
TTF2-s2e→dogleg→

ASTRA-Generator

ASTRA

- → see http://www.desy.de/xfel-beam/s2e/ttf2_v2.html
- → see http://www.desy.de/xfel-beam/s2e/ttf2_v2.html

= case 4ps gaussian laser, no 3.9 GHz cavity (E. Schneidmiller proposal)

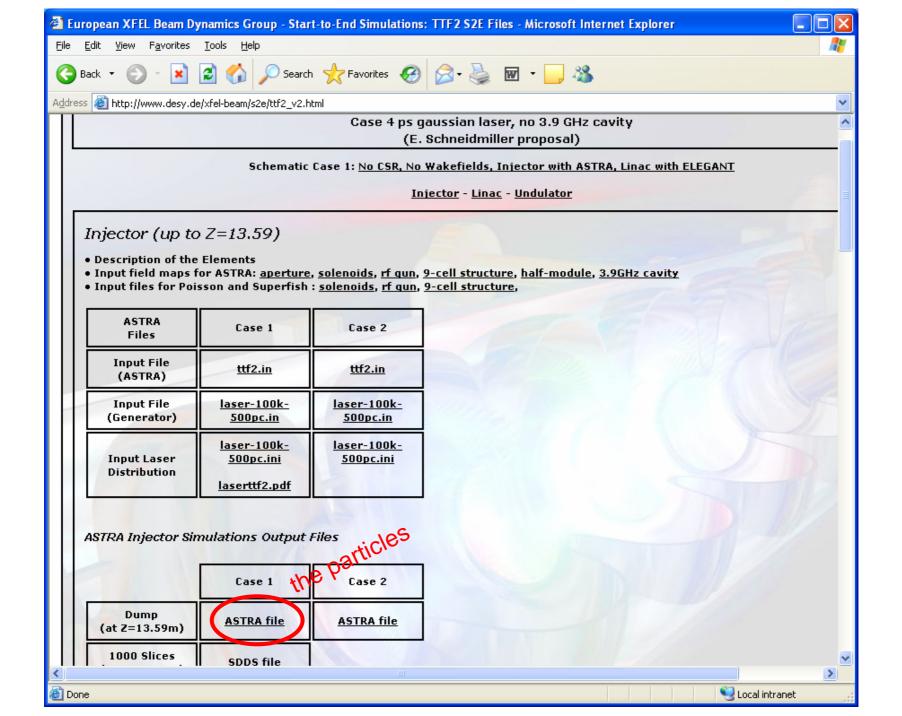
convert to CSRtrack; add wake

CSRtrack ($E_{ref} = 124.425 \text{ MeV}, r_{56} = 17.29 \text{ cm}$)

convert to ASTRA

ASTRA

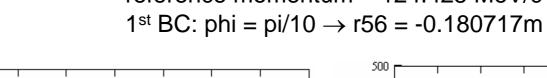
convert to CSRtrack; add wake

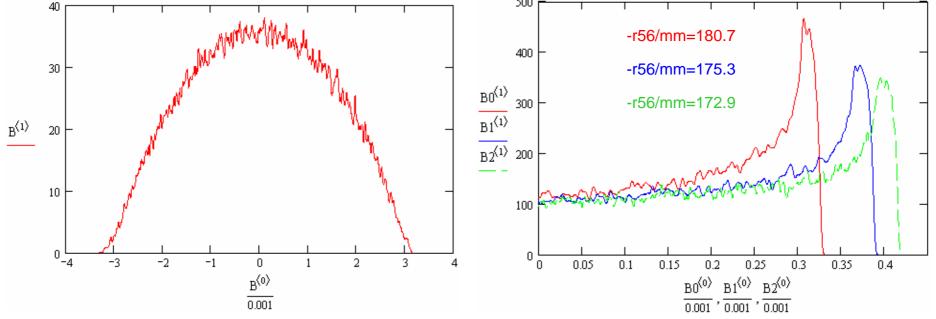

CSRtrack (Eref = 380 MeV, r56 = 10.0 cm)

