Statistical Methods in Data Analysis

Confidence literixas?

Andreas B. Meyer DESY
6-10 March 2023

Menu

Confidence Intervals

Tuesday

- Statistical and Systematic Uncertainties
- Probability
- Parameter Estimation

Wednesday

- Hypothesis Testing
- Confidence Intervals
- Profile Likelihood Ratio

Friday

- Classification
- Multivariate Analysis
- Machine Learning

Higgs discovery: What does this figure really show?

Sources and Papers

Statistical Methods in Data Analysis", Terascale, March 2023: https://www.desy.de/~ameyer/da desy23/

A.B.Meyer

- Statistical Methods in Data Analysis", KSETA lecture, Feb 2022: https://www.desy.de/~ameyer/da kseta 22/
- Statistical Methods in Data Analysis", KSETA lecture, March 2021: https://www.desy.de/~ameyer/da kseta 21/
- "Moderne Methoden der Datenanalyse", Course lecture at KIT, SoSe 2017, slides (in German): http:// ekpwww.etp.kit.edu/~ameyer/da_sose17/index.html Access to slides and material: (user: Students. pw: only)

Papers and Articles:

© Robert Cousins: "Why isn’t every physicist a Bayesian ?", Am.J.Phys. 65 (1995).

- Robert Cousins: "Lectures on Statistics in Theory: Prelude to Statistics in Practice" [arXiv]
© G.Cowan, Particle Data Group [pdg] 2020, chapter 40 [pdf] or full PDG book for download (80MB) [pdf]
© G.Cowan, K.Cranmer, E.Gross, O.Vitells: "Asymptotic formulae for likelihood-based tests of new physics" [arXiv]
- ATLAS and CMS Collaborations: "Procedure for the LHC Higgs boson search combination" [CDS]
- T.Junk: "Confidence level computation for combining searches with small statistics", NIM, A 434 (1999) 435-443
- A.Read: "Presentation of search results: the CL_{s} technique", J.Phys.G: 28 (2002)

Many thanks for discussions, material and help go to:

- G. Quast (KIT), R. Wolf (KIT), O. Behnke (DESY), C. Autermann (Aachen), Th. Keck (KIT), Jan Kieseler (CERN)

Recap

The Scientific Cycle

Particle Physics
Experiment: measure and test theory predictions

Theory: predict measurement

Experimental input to theory
(hypothesis testing)

Statistical analysis and data interpretation

Statistical Uncertainties

- Spread of a single measurement for reasons that are practically (e.g. cube) and/or principally (QM) untraceable - => Variance: distribution around mean
- Repeated measurements are independent (uncorrelated)
- Statistical uncertainties are theoretically well understood

Application in measurements

Probability that theory " A " is correct, given data "B" have been measured

Conditional probability to measure data "B"
assuming that theory " A " is correct

Quantitative relation between correctness of a theory \leftrightarrow and observation of actual data

Maximum Likelihood

Maximum Likelihood

- LS: Least Squares:

Minimise distance from expectation

- MLE: Maximum Likelihood Estimator

Maximise PDF value

- Example:
- Decide between three hypotheses (PDF)
- Measured value: 1.9

In general, MLE and LS can lead to different results

Maximum Likelihood

- LS: Least Squares:

Minimize distance from expectation

- MLE: Maximum Likelihood Estimator

Maximise PDF value

- Example:
- Decide between three hypotheses (PDF)
- Measured value: 3.5

In general, MLE and LS can lead to different results

Maximum Likelihood and Least Squares

- For Gaussian-distributed measurements, least-squares method and MLE are equivalent:
- Conditional Likelihood using a Gaussian-PDF: $\quad f\left(x_{i} \mid a\right)=\frac{1}{\sqrt{2 \pi} \sigma_{i}} \cdot \exp \left[-\frac{\left(x_{i}-a\right)^{2}}{2 \sigma_{i}^{2}}\right]$
- Negative logarithm of the likelihood:

$$
\begin{gathered}
F(a)=-\ln \prod_{i} f\left(x_{i} \mid a\right) \\
F(a)=-\ln \mathcal{L}(a)=\frac{1}{2} \sum_{i} \frac{\left(x_{i}-a\right)^{2}}{\sigma_{i}^{2}}+\sum_{i} \ln \left(\sqrt{2 \pi} \sigma_{i}\right)
\end{gathered}
$$

- Thus, for the difference:

$$
\Delta(-\ln L)=\frac{1}{2} \Delta \chi^{2}
$$

$$
x^{2}
$$ const. w.r.t a (for fixed σ_{i})

X^{2} is a special case of Maximum Likelihood, for the assumption of a Gaussian PDF

