060 ©0.857 0.05}
8 0.213 0.030 0.887 -
® Result: 1 0.199 0.073 0.900 0 L - =

* Confidence interval [1,8] provides coverage of 96%

* More complex distributions - more computing
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