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Laser Beam of the XFEL-Photogun

Slide by Steffen Schmid

(Image source: R. Martin, Master thesis, Institute of Physics, HU Berlin, 2013) 

PITZ / XFEL-Photogun Spatial Laser Spot Profile

(Image source: M. Krasilnikov, et al., FEL2013, New York) 

⇒ Spatial flat-top profile of laser spot on cathode needed

Two Possibilities:

“Old“: Beam Shaping Aperture (BSA)
“New“: Diffractive Optical Elements (DOE)
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”Old Method“ - BSA 
(≡ Optical Imaging of an Aperture)

Original slide by Sebastian Pumpe, edited by Steffen Schmid

power: 100% 5-10% 1-2%

UV

+ Robust against deviations of input beam quality

- Sophisticated imaging system needed
- Smaller spot sizes require larger optics
- 𝟗𝟖% of laser intensity gets lost ( leads to further problems )
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”New Method“ - DOE 
(≡ Spatial Phase Modulation of Gaussian Laser Beam)

Original slide by Sebastian Pumpe, edited by Steffen Schmid
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Optical lens transfer function:

𝑔௢ 𝑥௢, 𝑦௢ ൌ 𝑒௜గ ሺೣబ
మశ೤బ

మሻ
ഊ ೑  ଵି೥

೑ ⋯

⋯ ∬ 𝑔௜ 𝑥௜, 𝑦௜  𝑒ି మഏ ೔
ഊ ೑   ሺ௫೚⋅௫೔ା௬೚⋅௬೔ሻ 𝑑𝑥௜ 𝑑𝑦௜

⇒ Fourier Transformation
(Formula: MIT  2.71/2.710 04/08/09 wk9-b-18 )
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”New Method“ - DOE 
(≡ Spatial Phase Modulation of Gaussian Laser Beam)

Original slide by Sebastian Pumpe, edited by Steffen Schmid
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(lasercomponents.com) (Apollo Model 1600) 

Optical lens transfer function:

𝑔௢ 𝑥௢, 𝑦௢ ൌ 𝑒௜గ ሺೣబ
మశ೤బ

మሻ
ഊ ೑  ଵି೥

೑ ⋯

⋯ ∬ 𝑔௜ 𝑥௜, 𝑦௜  𝑒ି మഏ ೔
ഊ ೑   ሺ௫೚⋅௫೔ା௬೚⋅௬೔ሻ 𝑑𝑥௜ 𝑑𝑦௜

⇒ Fourier Transformation
(Formula: MIT  2.71/2.710 04/08/09 wk9-b-18 )
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“New Method“ - DOE 
(≡ Spatial Phase Modulation of Gaussian Laser Beam)

Original slide by Sebastian Pumpe, edited by Steffen Schmid

+ “Simple” imaging system
+ Smaller spot sizes ൏ 𝟓𝟎 𝝁𝒎 possible
+ Only ~𝟑% of laser intensity gets lost ( increases setup stability ) 

- Sensitive on input beam quality

100% ≈97%

UV

Opt. Fourier transform
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BSA and DOE spatial shaping at XFEL

Original slide by Sebastian Pumpe, edited by Steffen Schmid

B: DOE

Efficiency: 94 %

A: BSA

Setup

Efficiency: 10 %
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DOE BSA

clipped (saturated)

1.19

0.256 mm
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1.18
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 





 pencil 1  pencil 2
Slide by Martin Dohlus

Measured transverse Profiles und Ideal Pencil Profiles
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DOE BSA

clipped (saturated)

Measured transverse Profiles and Ideal Pencil Profiles

Slide by Martin Dohlus
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• Laser output to cathode transmission efficiency 𝑻 increased
⇒ Beam Shaping Aperture (BSA): 𝑇 ൌ 10%

Diffractive Optical Element (DOE): 𝑇 ൌ 94%
⇒ Investigate long-term stability of DOE system

• Laser used for measurements (266nm) ് DOE design (257nm)
⇒ Clipped 0th order peak in DOE spot intensity map
⇒ Repeat measurements with 𝜆௟௔௦௘௥ ൌ 257nm

• BSA & DOE laser spots are both elliptical
⇒ Effect of optics downstream of beam shaping setup 

Summary: Optical Setup
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Gun Simulation with Krack
Krack is an implementation of a Poisson solver (approach 2 or EB-method);
it uses binning of the charge to an equidistant grid and the convolution with
a kernel function (charged cuboids)

the start distribution is Gaussian in time (6.65 psec rms) and 
according to the measured profiles in the transverse dimension; 
simulations have been done with 250 pC, 400 pC and 500 pC with 
1E6 particles
the transverse resolution is 0.07t; all external fields (gun, solenoid and 8 tesla 
cavities) have rz-symmetry; the distribution is tracked from the cathode to the 
exit of the last cavity of ACC1;

the injection is calculated with 500 time steps and a longitudinal resolution 
better than 10 m by a 2nd order RK-integrator; the rest is calculated with a 
longitudinal resolution of 0.05z by a 5th order RK-integrator

the gun-phase and solenoid strength are optimized for minimal projected 
emittance after ACC1; criterion x,nx,n = min
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C_20180421  (DOE)
Bsol = 0.2050 T   = 0  2.0 deg
Q   = 250 pC        Ipeak = 13.85 A
x = 4.79         y = 2.49
x =  47.5 m      y = 29.6 m
x,p = 0.776 m y,p = 0.975 m
x,s = 0.66   m y,s = 0.78   m

