Current status of double bunch generation at FLASH

John Dale

S2E meeting, 12/10/2015

Overview

- Introduction
 - FLASHForward
 - Double bunch
- Experiments
 - Pulse stacker
 - Flash gun
 - Beam transport
 - LOLA
 - Lessons learnt
- Simulations
 - Previous work
 - Gun simulations with ASTRA
 - Analytic model
 - 1D tracking codes
 - Solvers
- Summary

FLASHForward

Double bunch

- Why double bunch?
 - External injection at FLASHForward.
 - Two colour FEL.
- Why pulse stacker to generate double bunches at FLASH?
 - Can tune charge of bunches independently.
 - Can tune initial distance between bunches.
- FLASHForward requirements.
 - Final bunch distance \sim 100 μ m.
 - Witness bunch charge less than driver bunch charge.
 - Witness bunch shorter than driver bunch.

Overview

- Introduction
 - FLASH
- Experiments
 - Pulse stacker
 - Flash gun
 - Beam transport
 - LOLA
 - Lessons learnt
- Simulations
 - Previous work
 - Gun simulations with ASTRA
 - Analytic model
 - 1D tracking codes
 - Solvers
- Summary

Pulse stacker

Pulse stacker

FLASHForward >> Future-oriented wakefield-accelerator research and development at FLASH

FLASH gun

- Images of laser pulses on the virtual cathode.
- Brightness difference due to different number of electron bunches

FLASH gun

LOLA measurements

Experimental lessons learnt

- Pulse stacker needs to be upgraded.
 - Currently not very stable over long periods of time.
- Beam losses due to energy in BC2.
 - Possible due to too high an energy in BC2.
- Can perform delay measurements with gun scans.
- Need to determine working points in machine compatible parameters.
- More time requested for next year.
- Simulations are on going.

Overview

- Introduction
 - FLASH
- Experiments
 - Pulse stacker
 - Flash gun
 - Beam transport
 - LOLA
 - Lessons learnt
- Simulations
 - Previous work
 - Gun simulations with ASTRA
 - Analytic model
 - 1D tracking codes
 - Solvers
- Summary

Previous work

- Initial double bunch simulations performed by Carlos Entrena Utrilla (former masters student)^[1] supervised by Steffen Wunderlich.
- Gun simulated with ASTRA^[7] (3D) with collective effects.
 - Can set different charges for the bunches.
 - Can adjust the delay between the bunches.
 - Can adjust the phase in the gun.
- Semi-analytical model with RFTweak (1D tracker) to determine compression and RF parameters ^[1].
- Defined centre (zero phase) as weight between both bunches
 - Definition of zero phase not easily realisable in FLASH.
 - Now changed to centre of drive (first) bunch.

Gun simulation with ASTRA

1D FLASH analytical model

- Simple equations ^[1,3]
 - No tracking
 - No Collective effects.
- Fit to the initial distribution
 - 3^{rd} order polynomial $(E_{0,\Delta s_0} = A + B\Delta s_0 + C\Delta s_0^2 + D\Delta s_0^3)$
- RF module equations:
 - $\Delta E_{ACC1,\Delta s_0} = V_{ACC1} \times \cos(\varphi_{ACC1} + k\Delta s_0)$
 - $\Delta E_{ACC39,\Delta s_0} = V_{ACC39} \times \cos(\varphi_{ACC39} + 3k\Delta s_0)$
 - $\Delta E_{ACC23,\Delta s_2} = V_{ACC23} \times \cos(\varphi_{ACC23} + k\Delta s_2)$
- Compressor equations:
 - $\Delta s_2 = \Delta s_0 \left(R_{56,2} \delta_{39,\Delta s_0} + T_{566,2} \delta_{39,\Delta s_0}^2 + U_{5666,2} \delta_{39,\Delta s_0}^3 \right)$
 - $\Delta s_3 = \Delta s_2 \left(R_{56,3}\delta_{23,\Delta s_2} + T_{566,3}\delta_{23,\Delta s_2}^2 + U_{5666,3}\delta_{23,\Delta s_2}^3\right)$
 - $\qquad \delta_{n,\Delta s_c} = \left(E_{n,\Delta s_c} E_{n,0}\right) / E_{n,0}$
- Derive functions for energy and position at different locations.

DESY

FLASHForward

1D FLASH particle tracking codes

- 1D simple tracker.
 - Application of 1D equations to input distribution.
 - ASTRA input.
 - No collective effects.
- RFTweak^[2].
 - 1D.
 - ASTRA input.
 - Collective effects:
 - Wakefields
 - Space charge
 - CSR
- Both take the RF and compressor parameters to track the particles.

