CSR Effects in Collimator and Beamlines TD1, TD20

1 Geometry

2 CSRtrack calculation for ideal gaussian bunch

- 2.1 Collimator
- 2.2 TD1
- 2.3 TD20
- 3 Attempts to avoid/reduce longitudinal effects
 - 3.1 Shielding
 - 3.2 Magnet lengths and splitted arcs
 - 3.3 In principle
- 4 Realistic model for longitudinal phase space + collimator impedance model (from database)
 - 4.1 1D simulation
 - 4.2 Collimator {impedance model, CSRtrack with distributed imp.} 4.3 TD1 and TD20
- 5 Summary / Conclusion

1 Geometry

2 CSRtrack calculation for ideal gaussian bunch ($\varepsilon = 1 \mu m$)

Collimator	emittance growth <1 %, energy spread 2.6 MeV
TD1	emittance growth 40 %, energy spread 2.0 MeV
TDOO	a_{1}

- TD20 emittance growth 41 %, energy spread 3.5 MeV, compression effects
- 3 Attempts to avoid/reduce longitudinal effects no shielding effects can be used weak influence of magnet length on rms energy spread

4 Realistic model for longitudinal phase space + collimator impedance model after BC2 energy spread 2.9 MeV after collimator energy spread 15.2 MeV emittance growth ≈ 8 % significant (non-CSR collimator impedance) → 12 MeV rms spread after colli+TD1 energy spread 15.2 MeV emittance growth 27 % ** after colli+TD20 over-compression due to uncompensated r56

it is difficult to avoid CSR induced energy spread

emittance growth due to centroid shift can be controlled / compensated

2 CSRtrack calculation for ideal gaussian bunch

2.1 Collimator

XFEL collimation section, mode A

self effects, 1d CSR model centroid properties of a gaussian bunch 1nC, Ipeak=5kA no chirp

XFEL collimation section, mode A

self effects, 1d CSR model centroid properties of a gaussian bunch 1nC, Ipeak=5kA no chirp

2.2 TD1

self effects, 1d CSR model centroid properties of a gaussian bunch 1nC, Ipeak=5kA no chirp

2.3 TD20

TD20; L = 147.62 m ϕ = 6.68 deg

TD20

-5-10⁶

-1 ·10⁷

 2.10^{5}

-2.10⁵

-4.10⁵ 0

-5.10-5

-1.10-4

-1.5.10-4

-2.10-4

Ω

0

20

20

horizontal offset (m)

20

40

40

40

60

80

self effects, 1d CSR model centroid properties of a gaussian bunch 1nC, Ipeak=5kA no chirp energy deviation (eV) 5~10⁶ center+ σ £ center+ σ center $-\sigma$ -5.10⁶ energy deviation (eV) center center $-\sigma$ 60 80 100 120 140 center -1.10^{7} 1.10^{-4} 5.10 0 longitud. bunch coordinate (m) horizontal offset (m) longitudinal field (V/m) 6.10 80 100 120 60 140 longitud. lattice coordinate (m) 4.10^{-5} 2.10^{-5}

 -2.10^{-5}

0

120

140

100

 $5 \cdot 10^{-5}$

 1.10^{-4}

self effects, 1d CSR model centroid properties of a gaussian bunch 1nC, Ipeak=5kA no initial chirp

3 Attempts to avoid/reduce longitudinal effects 3.1 Shielding

3.2 Magnet lengths and splitted arcs

magnet lengths and splitted arcs

shielding by horizontal planes

circular motion: shielding parameter x << 3

transients: shielding by dispersion in waveguide

$$\frac{L}{v_{\rm ph}(\omega_{\rm rms})} - \frac{L}{c} \gg \frac{\sigma}{c}$$

$$L \gg \frac{2}{\sigma} \left(\frac{c}{\omega_{\rm cutoff}}\right)^2 \qquad L \gg \frac{2}{\pi^2} \frac{h^2}{\sigma} \qquad h \approx 40 \text{ mm} \rightarrow L \gg 26 \text{ m}$$

remark: kicker R = 1 cm

shielding by horizontal obstacles

transient (exit, case 'long magnet", β =1)