convert to ASTRA

ASTRA

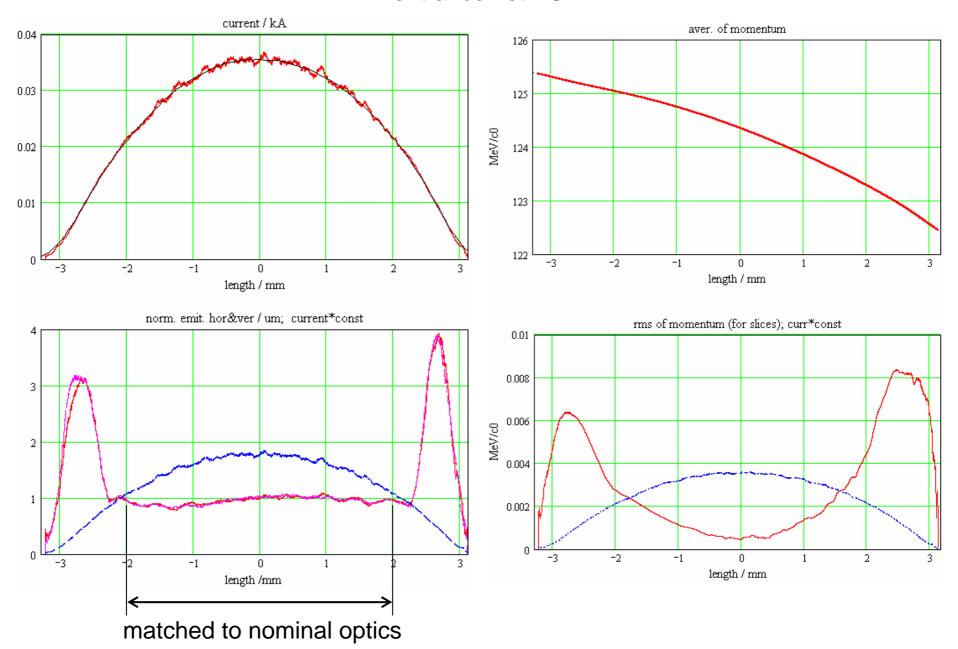
convert to CSRtrack; add wake

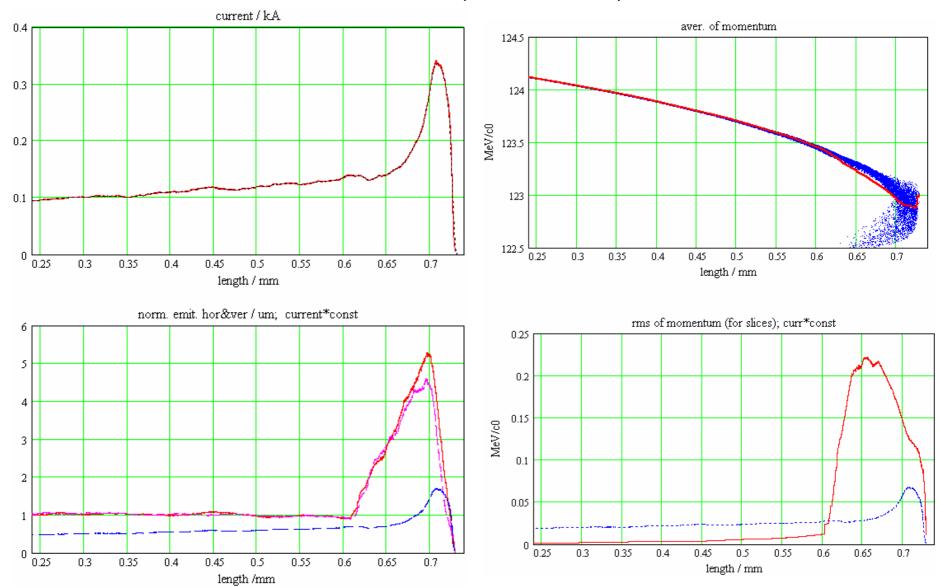

CSRtrack (Eref =, r56 = 0.47 mm)



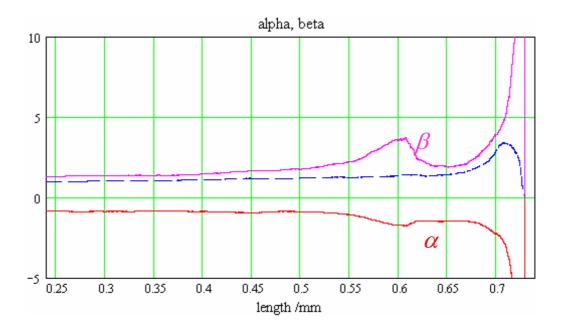
r56 of 1st BC (no CSR)

from Elegant file:

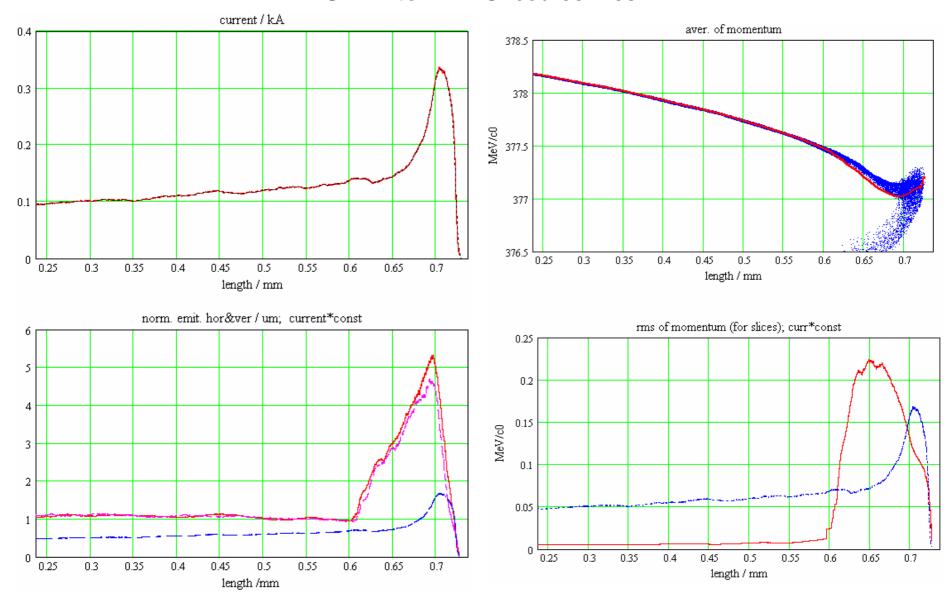

reference momentum = 124.425 MeV/c



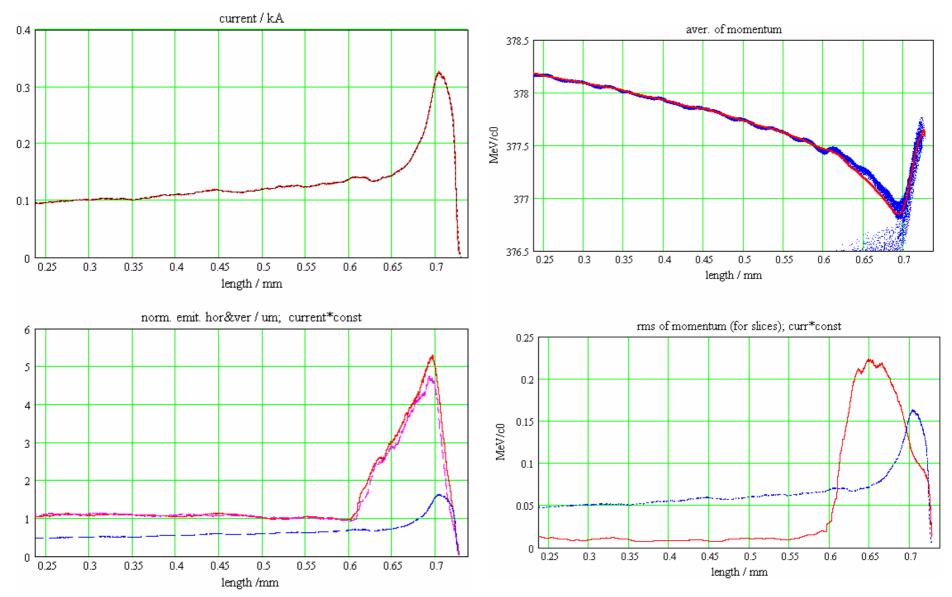
the following simualtions: reference momentum = 124.425 MeV/c r56 := -0.172899m