Comparisons

Compression scenario

- To tune RF parameters to achieve desired compression scenario •
- 6 RF parameters, need min 6 compression parameters^[1] •
 - Compressor energy $E_{ACC39,\Delta S_{0,mid}} = 135 MeV$
 - Compressor energy $E_{ACC23,\Delta S_{2,mid}} = 450 MeV$.
 - Inverse compression after BC2, $Z_2 = \frac{\partial \Delta S_2}{\partial \Delta S_0}\Big|_{\Delta S_{2,mid}} = \frac{1}{6}$ Total inverse compression. $Z_3 = \frac{\partial \Delta S_3}{\partial \Delta S_0}\Big|_{\Delta S_{3,mid}} = \frac{1}{160}$

 - 1st order compression shape factor. $Z_3'|_{\Delta S_{3,mid}} = 0.0$
 - 2nd order compression shape factor. $Z_3''|_{\Delta S_{3,mid}} = \frac{2(1/c_d Z_3)}{\Delta S_{3,mid}^2}$, $C_d = 100 \,\mu m$
- Can derive equations for compression scenario from 1D analytic equations. •
 - Very long and not shown here.

FLASHForward

Semi-analytical solver

- Derive function for RF values from compression scenario ^[3].
 - F(compression) = RFparameters

- Difficulties
 - If skip first point and give optimal RF values, would iterate to non optimal solution and then iterate back.
 - With double bunch RFTweak can fall over when in a very non optimal solution.

FLASHForward

Gauss Markov solver

- Definitions^[4]:
 - X is vector or variables.
 - RF parameters.
 - *L* is vector or measurements/desired parameters.
 - Compression scenario.
 - F(X) is vector or calculated/simulated/measured parameters.
 - From RF parameters determines compression parameters
 - Analytic equations, 1D simple tracker or RFTweak.
 - *P* is the weight matrix (inverse error matrix)
 - Importance of the different compression scenario parameters

Gauss Markov Solver

- W = F(X) L, want to minimize this value.
- $\hat{X} = -(A^T P A)^{-1} A^T P W$
 - $A = \frac{\partial F(X)}{\partial X}|_X$
 - A is calculated using the analytic formulas.
 - No longer dependant on full form of equations, only the first derivatives.
 - Still requires all parameters (R56 etc).
- $X = X \hat{X}$
- Use damped Gauss Newton line search with RFTweak^[5,6].
- Can use the solver with all three methods.

Gauss Markov Solver

180pC, 180pC, 65ps

180pC, 180pC, 55ps

180pC, 90pC, 65ps

180pC, 90pC, 55ps

Future work

- Comparison of semi-analytical and Gauss Markov solver
 - Number of iterations.
 - Difference in results.
 - More work on new solver

•

- Can it be made faster?
- Weighting the compression scenario.
- 3D simulations.
- Understand uncertainties and errors (different parameters in analytical and simulation).
- Can add more equations.
- Determine range of working points for different.
 - Gun phases.
 - Charges.
 - Initial delays.
 - Compression scenarios.
 - Change in definition.
- Can Gauss Markov solver be applied to FLASH?
 - Can equations be derived for the machine measurements?
 - Can the model be used to steer operations?
 - Kalman filter equations?

Summary

- First experiments conducted
 - Double bunches transported through FLASH
 - Delay can be varied
 - Charge can be varied
 - Pulse stacker needs improvement (alignment)
 - Working points need determining
- New solver developed
 - Uses iterative steps
 - Faster (2-3 iterations) and more reliable for double bunch
 - Calls RF tweak less times
 - Need to explore simulations further.
 - 3D simulations.
 - Explore FLASH usage
- More beam time requested for 2016.

My Questions

- Can the analytical model be improved to be more realistic?
- Are there any improvements?
- Suggested studies for the simulations?
- Other compression scenarios?
- Single bunch simulations.
- XFEL simulations
- Use with FLASH?

References

- [1] C.M.E. Utrilla, Desy-thesis-2014-034, DESY
- [2] M. Dohlus et al, xfel-wiki.desy.de/RF_tweak_GUI
- [3] Igor Zagorodnov and Martin Dohlus, Phys. Rev. ST Accel. Beams 14, 014403
- [4] D.E. Wells and E.J. Krakiwsky. *The Method Of Least Squares. Geodesy and Geomatics*, Engineering University Of New Brunswick, 1971.
- [5] Jorge Nocedal and Stephen J. Wright. *Numerical optimization*. Springer, 1999.
- [6] A. Perelmuter. *Adjustment of free networks*. Journal of Geodesy, 53(4):291–295, December 1979.
- [7] K. Floettmann, www.desy.de/~mpyflo/