C_20180422  (BSA)
Bsol = 0.2050 T   = 0  2.0 deg
Q   = 250 pC        Ipeak = 14.11 A
x = 5.58         y = 2.45
x =  50.5 m      y = 27.5 m
x,p = 0.708 m y,p = 0.925 m
x,s = 0.53   m y,s = 0.67   m

pencil 1 (sigma = 0.256 mm)
Bsol = 0.2050 T   = 0  2.0 deg
Q   = 250 pC        Ipeak = 13.93 A
x = 5.40         y = 5.61
x =  53.1 m      y = 54.1 m
x,p = 0.614 m y,p = 0.612 m
x,s = 0.375 m y,s = 0.375 m

pencil 2 (sigma = 0.272 mm)
Bsol = 0.2050 T   = 0  2.0 deg
Q   = 250 pC        Ipeak = 14.14 A
x = 4.77 y = 4.69
x =  43.0 m      y = 42.4 m
x,p = 0.647 m y,p = 0.647 m
x,s = 0.38   m y,s = 0.38   mprojected/slice emittance

slice properties at z(Ipeak)

Overview: Simulation of 250 pC from Cathode through ACC1 to Z=14.2 m
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C_20180421  (DOE)
Bsol = 0.2055 T   = 0  2.7 deg
Q   = 397 pC        Ipeak = 19.08 A
x = 3.13 y = 2.14
x =  32.5 m      y = 31.2 m
x,p = 0.835 m y,p = 1.04 m
x,s = 0.73   m y,s = 0.80 m

C_20180422  (BSA)
Bsol = 0.2055 T   = 0  2.9 deg
Q   = 400 pC        Ipeak = 19.84 A
x = 4.04 y = 2.45
x =  38.9 m      y = 32.8 m
x,p = 0.753 m y,p = 1.02  m
x,s = 0.62   m y,s = 0.81  m

pencil 1 (sigma = 0.256 mm)
Bsol = 0.2055 T   = 0  3.0 deg
Q   = 400 pC        Ipeak = 19.36 A
x = 3.23         y = 3.31
x =  36.4 m      y = 37.5 m
x,p = 0.629 m y,p = 0.632 m
x,s = 0.51   m y,s = 0.51   m

pencil 2 (sigma = 0.272 mm)
Bsol = 0.2057 T   = 0  2.5 deg
Q   = 400 pC        Ipeak = 19.88 A
x = 2.62 y = 2.49
x =  28.3 m      y = 27.0 m
x,p = 0.653 m y,p = 0.656 m
x,s = 0.50   m y,s = 0.50   m

Overview: Simulation of 400 pC from Cathode through ACC1 to Z=14.2 m

projected/slice emittance
slice properties at z(Ipeak)
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C_20180421  (DOE)
Bsol = 0.2055 T   = 0  4.0 deg
Q   = 474 pC        Ipeak = 21.10 A
x = 2.77         y = 2.18
x =  30.0 m      y = 33.6 m
x,p = 0.866 m y,p = 1.03  m
x,s = 0.80   m y,s = 0.80   m

C_20180422  (BSA)
Bsol = 0.2055 T   = 0  3.5 deg
Q   = 498 pC        Ipeak = 22.34 A
x = 3.53 y = 2.58
x =  36.3 m      y = 36.7 m
x,p = 0.817 m y,p = 1.08  m
x,s = 0.69   m y,s = 0.87   m

pencil 1 (sigma = 0.256 mm)
Bsol = 0.2055 T   = 0  3.2 deg
Q   = 498 pC        Ipeak = 21.41 A
x = 3.45         y = 3.40
x =  43.9 m      y = 43.1 m
x,p = 0.749 m y,p = 0.749 m
x,s = 0.70   m y,s = 0.70   m

pencil 2 (sigma = 0.272 mm)
Bsol = 0.2057 T   = 0  2.8 deg
Q   = 500 pC        Ipeak = 22.52 A
x = 2.75 y = 2.68
x =  33.4 m      y = 32.9 m
x,p = 0.719 m y,p = 0.724 m
x,s = 0.64   m y,s = 0.64   m

Overview: Simulation of 500 pC from Cathode through ACC1 to Z=14.2 m

projected/slice emittance
slice properties at z(Ipeak)
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250 pC C_20180421  (DOE)
C_20180422  (BSA)
pencil_1
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f = 

400 pC C_20180421  (DOE)
C_20180422  (BSA)
pencil_1
pencil_2

f = 
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0.1729
0.1183
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0.1685
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500 pC C_20180421  (DOE)
C_20180422  (BSA)
pencil_1
pencil_2

f = 0.1808
0.1711
0.1606
0.1508

Z=14.2m

A Figure of Merit
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Summary/Conclusion: Gun Simulations

simulation for 250pC: pencil emittances < BSA emittances < DOE 
emittances;
this is more pronounced for slice emittances  there is a lot to gain by a 
flat profile

simulation for 500pC: saturation effects, differences in emittance are 
less significant

figure of merit based on gain length prefers flat beams with lower charge
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Summary/Conclusion

simulation for 250pC: pencil emittances < BSA emittances < DOE 
emittances;
this is more pronounced for slice emittances  there is a lot to gain by a 
flat profile

BSA & DOE beams are not round  it is not possible to optimize both 
foci simultaneously

simulation for 500pC: saturation effects, differences in emittance are 
less significant

measured DOE profile is clipped

DOE measurements have been done with laser 2 (266 nm); the measured 
profile is not flat; better results are expected for laser 1 (257 nm);

DOE measurements with laser 1 are planned

figure of merit based on gain length prefers flat beams with lower charge