entrance 1st BC

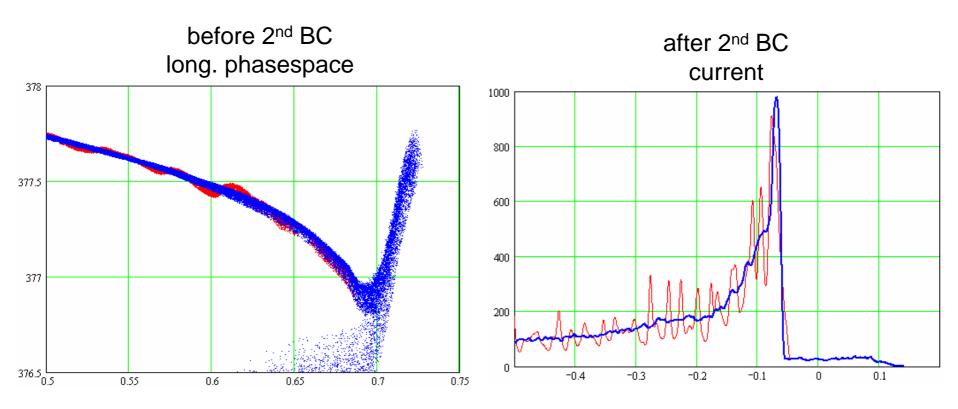
after 1st **BC** (r56=-0.1729m)



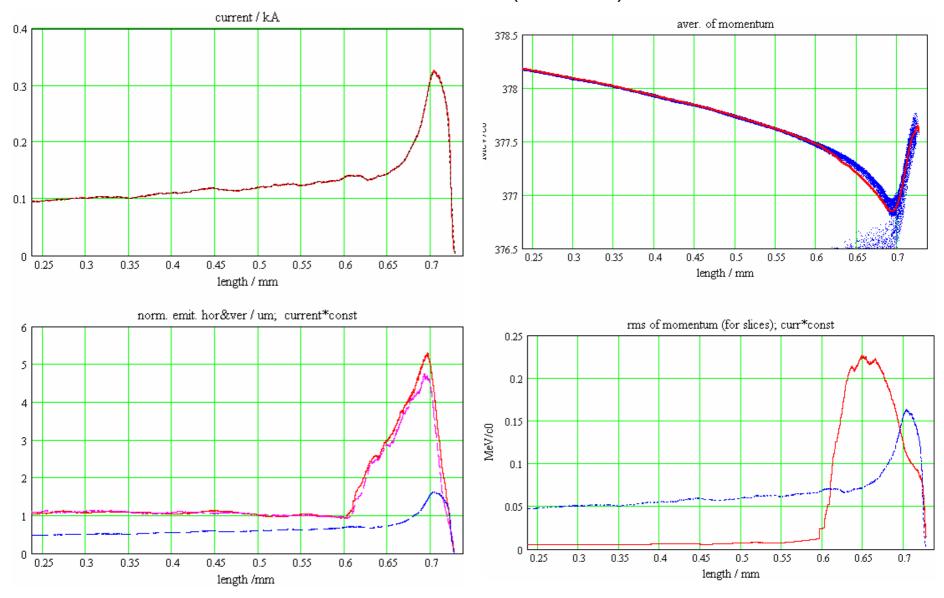
after 1st **BC** (r56=-0.1729m)

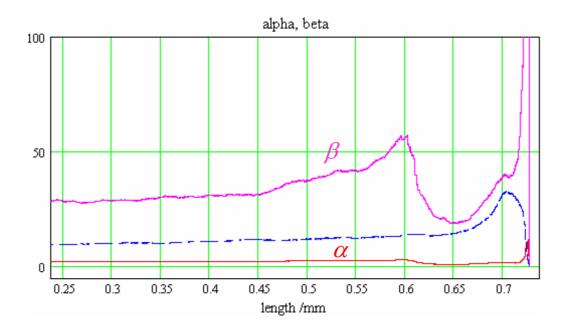



```
Nina; D4BC2 + 1m drift
alpha=-0.17 -1.3
beta=0.93m 2.4
(ttf2-bc2-bc3-op1)
```