steady state and transient longitudinal CSR field

rough estimation for energy loss or energy spread

steady state in arc
$$|E| \propto E_c = \frac{1}{\pi} \frac{Z_0 \hat{I}}{L_o}$$

asymptotic after arc
$$E \approx -\frac{1}{2\pi} \frac{Z_0 I(s)}{(0.5L_o + \Delta S)}$$

$$E = \int_{0}^{L_{\text{bend}} + \Delta S} E_c \left(L_{\text{bend}} + 0.5L_0 \ln(1 + 2\Delta S/L_o) \right) \text{ with } L_o = \sqrt[3]{24R_{\text{bend}}^2\sigma}$$

$$\varphi_{\text{bend}} = \frac{L_{\text{bend}}}{R_{\text{bend}}}$$

$$\begin{split} \Delta S = \min \big\{ \, \sigma/(1-\beta), \\ & \text{shielding length,} \\ & \text{next element} \big\} \end{split}$$

$$E \propto \frac{Z_0 \hat{I}}{2\pi} \left(\varphi_{\text{bend}} \sqrt[3]{\frac{R_{\text{bend}}}{3\sigma}} + \ln \left(1 + \frac{\Delta S}{\sqrt[3]{3R_{\text{bend}}^2\sigma}} \right) \right)$$

example: (CSRtrack – projected) rms energy spread for bend + drift ($I_{peak} = 5 \text{ kA}, \sigma = 12.5 \mu \text{m}$)

example: (CSRtrack – projected) L = 100 m ϕ = 3.00 deg long weak magnet \rightarrow many short strong magnets

 $E_{\rm rms}$ /MeV = 1.854, 1.631, 1.323, 1.233, 1.305

4 Realistic model for longitudinal phase space + collimator impedance model (from database)

cavity wake 1D-CSR space charge

cavity wake space charge

1D-CSR in collimator

main LINAC

cavity wakes + SC

100 modules

new design "3BC" (V0)

reduced remaining chirp cavity wakes + SC

84 modules

$\mathbf{L} = 180 \text{ m}$

collimator

main LINAC

collimator – impedance budget (Olga Zagorodnova)

Impedance budget

Section	El. type	Num.	Loss (kV/nC)	%	Spread(kV/nC)	%	Peak(kV/nC)	%
CL								
	PUMCL	78	5.75E+02	2	2.18E +02	2	7.66E+02	2
	PIP20	1	4.54E+03	19	4.32E +03	38	9.26E+03	25
	KICK	4	4.61E+03	20	1.87E +03	17	6.78E+03	18
	FLANG	500	1.36E+03	6	5.16E +02	5	1.82E+03	5
	COLL	4	5.20E+03	22	2.69E +03	24	8.69E+03	23
	BPMCL	12	7.16E+03	31	2.73E +03	24	1.11E+04	30
			2.35E+04	100	1.12E +04	100	3.75E+04	100
			2.35E+04	100 (1.12E +04	100	3.75E+04	100
			rms ener	gy s	spread \approx 11.	2 N	leV	
	nessimi	istic e	stimation					
BPMCL = 12 cavity BPMs KICK = 4 kickers (4x10m, r=1cm, κ =2E6 S/m)								

CSRtrack calculation with distributed collimator impedance

The

only collimator 12 MeV

CSRtrack calculation with distributed collimator impedance

1D-CSR, no other impedances

collimator

collimator & TD1

2 CSRtrack calculation for ideal gaussian bunch ($\varepsilon = 1 \mu m$)

Collimator	emittance growth <1 %, energy spread 2.6 MeV
TD1	emittance growth 40 %, energy spread 2.0 MeV
TDOO	a_{1}

- TD20 emittance growth 41 %, energy spread 3.5 MeV, compression effects
- 3 Attempts to avoid/reduce longitudinal effects no shielding effects can be used weak influence of magnet length on rms energy spread

4 Realistic model for longitudinal phase space + collimator impedance model after BC2 energy spread 2.9 MeV after collimator energy spread 15.2 MeV emittance growth ≈ 8 % significant (non-CSR collimator impedance) → 12 MeV rms spread after colli+TD1 energy spread 15.2 MeV emittance growth 27 % ** after colli+TD20 over-compression due to uncompensated r56

it is difficult to avoid CSR induced energy spread

emittance growth due to centroid shift can be controlled / compensated