Comparison MLE and LS

- If MLE is test statistic for a Gaussian PDF:

$$
\Delta(-\ln L)=\frac{1}{2} \Delta \chi^{2}
$$

	$\Delta(-\ln L)$	Δx^{2}
1σ	0.5	1
2σ	2	4
3σ	4.5	9
$n \sigma$	$n^{2} / 2$	n^{2}

- This is often the case <=> Wilks' theorem
- Things are more difficult if the PDF is not a Gaussian:

	Maximum Likelihood	Least Squares (Gaussian)
Method	PDF value	Distance from mean
Prerequisit	PDF is known	Mean and variance
Efficiency	maximal	maximal in linear problems
Difficulty	difficult	often solvable analytically
Goodness of Fit ?	No	Yes: e.g. \boldsymbol{X}^{2}-probability
Robustness	No	No

Hypthesis Testing

Hypothesis Testing

Assess plausibility of a hypothesis using data

- Should I take an umbrella with me?
- Is a therapy (medication) effective ?
- Is the discovered signal the Higgs boson predicted by the Standard Model?

- Hypothesis test: do the data agree, within a pre-defined significance, with the hypothesis (theory) ?
- Exclusion of hypothetical signals usually at 95% confidence level (p-value $=5 \%$)
- Discovery of signals requires bigger significance, typically 5σ (p-value $\sim 3 \cdot 10^{-7}$)
"Extraordinary claims require extraordinary evidence"

Gaussian Quantiles

PDG 2020
Fig. 40.4

- Hypothesis test: do the data agree, within a pre-defined significance, with the hypothesis (theory) ?
- Exclusion of hypothetical signals usually at 95\% confidence level (CL): p-value $=5 \%$
- Discovery of signals requires bigger significance, typically 5σ : p-value $\sim 3 \cdot 10^{-7}$
"Extraordinary claims require extraordinary evidence"

Hypothesis Testing

- Hypotheses are formulated as PDF of a test statistic \mathbf{t}
- Comparison of a data sample with one or several hypotheses H_{i}
- Single hypothesis: null hypothesis H_{0}
- Example: test data for consistency with the Standard Model $\left(\mathrm{H}_{0}\right)$
- E.g. using goodness-of-fit tests using X^{2} as test statistic

Hypothesis Testing

- Hypotheses are formulated as PDF of a test statistic \mathbf{t}
- Comparison of a data sample with one or several hypotheses H_{i}
- Single hypothesis: null hypothesis H_{0}
- Example: test data for consistency with the Standard Model $\left(\mathrm{H}_{0}\right)$
- E.g. using goodness-of-fit tests using X^{2} as test statistic
- Several hypotheses: H_{0} and alternative hypotheses H_{i}
- Example: Standard Model $\left(\mathrm{H}_{0}\right)$ vs specific New Physics model $\left(\mathrm{H}_{1}\right)$.

A hypothesis can never be proven, it can only be falsified: one counter-example is sufficient

Example: Particle Identification

Energy-Loss Measurement

- Hypotheses H_{i} :
- Pion: falsified
- Kaon: falsified
- Proton: consistent (but not proven)

A hypothesis can never be proven, it can only be falsified: one counter-example is sufficient

Hypothesis Testing

Procedure

1. Determine PDF $g\left(t ; \mathrm{H}_{\mathrm{i}}\right)$ for test statistic t
2. Define significance level α (typically 5%)

- critical value to: reject null hypothesis or not
- in practice, α depends on goal
- high efficiency ε or high purity p ?

$$
\epsilon=1-\alpha \quad p=\frac{(1-\alpha) N_{0}}{(1-\alpha) N_{0}+\beta N_{1}}
$$

- separation power $1-\beta \quad$ Note: trivially, no separation if no separation power $=>$ large $1-\beta$ is fundamentally more important than small α

3. Determine p-value of the measurement p-value is probability that values $t>t_{0}$ are measured, assuming that H_{0} is true. (note: p-value is an estimator derived from the measurement, i.e. a random number)

Receiver Operating Characteristic (ROC)

- Choice of "working point" depends on problem (purity vs. efficiency)
- Area Under Curve ("AUC") is often used to quantify the performance of the separation algorithm

Two Hypotheses

Example: Higgs Boson Properties

- Is the Higgs boson a scalar particle ?
- Null hypothesis: JP = 0^{+}
- Alternative hypothesis: e.g. $\mathrm{JP}=0^{-}$
- Construct a test statistic (here: likelihood ratio):

$$
q=-2 \ln \left(\mathcal{L}_{0^{-}} / \mathcal{L}_{0^{+}}\right)
$$

CP-properties of the Higgs boson from decays into in 4 leptons

$J P=0-$ excluded at 3.8σ observed (2.4σ expected)