ASTRA to 2nd BC: course mesh

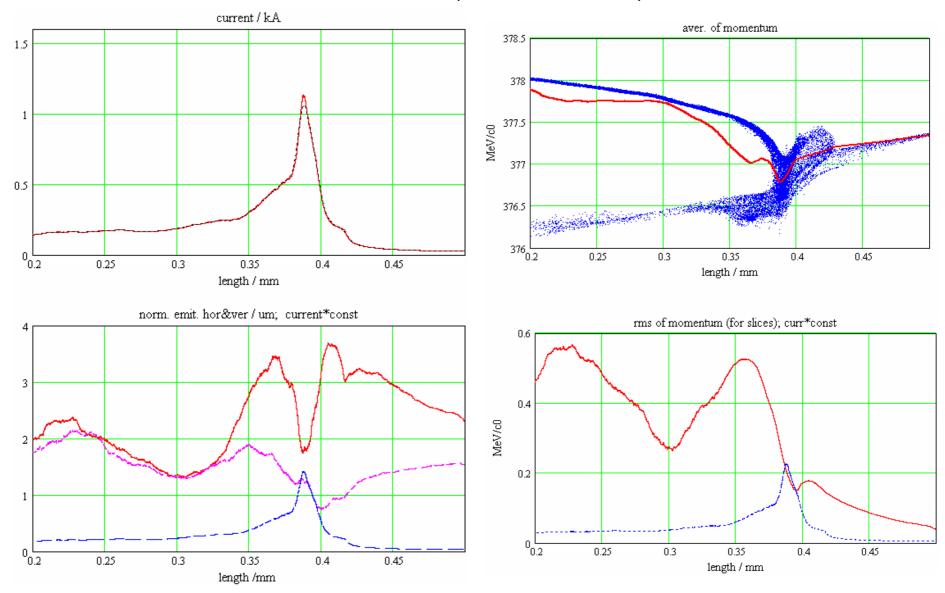
ASTRA to 2nd BC: fine mesh


a mixture

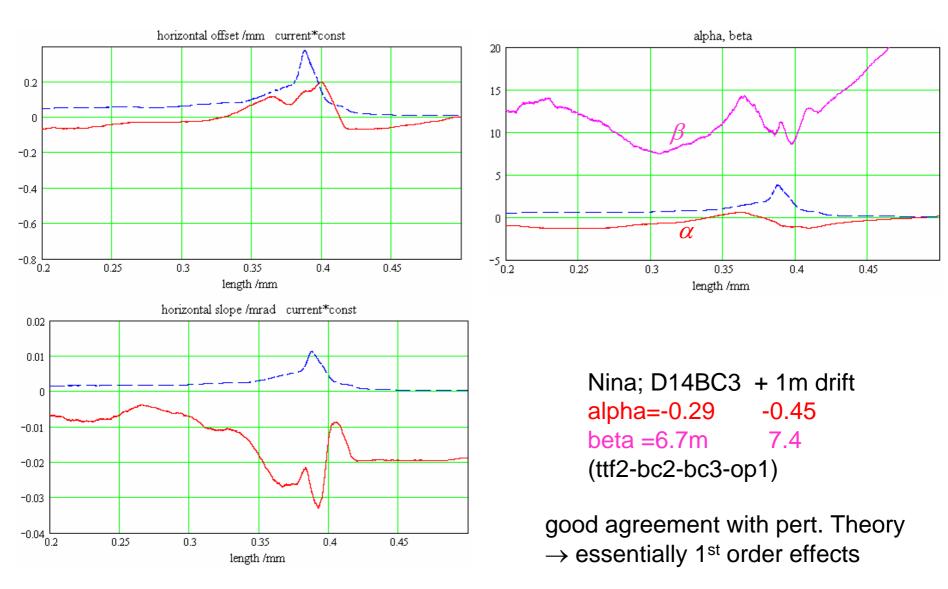

fine mesh "mixture" course-fine mesh

better method: ASTRA merge option, Klaus Floettmann 21. October

entrance 2nd BC (a mixture)

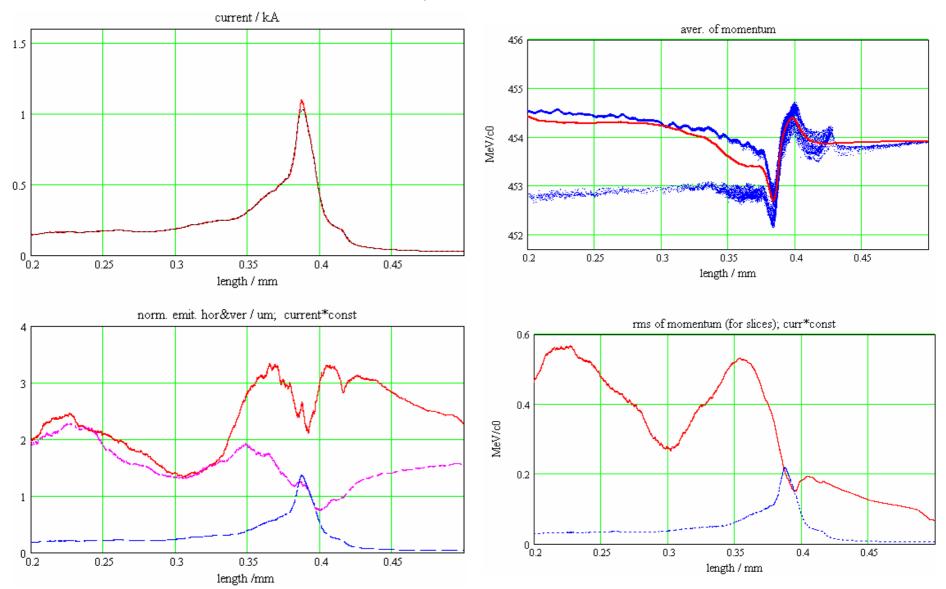


entrance 2nd BC (a mixture)



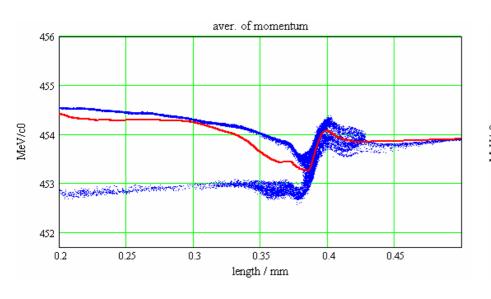
Nina; D00982 alpha=2.0 beta=30.6m (ttf2-bc2-bc3-op1)

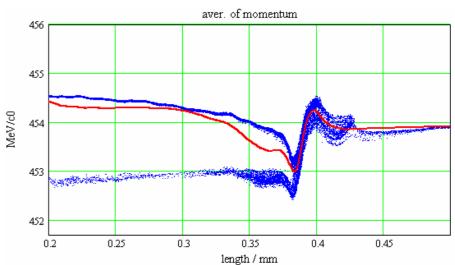
after 2nd **BC** (r56=-0.099369m)



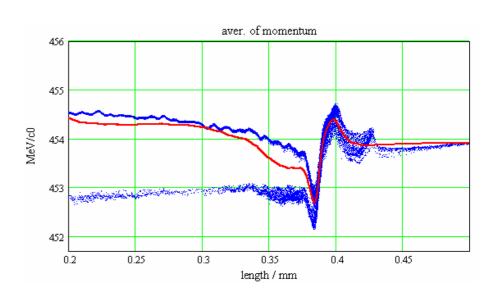
after 2nd BC (r56=-0.099369m)

centroid offsets extracted for further calculations!

