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Laser Beam of the XFEL-Photogun
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(Image source: R. Martin, Master thesis, Institute of Physics, HU Berlin, 2013) (Image source: M. Krasilnikov, et al., FEL2013, New York)

= Spatial flat-top profile of laser spot on cathode needed

Two Possibilities:

“Old“: Beam Shaping Aperture (BSA)
“New*: Diffractive Optical Elements (DOE)
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”0Old Method“ - BSA

(= Optical Imaging of an Aperture)

beam shaping aperture (BSA)

* O

power:  100% 5-10% 1-2%

+ Robust against deviations of input beam quality
- Sophisticated imaging system needed

- Smaller spot sizes require larger optics
- 98% of laser intensity gets lost ( leads to further problems )
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New Method“ - DOE

(= Spatial Phase Modulation of Gaussian Laser Beam)

DOE lens
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(Image sources: J. Yang, et al., Opt Eng 42, 2003)

Optical lens transfer function:
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= Fourier Transformation
(Formula: MIT 2.71/2.710 04/08/09 wk9-b-18 )
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New Method“ - DOE

(= Spatial Phase Modulation of Gaussian Laser Beam)

DOE lens
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(lasercomponents.com)  (Apollo Model 1600)
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“New Method“ - DOE

(= Spatial Phase Modulation of Gaussian Laser Beam)

DOE lens

cathode

spatial pos.
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spatial pos
(Image sources: J. Yang, et al., Opt Eng 42, 2003)

=97%

spatial pos.

Opt. Fourier transform
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100%

Phase Offset Ag
+ “Simple” imaging system
+ Smaller spot sizes (< 50 um) possible
+ Only ~3% of laser intensity gets lost ( increases setup stability )

- Sensitive on input beam quality
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BSA and DOE spatial shaping at XFEL

Setup

aperture shaping 5
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measured (266 nm)

DOE designed
for 257 nm
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Measured transverse Profiles und Ideal Pencil Profiles
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Measured transverse Profiles and Ideal Pencil Profiles
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Summary: Optical Setup

« Laser output to cathode transmission efficiency T increased
= Beam Shaping Aperture (BSA): T =10%
Diffractive Optical Element (DOE): T =94%
= Investigate long-term stability of DOE system

« Laser used for measurements (266nm) = DOE design (257nm)
=  Clipped 0t order peak in DOE spot intensity map
= Repeat measurements with 4;,¢.,- = 257nm

« BSA & DOE laser spots are both elliptical
=  Effect of optics downstream of beam shaping setup
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Gun Simulation with Krack

Krack is an implementation of a Poisson solver (approach 2 or EB-method);
it uses binning of the charge to an equidistant grid and the convolution with
a kernel function (charged cuboids)

the start distribution is Gaussian in time (6.65 psec rms) and

according to the measured profiles in the transverse dimension;
simulations have been done with 250 pC, 400 pC and 500 pC with
1E6 particles

the transverse resolution is 0.07 o;; all external fields (gun, solenoid and 8 tesla

cavities) have rz-symmetry; the distribution is tracked from the cathode to the
exit of the last cavity of ACC1,;

the injection is calculated with 500 time steps and a longitudinal resolution
better than 10 um by a 2"d order RK-integrator; the rest is calculated with a
longitudinal resolution of 0.05¢, by a 5" order RK-integrator

the gun-phase and solenoid strength are optimized for minimal projected
emittance after ACC1; criterion g 5, , = min
DESY Page 14



Overview: Simulation of 250 pC from Cathode through ACC1 to Z=14.2 m
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DESY. slice properties at z(l.4)
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current/A

Overview: Simulation of 400 pC from Cathode through ACC1 to Z=14.2 m

400 pC, current/A
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Overview: Simulation of 500 pC from Cathode through ACC1 to Z=14.2 m
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A Figure of Merit

power gain length

(assuming optimal beta function
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Summary/Conclusion: Gun Simulations

simulation for 250pC: pencil emittances < BSA emittances < DOE
emittances;

this is more pronounced for slice emittances — there is a lot to gain by a
flat profile

simulation for 500pC: saturation effects, differences in emittance are
less significant

figure of merit based on gain length prefers flat beams with lower charge
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Summary/Conclusion

DOE measurements have been done with laser 2 (266 nm); the measured
profile is not flat; better results are expected for laser 1 (257 nm);

measured DOE profile is clipped

BSA & DOE beams are not round — it is not possible to optimize both
foci simultaneously

simulation for 250pC: pencil emittances < BSA emittances < DOE
emittances;
this is more pronounced for slice emittances — there is a lot to gain by a

flat profile
simulation for 500pC: saturation effects, differences in emittance are

less significant
figure of merit based on gain length prefers flat beams with lower charge

DOE measurements with laser 1 are planned
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