Neyman-Pearson Lemma

- For simple hypotheses, i.e. $f\left(x \mid H_{i}\right)$ are completely known, the likelihood ratio $\lambda(x)$ provides optimal separation power 1- β (for fixed significance α)

$$
\lambda(x)=\frac{f\left(x \mid H_{0}\right)}{f\left(x \mid H_{1}\right)}
$$

- Equivalently: log-likelihood difference:

$$
q(x)=-2 \ln \lambda(x)=2\left(\ln f\left(x \mid H_{1}\right)-\ln f\left(x \mid H_{0}\right)\right)
$$

- Notes:
- Determination of optimal test statistic (signal-to-background separation) is called classification (next time)
- In practice, MC simulations are used to determine PDF für different hypotheses.
- The Neyman-Pearson lemma does not generally hold for composite hypotheses, i.e. hypotheses with free parameters, e.g.: $f\left(x \mid \mathrm{H}\left(\lambda_{i}, \mu_{i}\right)\right)$ with λ_{i} known und μ_{i} free

Wilks' Theorem

- For large samples with n data points $x_{i}, n \rightarrow \infty$ (and for a null hypothesis H_{0} that determines $r=m-m(0)$ parameters), the distribution of the log-likelihood ratio $q=-2 \ln \lambda$ asymptotically approaches a χ^{2} distribution (with r degrees of freedom).
- $r=$ difference in the number of free parameters for H_{1} and H_{0}

$$
\Delta \chi^{2}=-2 \ln \lambda=-2 \ln \left(\frac{\mathcal{L}(s+b)}{\mathcal{L}(b)}\right) \quad{ }_{H_{1}}^{H_{0}}
$$

Wilks' Theorem

Counting Experiment

- Signal (s) above background (b):
- PDF for each bin in $m: n(m)=b(m)+s(m)$
- b: Poisson distributed in each bin -> Gauss for large b
- s: Number of events in mass peak (fixed mass and width)
- Two hypotheses:

- H_{0} (background only): $\mathrm{s}=0 \Rightarrow>$ fit of 1 free parameter $\mathrm{b} \rightarrow X^{2}(b)$
- H_{1} signal-Hypothesis: $s \neq 0 \Rightarrow$ fit of 2 free parameters $b+s \rightarrow X^{2}(b+s)$

$$
\Delta \chi^{2}=-2 \ln \lambda=-2 \ln \left(\frac{\mathcal{L}(s+b)}{\mathcal{L}(b)}\right)=-73 \text { in this specific case }
$$

Apply Wilks' theorem:
If H_{0} true, then ΔX^{2} is a x^{2} - distribution mit 1 d.o.f: $p\left(X^{2}=73\right)=2 \times 10^{-16}$, corresponds to $z=8.5 \sigma$ Backup: for small signals and large $\mathrm{n} \quad z=\sqrt{\Delta \chi^{2}}=\sqrt{q}=s / \sqrt{b}$

Confidence Intervals

Frequentist vs Bayesian

- Frequentist definition: also referred to as "objective" or "classical" definition
- Probability is identified as rate of occurrence (relative frequency) of events
- For repeatable events or in case of symmetries (e.g. dice)
- Bayes probability: also referred to as "subjective" definition
- "Degree of Belief"
- Also applicable for one-time only events, e.g. probability that it is going to rain tomorrow
- Does not exclude a Frequentist interpretation
- But priors often consist of non-Frequentist prior assumptions

Physicists mostly take a pragmatic approach:
E.g. a profile likelihood fit using nuisance parameters is a Frequentist method with "quasi-Bayesian" components

Confidence Interval

Coverage

- Use measurement of â and uncertainty to determine interval in which the true value a lies for chosen confidence level (CL)
- Typical CL: 68.3\%, 90% or 95%.

Coverage:
probability $1-\alpha-\beta$ that true value is contained in the interval

Interval Estimation

- Previously discussed: estimation of points
- Usual presentation of measurements:
- Estimator with uncertainty: $\hat{a} \pm \sigma_{a}$
- Interpretation:
- The interval $\left[\hat{a}-\sigma_{a}, \hat{a}+\sigma_{a}\right.$] covers the true value a at 68.3% confidence.