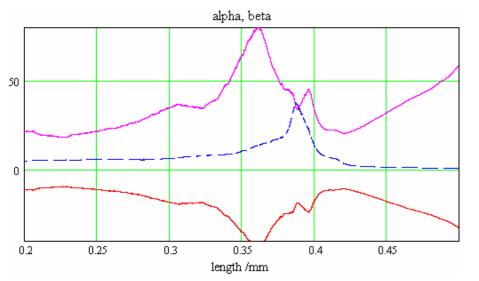

at 155m, 900 z-meshlines

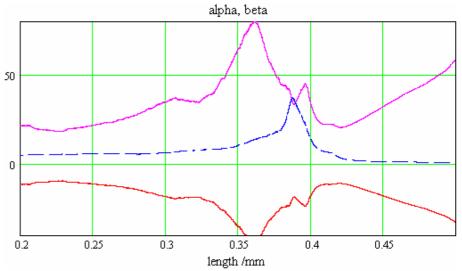


careful convergence test still missing, but:


at 155m, 300 z-meshlines

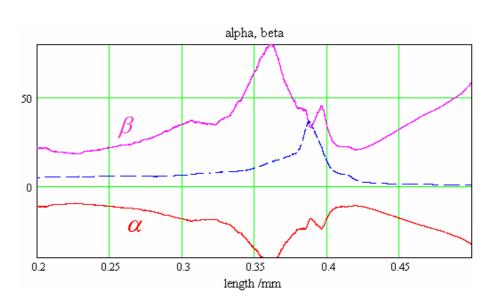
at 155m, 500 z-meshlines



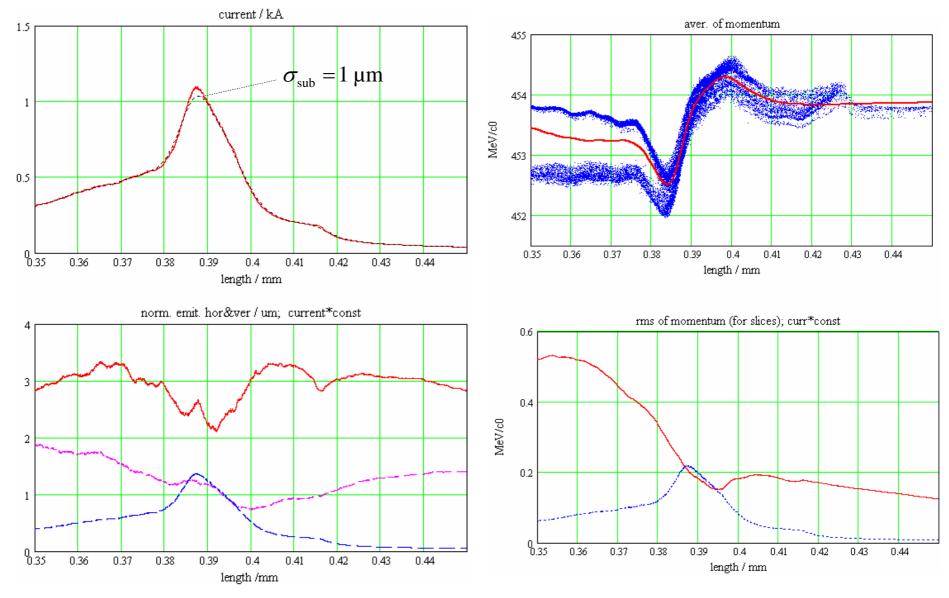

at 155m, 900 z-meshlines

at 155m, 300 z-meshlines

at 155m, 500 z-meshlines

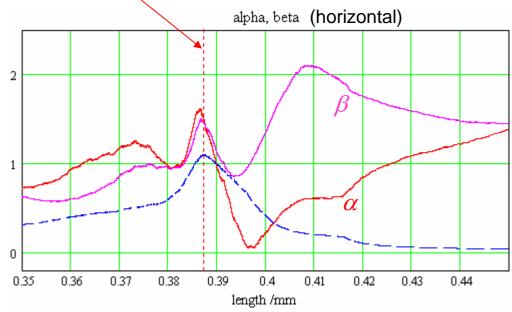


at 155m, 900 z-meshlines

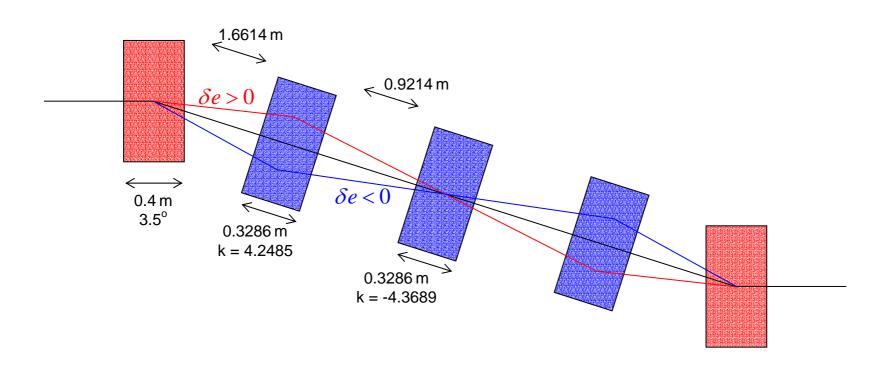

Nina; ??? (→ 141.505m) alpha=??? beta =???m (ttf2-bc2-bc3-op1)

wrong optic in ASTRA file ???

