Investigations on electron beam imperfections at the PITZ photo injector

M. Krasilnikov, DESY-TEMF meeting, 15.01.2016, Hamburg

Imperfections studies at PITZ:

- photoemission studies: core+halo model
- electron beam imaging: main solenoid calibration with a beam
- electron beam asymmetry investigations RF coupler kick studies

Investigations on electron beam imperfections: motivation

When the core+halo initial distribution is utilized, ASTRA shows good agreement with extracted charge measurements

Once a fit is found, the core + halo input distribution fits the experimental data...

New emission measurements: October-November 2015

Solid curves = mean (runs 4,13,14,17,10) Dashed curves = min and max (runs 4,13,14,17,10)

Run	σ _t (ps)	Ecath (MV/m)	ΔΦ (deg)	Radial profile: XX-core + Gaussian halo
4	0.85	59.569	0	Flattop core
13			-1	Average core
14			0	Average core $\pm\sigma_{\!\varphi}$
17			-1	
10		58	-1	Flattop core

Simulated charge for 90deg w.r.t zero-crossing phase systematically higher than measured

New emission measurements: October-November 2015

Still not understood:

- 1. Measured charge for 90deg w.r.t zero-crossing phase:
 - systematically lower than corresponding simulations (especially at QE→SC transition)
- systematically lower than the charge measured at lower phases (30, 49deg) with higher gradients (E_{cath}), but same E_{emission}
- 2. Zero-crossing phase \leftarrow \rightarrow MMMG phase \rightarrow 2-3 deg phase shift between measurements and simulations \neg_{\checkmark}

Electron beam imaging studies (Q. Zhao)

Main idea: beam dynamics w/o space charge to confirm RF gun + solenoid electron optics, e.g. the main solenoid calibration: $B_{z,main}[T]=5.889\times10^{-4}*I_{main}[A]+7.102\times10^{-5}$

Tools: grid at the BSA location \rightarrow to be imaged onto the cathode, then electron image at LOW.Scr1,2,3 for various RF peak power level (E_{cath}) by I_{main} tuning

$P_{gun}=5MW (54.4MV/m \rightarrow 6.07MeV/c)$

Electron beam imaging studies (Q. Zhao)

experiment

simulation

- Measurement-simulation discrepancy in magnification factor for ALL screens (resolution?)
- AI~6A Measured-Simulated \rightarrow emittance (with space charge)

$P_{qun}=5MW$ (54.4MV/m \rightarrow 6.07MeV/c)

- Measurement-simulation discrepancy in magnification factor for LOW.Scr1 only
- ∧I~6A Measured-Simulated → rotation angle and magnification factor at LOW.Scr1

The discrepancy is still to be understood

Electron beam asymmetry: possible reasons

E-beam transverse tails investigations: Larmor angle

Larmor angle experiment: beam at HIGH1.Scr1

Larmor angle measurements on 29.09.2015M-A

No booster applied \rightarrow electron beam to be observed at HIGH1.Scr1 (z=5.28m from the cathode)

ASTRA simulations, 1st step: E@cathode $\leftarrow \rightarrow$ <Pz>

Max. mean momentum is reproduced in simulations: (54.2MV/m; 41.5deg)

ASTRA simulations: E-beam at EMSY1 (Ecath=54.19MV/m)

Main solenoid scan: MaxB(1) = -(7.102e-5+5.899e-4*Imain)

E-beam at z=0.18m: vector plot {Px,Py}(x,y)

?How to model the kick to reproduce the e-beam shape at EMSY1?

rfgun.0528.011

Investigations on electron beam imperfections

- Photoemission studies:

- Core+halo model could explain (at least partially) charge production curves, but not measured phase space. Still some discrepancy in QE-SC transition region remains →*
- Bunch length measurements (w.r.t to the simulations) also show discrepancies

- Electron beam imaging

- Some discrepancy in the main solenoid calibration revealed, but not systematic (gun power and observation screen dependent)
- Electron beam asymmetry investigations:
 - Second vacuum mirror (VM) experiment → VM excluded
 - Solenoid imperfections → weak quad only? →*
 - Coaxial coupler kick → major candidate (up to now) → Larmor angle experiment →*