Interval Estimation

- Previously discussed: estimation of points
- Usual presentation of measurements:
- Estimator with uncertainty: $\hat{a} \pm \sigma_{a}$
- Interpretation:
- The interval $\left[\hat{a}-\sigma_{a}, \hat{a}+\sigma_{a}\right.$] covers the true value a at 68.3% confidence.
- Actual meaning:
- The measured parameter â is a random number, given the true value a.
- PDF $g(\hat{a} \mid a)$ ist distributed around the true value a.
- Both are equivalent if $\mathrm{g}(\hat{\mathrm{a} \mid a)}$ is a Gaussian.
- This is frequently the case (\rightarrow central limit theorem), but not always

Confidence Interval

Example: Gaussian distribution

- Measurement of a data point $\hat{\theta}_{\text {obs }}$ of an observable $\hat{\theta}$ (detector has Gaussian response)
- Construction of a two-sided confidence interval:

Upper limit b
For assumed true value b, the probability to measure a value $\hat{\theta}_{\text {obs }}$ or smaller is β, e.g. for 1σ : $\beta=(1-68 \%) / 2=16 \%$

Lower limit a
For assumed true value a, the probability to measure a value $\hat{\theta}_{\text {obs }}$ or bigger is α, e.g. for 1σ : $\alpha=(1-68 \%) / 2=16 \%$

Confidence Interval

Example: Poisson distribution

- Determine two-sided 90% confidence interval in a counting experiment with $n=9$ observed events
- Poisson probability: $\mathrm{p}(\mathrm{n} \mid \mu)=e^{-\mu} \mu^{n} / n$!
- For a 95% CL, 1 -sided interval, the interval border is determined by varying the hypothetical true value μ such that the observed signal is excluded with a p-value of 5%.
- Do this from both sides to obtain the 2sided 90\% CL interval

Determination of confidence intervals can be viewed as scan of hypothesis tests

Neyman Construction

Frequentist approach

- For a true value of a, there is a measurement \hat{a} with an uncertainty σ.
- â-б und $\hat{a}+\sigma$ are functions of a, here $u(a)$ and $v(a)$.

In 16\% of cases
In 16\% of cases
measure < â- σ
measure >â+ σ

Neyman Construction

Frequentist approach

16% of cases:
true value > $a_{\text {max }}$

- For a true value of a, there is a measurement \hat{a} with an uncertainty σ.
- â-б und $\hat{a}+\sigma$ are functions of a, here $u(a)$ and $v(a)$.
- For a concrete measurement â, a confidence interval is constructed.

In 16\% of cases
In repeated experiments the true value of a would be contained in the interval [$a_{\min }, a_{\max }$] in 68% of the cases

Neyman Construction

Frequentist approach

- For a true value of a, there is a measurement \hat{a} with an uncertainty σ.
- â- σ und $\hat{a}+\sigma$ are functions of a, here $u(a)$ and $v(a)$.
- For a concrete measurement â, a confidence interval is constructed. The functions $a_{\min }(\hat{a})$ und $a_{\max }(\hat{a})$ are the confidence belt
- The belt is constructed horizontally for assumed true values of a. For a concrete measurement â, the confidence interval can be read off vertically

In this sketch, we also put the most probable value a_{m}. However, in a strictly frequentist view, the true value has no uncertainty

Neyman Construction

Frequentist approach

- For a true value of a, there is a measurement \hat{a} with an uncertainty σ.
- â-б und $\hat{a}+\sigma$ are functions of a, here $u(a)$ and $v(a)$.
- For a concrete measurement â, a confidence interval is constructed. The functions $a_{\min }(\hat{a})$ und $a_{\max }(\hat{a})$ are the confidence belt
- The belt is constructed horizontally for assumed true values of a. For a concrete measurement â, the confidence interval can be read off vertically

In this sketch, we also put the most probable value a_{m}. However, in a strictly frequentist view, the true value has no uncertainty

Neyman Construction

Frequentist approach

- For a true value of a, there is a measurement \hat{a} with an uncertainty σ.
- â-б und $\hat{a}+\sigma$ are functions of a, here $u(a)$ and $v(a)$.
- For a concrete measurement â, a confidence interval is constructed. The functions $a_{\min }(\hat{a})$ und $a_{\max }(\hat{a})$ are the confidence belt
- The belt is constructed horizontally for assumed true values of a. For a concrete measurement â, the confidence interval can be read off vertically

In this sketch, we also put the most probable value a_{m}. However, in a strictly frequentist view, the true value has no uncertainty

Confidence Belt

For a Gaussian distribution

Cowan: table 9.2

- This is why it is ok to draw the error bar on the data point, and to interpret it as interval for the true value

Confidence Belt

Poisson distribution

- 90% CL interval for an unknown Poisson-distributed signal with a background of 3 events
- In this case, the band for â=0 is empty.