→ matching to "design" values at entrance of dogleg

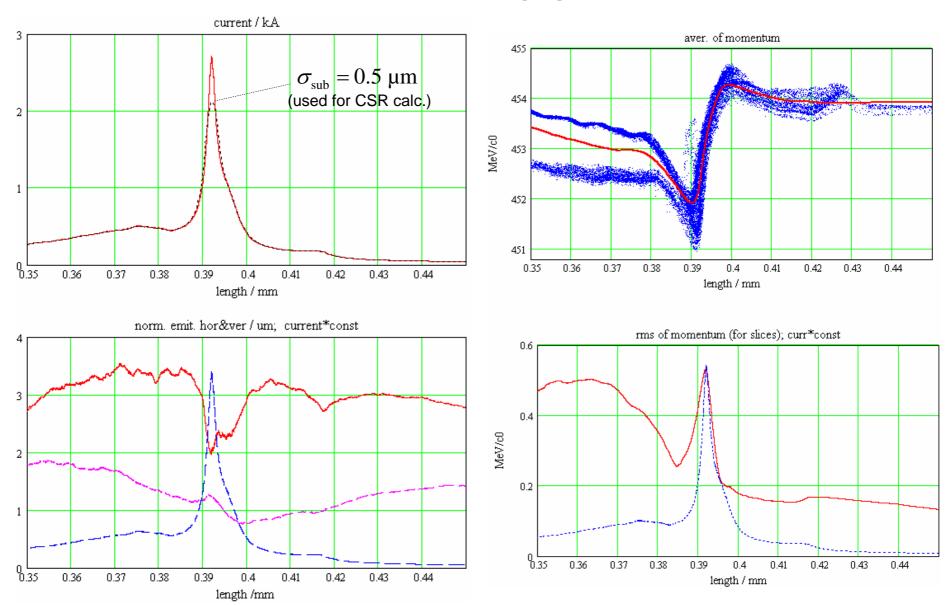


entrance of dogleg: 900 z-meshlines, + Wakes (2 x module+LOLA) + matching



	ELEMENT S	EOUENCI	 г т				 z o n t						VERTICAL						
pos. no.	element	_	dist I [m] I	betax [m]	alfax [1]	mux [2pi]	x(co) [mm]		Dx [m]	Dpx]	betay [m]	alfay [1]	muy [2pi]	y(co) [mm]	ру(со) [.001]	Dу [m]	Dpy [1]		
604 end	D0100A Q9TCOLO0	18) 1	138.529 138.529	2.695 2.695	2.204 2.204	2.208 2.208	0.0000	0.000		0.000		8.673 8.673	2.285 2.285	0.0000	0.000		0.000		
607 618 619	DOGLEG D1ECOL D0075B Q3ECOL	1 1 1	138.884 139.284 140.946 141.274	4.763 4.546		2.237 2.308 2.590 2.600	0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000	0.012 0.114 0.107	0.000 0.061 0.061	11.410 0.340 0.581	0.431 -1.274	2.288 2.292 2.452 2.599	0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000	0.000	0.000 0.000 0.000		
626 634 635 643	DOO75B Q4ECOL DOO75B Q5ECOL DO220 D7ECOL	3 1 5 1	142.196 142.524 143.446 143.774 145.436 145.837	4.527 4.745 0.604	-0.755 -3.607	2.704 2.827 2.931 2.941 3.222 3.293	0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000	-0.016 -0.107 -0.114 -0.012	'-0.099 0.061	7.008 1.071 0.636 5.437	-5.434 4.807 1.638 -0.120 -2.769 -3.336	2.676 2.683 2.738 2.808 2.984 2.994	0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000	0.000	0.000		

dogleg (without sextupoles)



$$r_{56} = 0.468 \text{ mm}$$

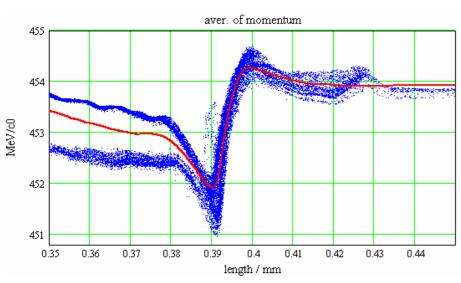
 $t_{566} = 54.8 \text{ mm}$

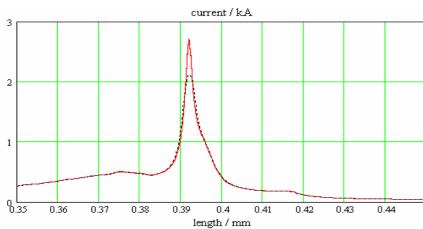
with sextupoles (not used in CSRtrack):

