DOE laser beam shaping at XFEL

On the Generation of Spatial Flat-Top Laser Spots

and the Influence of Optical Errors on the Beam Dynamics

DESY/TEMF Meeting, Spring 2018

TEMF, Darmstadt, 8.6.2018

Optical Setup: <u>Steffen Schmid</u> (TEMF), Sebastian Pumpe (DESY)

Beam Simulations: Martin Dohlus (DESY)

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

DOE laser beam shaping at XFEL

On the Generation of Spatial Flat-Top Laser Spots

and the Influence of Optical Errors on the Beam Dynamics

Optical Setup

Steffen Schmid (TEMF), Sebastian Pumpe (DESY)

Beam Simulations: Martin Dohlus (DESY)

Laser Beam of the XFEL-Photogun

PITZ / XFEL-Photogun

(Image source: R. Martin, Master thesis, Institute of Physics, HU Berlin, 2013)

Spatial Laser Spot Profile

(Image source: M. Krasilnikov, et al., FEL2013, New York)

⇒ Spatial flat-top profile of laser spot on cathode needed

Two Possibilities:

"Old": Beam Shaping Aperture (BSA) "New": Diffractive Optical Elements (DOE)

"Old Method" - BSA (≡ Optical Imaging of an Aperture)

+ Robust against deviations of input beam quality

- Sophisticated imaging system needed
- Smaller spot sizes require larger optics
- 98% of laser intensity gets lost (leads to further problems)

DESY. Original slide by Sebastian Pumpe, edited by Steffen Schmid

DESY. Original slide by Sebastian Pumpe, edited by Steffen Schmid

Phase Offset $\Delta \phi$

+ "Simple" imaging system

"New Method" - DOE

- + Smaller spot sizes (< 50 μm) possible
- + Only $\sim 3\%$ of laser intensity gets lost (increases setup stability)
- Sensitive on input beam quality

DESY. Original slide by Sebastian Pumpe, edited by Steffen Schmid

BSA and DOE spatial shaping at XFEL

A: BSA

Efficiency: 10 %

Wavelength dependence of DOE

XFEL Laser 1: 257 nm XFEL Laser 2: 266 nm

Measured transverse Profiles und Ideal Pencil Profiles

DOE

BSA

DESY. Slide by Martin Dohlus

Measured transverse Profiles and Ideal Pencil Profiles

Summary: Optical Setup

- Laser output to cathode transmission efficiency *T* increased
 - ⇒ Beam Shaping Aperture (BSA): T = 10%Diffractive Optical Element (DOE): T = 94%
 - \Rightarrow Investigate long-term stability of DOE system

• Laser used for measurements (266nm) \neq DOE design (257nm)

- ⇒ Clipped 0th order peak in DOE spot intensity map
- \Rightarrow Repeat measurements with $\lambda_{laser} = 257 \text{nm}$

• BSA & DOE laser spots are both elliptical

⇒ Effect of optics downstream of beam shaping setup

DOE laser beam shaping at XFEL

On the Generation of Spatial Flat-Top Laser Spots

and the Influence of Optical Errors on the Beam Dynamics

Optical Setup <u>Steffen Schmid</u> (TEMF), Sebastian Pumpe (DESY)

Beam Simulations

Martin Dohlus (DESY)

Gun Simulation with Krack

Krack is an implementation of a Poisson solver (approach 2 or EB-method); it uses binning of the charge to an equidistant grid and the convolution with a kernel function (charged cuboids)

the start distribution is Gaussian in time (6.65 psec rms) and according to the measured profiles in the transverse dimension; simulations have been done with 250 pC, 400 pC and 500 pC with 1E6 particles

the transverse resolution is $0.07\sigma_t$; all external fields (gun, solenoid and 8 tesla cavities) have rz-symmetry; the distribution is tracked from the cathode to the exit of the last cavity of ACC1;

the injection is calculated with 500 time steps and a longitudinal resolution better than 10 μ m by a 2nd order RK-integrator; the rest is calculated with a longitudinal resolution of $0.05\sigma_{r}$ by a 5th order RK-integrator

the gun-phase and solenoid strength are optimized for minimal projected emittance after ACC1; criterion $\varepsilon_{x,n}\varepsilon_{x,n} = \min$

Overview: Simulation of 250 pC from Cathode through ACC1 to Z=14.2 m

Overview: Simulation of 500 pC from Cathode through ACC1 to Z=14.2 m

DESY.

power gain length

$$L_{g} = 1.18 \sqrt{\frac{I_{A}}{I_{\text{peak}}}} \frac{\left(\varepsilon_{n}\lambda_{w}\right)^{5/6}}{\lambda_{l}^{2/3}} \frac{\left(1 + \frac{K^{2}}{2}\right)^{1/3}}{KA_{JJ}} \left(1 + \delta\left(\sigma_{\gamma}, L\right)\right)$$

(assuming optimal beta function)

$$f = \frac{\left(\varepsilon_{x,s}\varepsilon_{y,s}\right)^{5/12}}{\sqrt{I_{\text{peak}}}} \frac{\sqrt{A}}{\left(\mu m\right)^{5/6}}$$

250 pC	C_20180421	(DOE) f =	0.2038
	C_20180422	(BSA)	0.1729
	pencil_1		0.1183
	pencil_2		0.1181

Z=14.2m

400 pC	C_20180421	(DOE) f =	0.1830
	C_20180422	(BSA)	0.1685
	pencil_1		0.1297
	pencil_2		0.1267

500 pC	C_20180421	(DOE) f =	0.1808
	C_20180422	(BSA)	0.1711
	pencil_1		0.1606
	pencil_2		0.1508

Summary/Conclusion: Gun Simulations

simulation for 250pC: pencil emittances < BSA emittances < DOE emittances; this is more pronounced for slice emittances \rightarrow there is a lot to gain by a flat profile

simulation for 500pC: saturation effects, differences in emittance are less significant

figure of merit based on gain length prefers flat beams with lower charge

DESY.

Summary/Conclusion

DOE measurements have been done with laser 2 (266 nm); the measured profile is not flat; better results are expected for laser 1 (257 nm);

measured DOE profile is clipped

BSA & DOE beams are not round \rightarrow it is not possible to optimize both foci simultaneously

simulation for 250pC: pencil emittances < BSA emittances < DOE emittances; this is more pronounced for slice emittances \rightarrow there is a lot to gain by a flat profile simulation for 500pC: saturation effects, differences in emittance are less significant

figure of merit based on gain length prefers flat beams with lower charge

DOE measurements with laser 1 are planned DESY.