1-Sided Limits and 2-Sided Intervals

- Define before the measurement:
- 1-sided limit 1- α or 2-sided interval 1- $\alpha-\beta$
- confidence level (e.g. 68, 90 or 95%)

- In practice, the confidence level is often chosen depending on the result of the analysis
- $\hat{a}>3 \sigma \rightarrow$ Measurement (2 -sided confidence belt, $1-\alpha-\beta, 68 \%$ C.L.)
- $\hat{a}<3 \sigma \rightarrow$ Upper Limit (1-sided confidence belt, 1- $\alpha, 90 \%$ or 95% C.L.)

1-Sided Limits and 2-Sided Intervals

Flip-Flopping

Figure: for $a=2.5$:
AC: 90% CL 2 -sided
B ∞ : 90% CL 1-sided
BC: 85% CL
In the interval $1.2<a<4.3$, only 85% coverage

More importantly:
the interval for e.g. â=-2 is "empty"

- In practice, the confidence level is often chosen depending on the result of the analysis
- $\hat{a}>3 \sigma \rightarrow$ Measurement (2 -sided confidence belt, $1-\alpha-\beta, 68 \%$ C.L.)
- $\hat{a}<3 \sigma \rightarrow$ Upper Limit (1-sided confidence belt, $1-\alpha, 90 \%$ or 95% C.L.)

1-Sided Limits and 2-Sided Intervals: Unified Approach

o Feldman-Cousins a.k.a. "unified approach": "automatic" decision if measurement or limit

- Construct interval using an ordering principle, based on the likelihood ratio R

$$
R(\hat{a} \mid a)=\frac{g(\hat{a} \mid a)}{g\left(\hat{a} \mid a_{\mathrm{best}}\right)}
$$

where $a_{\text {best }}=a$ for which $g(\hat{a} \mid a)$ is largest

- Recipe:
- Sum up values of â for decreasing values of R until $g(a ̂ \mid a)$ reaches the chosen confidence level
- For â < 0: add contributions to the left side (no empty interval)

Frequentist and Bayesian Approaches

- Frequentist approach: there is a true value a
- True values are true, they have no uncertainty (!)
- Statements about probability are made only about the interval, not the true value itself.
- The interval is a measured (i.e. random) quantity
- For a confidence level $\mathrm{CL}=p \%$, the confidence interval covers the true value in $p \%$ of all cases.
- Neyman construction to determine interval around true value (coverage by construction)
- Bayesian approach: depends on the conditions
- The "prior" describes the degree of belief that a can take certain values.
- The true value has an uncertainty that depends on the measurement.
- The posterior density distribution of a, namely $f(a \mid \hat{a})$, is product of the likelihood $\mathcal{L}(\hat{a} \mid a)$ and the prior $\pi(a)$

$$
f(a \mid \hat{a}) \propto \mathcal{L}(\hat{a} \mid a) \cdot \pi(a)
$$

- Coverage must be checked explicitly (e.g. using toy-MC)

Frequentist and Bayesian Approaches

DID THE SUN JUST EXPLODE?

FREQUENTIST STATISTCIAN:

BAYESIAN STATISTCAN:

Frequentist and Bayesian Approaches

- Frequentist
- True values
- Statements

Frequentists use impeccable logic to deal with issues of no interest to anyone

- The interva

- Neyman construction to determine interval around true value (coverage by construction)
- Bayesian ar
- The "prior"
- The true va

Bayesians address questions everyone is interested in, by using assumptions no one believes

- The posteri

$$
f(a \mid \hat{a}) \propto \mathcal{L}(\hat{a} \mid a) \cdot \pi(a)
$$

- Coverage must be checked explicitly (e.g. using toy-MC)

Impact of the Prior

Example: Bayesian intervals

$$
f(a \mid \hat{a}) \propto \mathcal{L}(\hat{a} \mid a) \cdot \pi(a)
$$

- Choice of prior is important!
- For $m(a)=$ const \rightarrow Bayesian $f(a \mid a \hat{a})$ and Frequentist $\mathcal{L}(\hat{a} \mid a)$ approach give the same result.
- Figure ($\mathrm{n}=3$ observed events)
- top: flat prior
- bottom: $1 / \mu$ prior
R. Cousins, „Why isn't every Physicist a Bayesian?"