$$r_{56} = 0.468 \text{ mm}$$

 $t_{566} = 17.8 \text{ mm}$

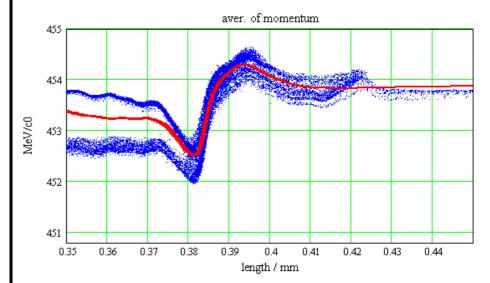
1m after dogleg

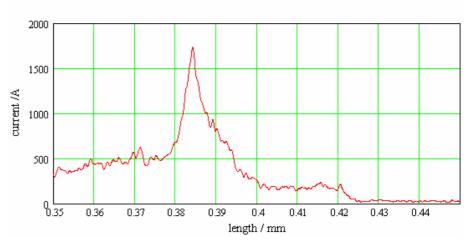


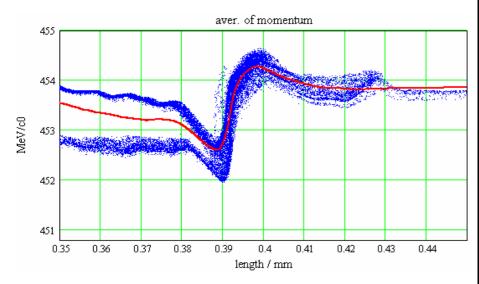

1m after dogleg

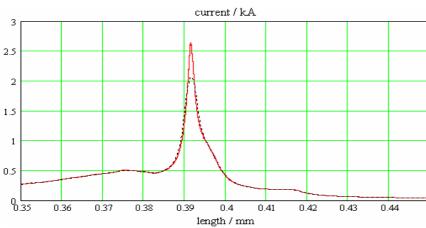
	ELEMENT S	EQUENC	E I		F	HORI	Z O N T	A L			I			V E R T	I C A L			
os.	element	occ.	dist I		alfax							betay		_	у(co)		DУ	Dpy
10.	name	no.	[m] I	[m]	[1]	[2pi] 	[mm] 	[.001]	[m]	[1]	I	[m] 	[1]	[2pi]	[mm] 	[.001]	[m]	[1]
	D0100A	18	138.529		2.204	2.208		0.000					8.673		0.0000	0.000		0.000
end	Q9TCOLOC	1	138.529	2.695	2.204	2.208	0.0000	0.000	0.00	0.0	JUU	22.586	8.673	2.285	0.0000	0.000	0.000	0.000
egin	DOGLEG	1	138.884	1.404	1.432	2.237	0.0000	0.000	0.00	0.0	000	16.853	7.475	2.288	0.0000	0.000	0.000	0.000
607	D1ECOL	1	139.284	0.603	0.561	2.308	0.0000	0.000	0.0	12 0.0	061	11.410	6.231	2.292	0.0000	0.000	0.000	0.000
618	D0075B	1	140.946	4.763	-3.064	2.590	0.0000	0.000	0.1	14 0.0	061	0.340	0.431	2.452	0.0000	0.000	0.000	0.000
619	Q3ECOL	1	141.274	4.546	3.620	2.600	0.0000	0.000	0.10	0.0-7	199	0.581	-1.274	2.599	0.0000	0.000	0.000	0.000
	D0075B	3	142.196		0.761	2.704	0.0000	0.000	0.0	16-0.0	199		-5.434	2.676	0.0000	0.000	0.000	0.000
	Q4ECOL	1	142.524		-0.755	2.827	0.0000	0.000				7.008	4.807	2.683	0.0000	0.000	0.000	0.000
	D0075B	5	143.446		-3.607	2.931		0.000					1.638	2.738	0.0000	0.000		0.000
	Q5ECOL	1	143.774		3.050	2.941	0.0000	0.000					-0.120	2.808	0.0000	0.000		0.000
	D0220	1	145.436		-0.558	3.222	0.0000	0.000					2.769	2.984	0.0000	0.000		0.000
644	D7ECOL	1	145.837	1.401	-1.425	3.293	0.0000	0.000	0.00	0.0	000	7.861	-3.336	2.994	0.0000	0.000	0.000	0.000
			alpha, beta															
				6.414		(***						,\~				
													\rightarrow $/$			\setminus		
							1	.0						β				
									Ш.				_ //	U				-
									_				M					
								_ L			L _		_//\~					
								0 = =										
								•						α				
													\ \ \					
													- I I \					
													\			/		
							-1	0.35	0.36	0.3	.37	0.38	0.39	0.4	0.41	0.42	0.43	0.44
													1en	gth /mm				
													202					

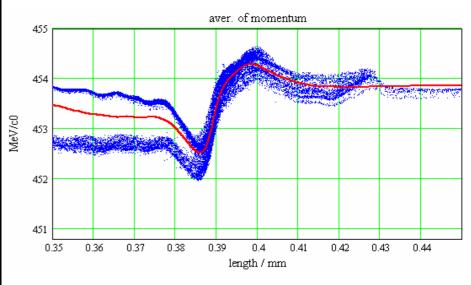
compression in dogleg much stronger than expected by r56!?