Poisson Signal and Background

No Prior: "Frequentist"

- Typical search analysis, i.e. number of signal events ν_{s} is small $\hat{\nu}_{\mathrm{s}}=n-\nu_{\mathrm{b}}$
- Signal + background is Poisson distributed: $p\left(n \mid \nu_{\mathrm{s}}, \nu_{\mathrm{b}}\right)=p\left(n \mid \nu=\nu_{\mathrm{s}}+\nu_{\mathrm{b}}\right)$
- Determine n and subtract $\nu_{\mathrm{b}, \exp }$ to estimate ν_{s}
- Upper limit $(95 \% \mathrm{CL})$ for ν_{s} as a function of the expected background $\nu_{\mathrm{b}, \text { exp }}$, for different $n_{\text {obs }}$
- No positive limit for $n_{\text {obs }}$ small against ν_{b} :

Experiment with large background could be lucky and measure better limit

$\nu_{\mathrm{b}, \exp }=0$ and 0 observed $=>$ upper limit $\nu_{\mathrm{s}, \text { up }}$ is 3
$\nu_{\mathrm{b}, \exp }=8$ and 3 observed, i.e. $\nu_{\mathrm{s}}=-5=>$ upper limit $\nu_{\mathrm{s}, \text { up }}$ is 0

Poisson Signal and Background

Prior: "Bayesian"

- Typical search analysis, i.e. number of signal events ν_{s} is small $\hat{\nu}_{\mathrm{s}}=n-\nu_{\mathrm{b}}$
- Signal + background is Poisson distributed: $\mathrm{p}\left(\mathrm{n} \mid \nu_{\mathrm{s}}, \nu_{\mathrm{b}}\right)=\mathrm{p}\left(\mathrm{n} \mid \nu=\nu_{\mathrm{s}}+\nu_{\mathrm{b}}\right)$
- Determine n and subtract $\nu_{\mathrm{b}, \exp }$ to estimate ν_{s}
- Upper limit $(95 \% \mathrm{CL})$ on ν_{s} as a function of the expected background $\nu_{\mathrm{b}, \mathrm{exp}}$, for different $\mathrm{n}_{\mathrm{obs}}$
- Bayesian prior: $\pi\left(\nu_{s}<0\right)=0$ and $\pi\left(\nu_{s} \geq 0\right)=$ const has good properties:
- For $\nu_{b}=0$: same limit on ν_{s}

- For $\nu_{\mathrm{b}}>0$: higher (i.e. worse) limit on ν_{s} than flat prior

"Modified Frequentist Approach": CLs

A Frequentist countermeasure

- Consider two hypotheses:
- H_{1} : Measured event sample contains both background and signal
- $\mathrm{d}=\mathrm{s}+\mathrm{b} \quad \rightarrow p$-value $=$ " $\mathrm{CL}_{\mathrm{s}+\mathrm{b}}$ "
- H_{0} : Measured event sample contains just background
- $d=b$, d.h. $s=0 \quad \rightarrow p$-value $=" C L_{b}{ }^{\prime \prime}$

$$
C L_{s}=\frac{C L_{s+b}}{C L_{b}}=\frac{\sum_{k=0}^{d} P(k ; s+b)}{\sum_{k=0}^{d} P(k ; b)}
$$

- CL_{s} renormalizes measured limit to the background estimate
- Quantitatively similar effect as Bayesian prior
- Make experiments with different background conditions comparable.
- CL_{s} is always bigger than $\mathrm{CL}_{\mathrm{s}+\mathrm{b}} \rightarrow$ over-coverage

Example: measurement $d=7$
1-CL $\quad \alpha=1-\int_{0}^{d} P(x \mid b) d x$

- H_{0} : expected background $\mathrm{b}=4$
- H_{1} : expected signal $\mathrm{s}=11 \longrightarrow \mathrm{~s}+\mathrm{b}=15$
$\mathrm{CL}_{b+\mathrm{s}} \quad \beta=\int_{0}^{d} P(x \mid b+s) d x$

$$
\mathrm{CL}_{\mathrm{b}+\mathrm{s}}=\int_{0}^{d} P(x \mid b+s) d x
$$

- Scan for different signal hypotheses and compare with measurement
- For Poisson-distributed $b=4$ and $d=7$:

- Upper limit on s for $C L_{s+B}=95 \%$:

$$
\mathrm{SCLs+b,95} \mathrm{\%}=8.5
$$

- Upper limit on s for CLs $=95 \%$:

Low background: similar limits on s for $\mathrm{CLs}_{\mathrm{s}+\mathrm{B}}$ and CLs

$$
\mathrm{CL}_{\mathrm{b}+\mathrm{s}}=\int_{0}^{d} P(x \mid b+s) d x
$$

- Scan for different signal hypotheses and compare with measurement
- For Poisson-distributed $b=7$ and $d=7$:

- Upper limit on s for $C L_{s+B}=95 \%$:

$$
\begin{aligned}
\mathrm{SCLs+b}, 95 \% & =5.5 \\
\mathrm{SCLs}, 95 \% & =6.6
\end{aligned}
$$

Medium background: CLs gives worse limit on s than CLs+B

$$
\mathrm{CL}_{\mathrm{b}+\mathrm{s}}=\int_{0}^{d} P(x \mid b+s) d x
$$

- Scan for different signal hypotheses and compare with measurement
- For Poisson-distributed $b=10$ and $d=7$:

- Upper limit on s for CLs+B $=95 \%$:
- Upper limit on s for $\mathrm{CLs}=95 \%$:

$$
\begin{aligned}
\text { SCLstb, } 95 \% & =2.5 \\
\text { SCLs, }, 55 \% & =5.5
\end{aligned}
$$

High background: CLs gives much worse limit on s than $C L s+B$

Confidence Intervals

Summary

- Interval in which true value lies with pre-defined confidence level.
- Frequentist (or classical) approach:
- Neyman Construction: correct coverage by construction
- Unified Frequentist approach: use likelihood ratio as ordering principle to avoid "flip-flopping" (when switching between 1 -sided and 2 -sided intervals) and empty intervals.
- Bayesian prior:
- E.g. to avoid unphysical results.
- Shape of prior has direct impact on result and coverage.
- Modified frequentist approach CLs:
- Robust method to suppress possible effects from downward fluctuations of the background.
- Price to pay: over-coverage

Profile-Likelihood Ratio

Signal Strength μ

- Likelihood in a counting experiment

$$
\mathcal{L}(\text { data } \mid \mu)=\operatorname{Poisson}(\operatorname{data} \mid \mu \cdot s+b)
$$

- Product of Poisson likelihoods to measure n_{i} events in bin i

$$
\operatorname{Poisson}(\text { data } \mid \mu \cdot s+b)=\prod_{i} \frac{\left(\mu \cdot s_{i}+b_{i}\right)^{n_{i}}}{n_{i}!} e^{-\left(\mu \cdot s_{i}+b_{i}\right)}
$$

- Signal strength μ : modifies expected signal using data
- $\mu=0$: H_{0} background only
- $\mu=1: \mathrm{H}_{1}$ expected signal

Signal Strength μ

- Likelihood in a counting experiment

$$
\mathcal{L}(\text { data } \mid \mu)=\operatorname{Poisson}(\text { data } \mid \mu \cdot s(\theta)+b(\theta))
$$

Nuisance parameters θ impact measurement of s and b
$\hat{r}=1.31 \pm 0.719$

Signal Strength μ

- Likelihood in a counting experiment

$$
\mathcal{L}(\text { data } \mid \mu)=\operatorname{Poisson}(\text { data } \mid \mu \cdot s(\theta)+b(\theta)) \cdot P D F(\theta)
$$

- $\operatorname{PDF}(\theta)$: prior knowledge from ancillary measurements used as constraints for the Frequentist likelihood of the main measurement
"Priors", i.e. PDF determined in other measurements

Profile-Likelihood Ratio

- Profile likelihood: determine the interval for the (true) signal strength μ, for optimal nuisance parameters $\hat{\theta}_{\mu}$, normalized to the global maximum of the likelihood.
- "Profile" = scan, determine q_{μ} for all μ

Profile-Likelihood Ratio

$q_{\mu}=-2 \ln \lambda(\mu)=-2 \Delta \ln \mathcal{L}$

$$
\approx \frac{(\mu-\hat{\mu})^{2}}{\sigma^{2}}
$$

- In the limit of high statistics (Wilks), q_{μ} follows X^{2}-distribution (parabola)
- Profile-likelihood distribution has all estimators:
- Best fit of μ at minimum
- 2-sided confidence interval: e.g. 68\%
- Exclusion of Null-hypothesis:
- $\mathrm{q}(\mu=0)=\mathrm{z}^{2}=(\text { Significance })^{2}$
- here: $z \sim \sqrt{ } 2.4 \approx 1.5$
- Upper limit μ_{95} :

$$
-2 \Delta \ln \mathcal{L}\left(\mu_{95}\right)=1.645^{2}=2.71
$$

Large-Sample Approximation

Higgs Discovery

History: Status December 2011

- Number of events depends on invariant mass

Excess at a mass of $\sim 124 \mathrm{GeV}$

- Blind analysis: software and all criteria were fixed before looking at the data

Higgs Discovery

Brazilian-Flag Figure

- Determine μ_{95}, i.e. signal strength excluded at $95 \% L_{s}$
- Pseudo-experiments to determine the distribution around the 95% limit for the background-only hypothesis, i.e. median and intervals for $\pm 1 \sigma$ und $\pm 2 \sigma$ around μ_{95}.