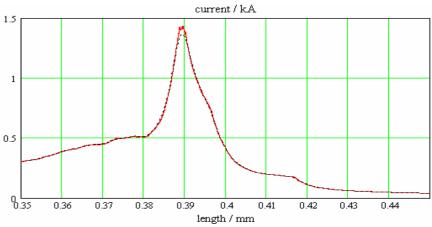


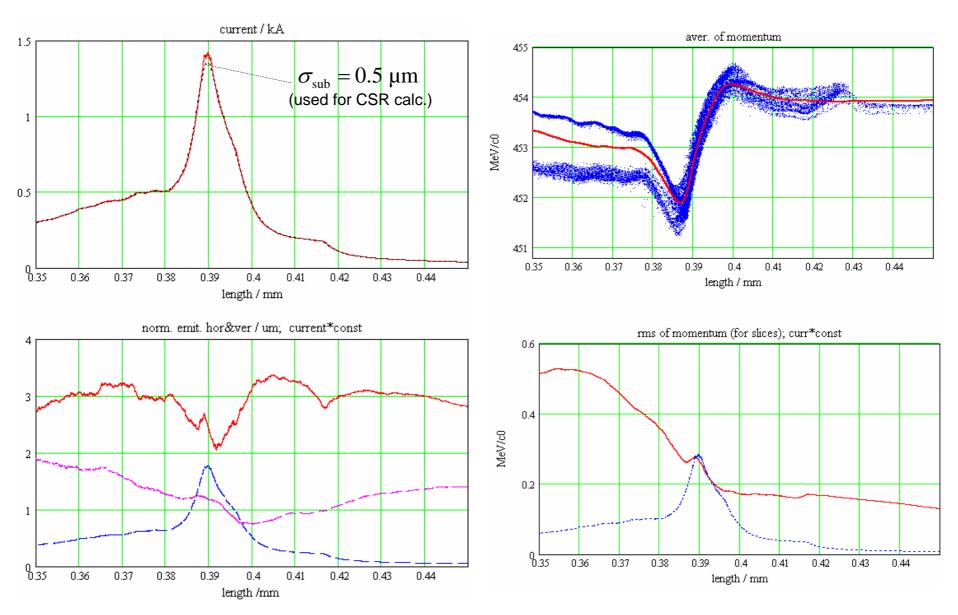



<u>just r56:</u>

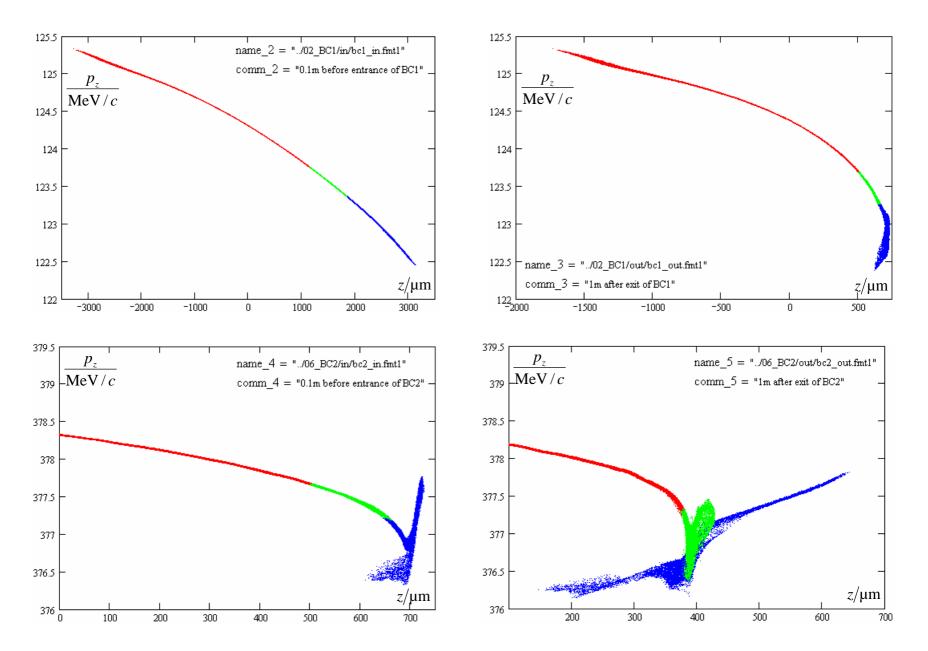

$$\begin{split} \text{r56} \coloneqq 0.0005 & k \coloneqq 0... \, \text{rows}(\text{xxs}) - 1 & \text{z2}_k \coloneqq \text{xxs}_{k,4} - \text{r56} \cdot \text{xxs}_{k,5} \\ & \text{C} \coloneqq \text{s_to_cur}\Big(\text{z2}, 0.25 \cdot 10^{-6}, 0.5 \cdot 10^{-9}, 3 \cdot 10^{8}\Big) \end{split}$$

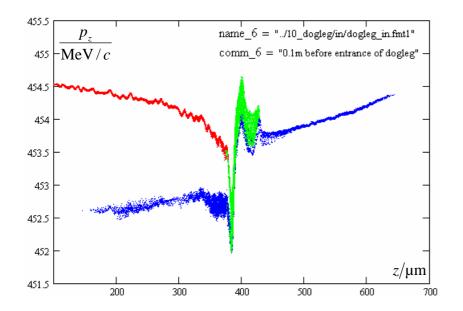


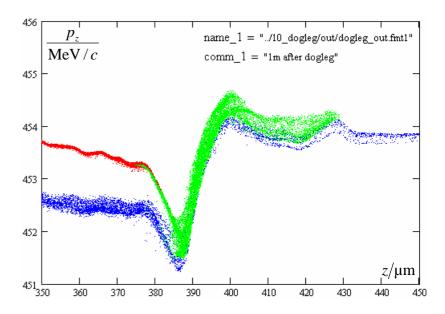

CSRtrack, without force reference energy = 450 MeV



CSRtrack, without force reference energy = 453.5 MeV

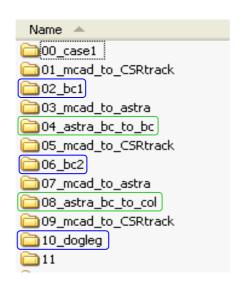

1m after dogleg, ref. energy = 453.5 MeV

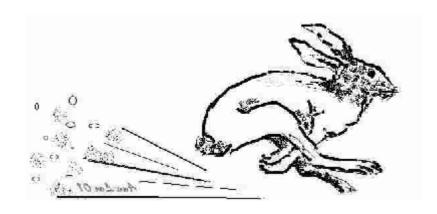



1m after dogleg

ELEMENT SEQUENCE I HORIZOI						Z O N T	A L			I		VERTICAL					
	element		dist I		alfax	mux		px(co)		Dpx			muy	y(co)	ру(со)	Dy	Dpy
no. 	name 	no.	[m] I	[m] 	[1]	[2pi] 	[mm] 	[.001] 	[m] 	[1] 	I [m]	[1]	[2pi] 	[mm]	[.001]	[m] 	[1]
604	D0100A	18	138.529	2.695	2.204	2.208	0.0000	0.000	0.00	0 0.00	00 22.58	6 8.673	2.285	0.0000	0.000	0.000	0.000
nd	Q9TCOLO0	0 1	138.529	2.695	2.204	2.208	0.0000	0.000	0.00	0 0.00	00 22.58	8.673	2.285	0.0000	0.000	0.000	0.000
egin	DOGLEG	1	138.884	1.404	1.432	2.237	0.0000	0.000	0.00	0.00	0 16.89	3 7.475	2.288	0.0000	0.000	0.000	0.000
	D1ECOL	1	139.284	0.603		2.308	0.0000	0.000		2 0.06		.0 6.231	2.292	0.0000	0.000	0.000	0.000
	D0075B	1	140.946		-3.064	2.590	0.0000	0.000		4 0.06		0.431	2.452	0.0000	0.000	0.000	
	Q3ECOL	1	141.274		3.620	2.600	0.0000			7-0.09		1 -1.274	2.599	0.0000	0.000	0.000	
	D0075B	3	142.196	0.509		2.704	0.0000	0.000		6-0.09		2 -5.434	2.676	0.0000	0.000	0.000	
	Q4ECOL	1	142.524		-0.755	2.827	0.0000					8 4.807	2.683	0.0000	0.000	0.000	
	D0075B	5	143.446		-3.607	2.931	0.0000	0.000				1.638	2.738	0.0000	0.000	0.000	
	Q5ECOL	1	143.774		3.050	2.941	0.0000					6 -0.120	2.808	0.0000	0.000	0.000	
	DO220 D7ECOL	1 1	145.436 145.837	1.401	-0.558	3.222	0.0000					7 -2.7 69 1 -3.336	2.984	0.0000	0.000	0.000	
• • • •	2.2002	-	110.00	11.01		, 0.250	0.0000	0.000	0.00				,	0.0000	0.000	0.000	
				\downarrow	1m drift	t											
				6.414	-3.58	8		alpha, beta									
				0.111	3.30	\leftarrow		20					~~~				
												\longrightarrow		β			
												.	/ / /		1		
												/I\	/				
								10				$i \rightarrow$					
								10		_		1 /	X I				-
								- 1		· •	L I	_ / V	N 1				
													\ \				
								0				$\stackrel{\sim}{+}$					
								0									
								0					α	~			
								0					α	~			
													α	~			
								0	0.36	· · · · · · · · · · · · · · · · ·	37 0.3	8 0.39	α 0.4	0.41	0.42	0.43	0.

particles in color





conclusion, experiences

- s2e is lengthy procedure: 4 x ASTRA (including GUN + after dogleg)
 3 x CSRtrack
 6 x conversion and/or wakes
- dogleg to undulator + Genesis still missing
- convergence test
- automatization
- improved ASTRA mesh; (but not user-friendly)
- low energy (450MeV): SC effects before dogleg are important
- compression in dogleg touchy; sextupoles should be considered