Higgs Discovery

4 July 2012

- Public announcement of the discovery at CERN

- Exclusion of signals between $131(128) \mathrm{GeV}$ and $523(600) \mathrm{GeV}$

Higgs Discovery

4 July 2012

- Public announcement of the discovery at CERN

- Determine signal significance and local p-value by comparison with background hypothesis

$$
S_{\text {ATLAS }}=5.9 \sigma
$$

Look-EIsewhere Effect

- Local p-value: probability that the excess is due to a statistical background fluctuation at a specific value of the Higgs candidate mass (or another observable)
- In global searches (e.g. over the whole mass range) the probability for a fluctuation somewhere increases with the size of the search range \rightarrow "Look-Elsewhere Effect"

$$
\text { global } p=\text { trial factor } \times \text { local } p
$$

- The trial factor is generally proportional to the range and inverse proportional to the (mass) resolution
- Determination:
- Usually by pseudo-experiments: requires a lot of CPU, because fluctuations are rare.
- Or estimate from frequency of fluctuations in data

Higgs boson mass

Summary

- Maximum Likelihood (MLE)
- Least-squares method is an important special case of MLE, for the (usually good) assumption of Gaussian behaviour
- Hypothesis testing
- Neyman-Pearson lemma: likelihood ratio is the best test statistic
- Confidence intervals:
- Frequentist Neyman construction, coverage by design
- Wilks' Theorem, asymptotic approach
- Feldman-Cousins Unified approach
- Bayesian priors
- Modified Frequentist approach: CLs method

O Profile-likelihood ratio

- Optimal separation
- Higgs discovery figures: "Brazilian-Flag" and p-value

Backup

Counting Experiment with Known Background

- Observation of n events with small signal s

$$
\begin{gathered}
P_{0}(n ; b)=\frac{1}{n!} b^{n} e^{-b} \quad P_{1}(n ; s+b)=\frac{1}{n!}(s+b)^{n} e^{-(s+b)} \\
q=-2 \ln \lambda=2\left(n \ln \left(1+\frac{s}{b}\right)-s\right)
\end{gathered}
$$

© Background b then $n=b+s$:

$$
q=2(b+s) \ln \left(1+\frac{s}{b}\right)-2 s
$$

© For $s \ll b$:

$$
\sqrt{q}=s / \sqrt{b}+\mathcal{O}\left((s / b)^{2}\right)
$$

- In Wilks' approximation: for a single degree of freedom, the significance of the signal s, expressed by the Gaussian quantile z is:

$$
z=\sqrt{\Delta \chi^{2}}=\sqrt{q}=s / \sqrt{b}
$$

1-Sided Limits and 2-Sided Intervals: Unified Approach

Example: Poisson Distribution with $\mu=4$ (95\% CL)

- Construct interval using an ordering principle, based on the likelihood ratio $R(n \mid \mu)$:

$$
R(n \mid \mu)=\frac{g(n \mid \mu)}{g\left(n \mid \mu_{\mathrm{best}}\right)} \quad \text { where } \quad g(n \mid \mu)=\frac{e^{-\mu} \mu^{n}}{n!}
$$

and $\mu_{\text {best }}=\mu$ for which $g(n \mid \mu)$ is biggest
Poisson distribution for $\mu=4$

- Calculate $R(n \mid \mu=4)$ for each measurable value of n
- R defines order of bins
- Sum up bins until in decreasing order of R until coverage is reached
- Recipe:

- Sum up values of â for decreasing values of R until $g(a) \mid a)$ reaches the chosen confidence level
- For â < 0: add contributions to the left side (no empty interval)

1-Sided Limits and 2-Sided Intervals: Unified Approach

Example: Poisson Distribution with $\mu=4$ (95\% CL)

- Construct interval using an ordering principle, based on the likelihood ratio $R(n \mid \mu)$:

$$
R(n \mid \mu)=\frac{g(n \mid \mu)}{g\left(n \mid \mu_{\mathrm{best}}\right)} \quad \text { where } \quad g(n \mid \mu)=\frac{e^{-\mu} \mu^{n}}{n!}
$$

and $\mu_{\text {best }}=\mu$ for which $\mathrm{g}(\mathrm{n} \mid \mu)$ is biggest
Poisson distribution for $\mu=4$

- Calculate $\mathrm{R}(\mathrm{n} \mid \mu=4$	n	$R(n \mid \mu)$	$g(n \mid \mu)$	$\sum g$
- R defines order of	4	1.000	0.195	0.195
R defines order of	5	0.891	0.156	0.352
- Sum up bins until i	3	0.872	0.195	0.547
coverage is reache	6	0.649	0.104	0.651
	2	0.541	0.147	0.798
	7	0.400	0.060	0.857
	8	0.213	0.030	0.887
- Result:	1	0.199	0.073	0.960

- Confidence interval [1,8] provides coverage of 96%
- More complex distributions \rightarrow more computing

