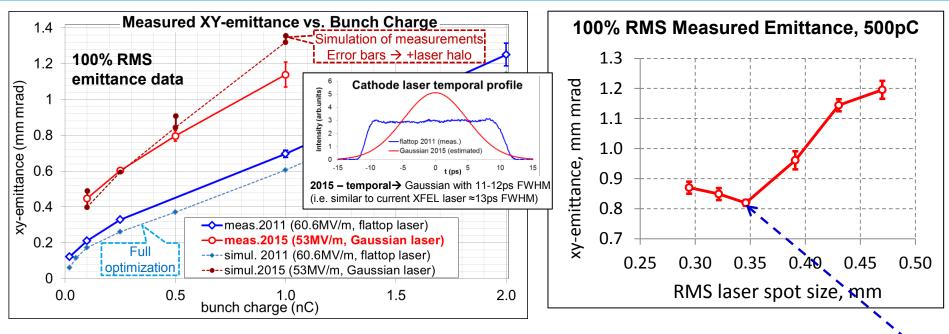
Motivation of emission studies at PITZ

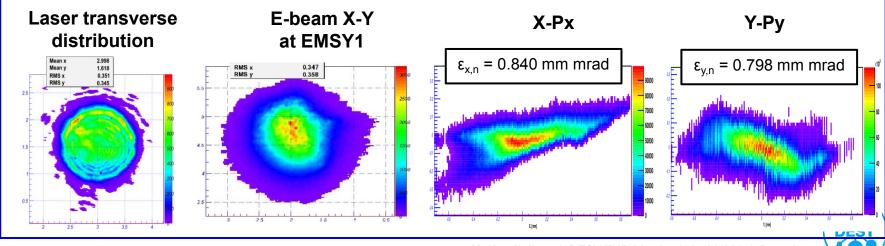
PITZ activities to understand the discrepancies between measurements and simulations in:

- Transverse phase space
- Optimum machine parameters
- Auxiliary measurements

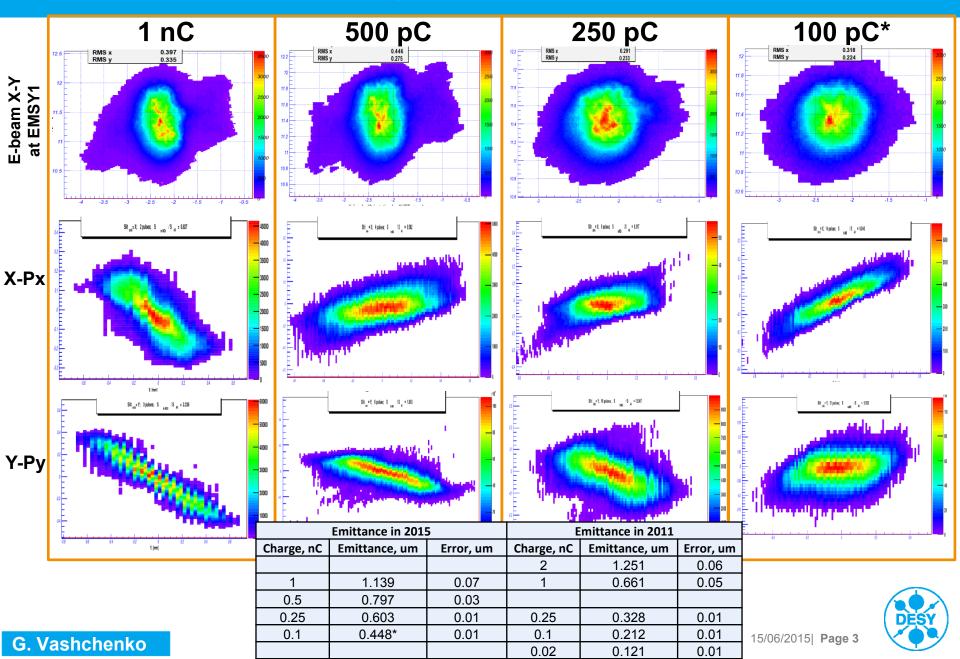
Ideas \rightarrow how to explain the discrepancies:

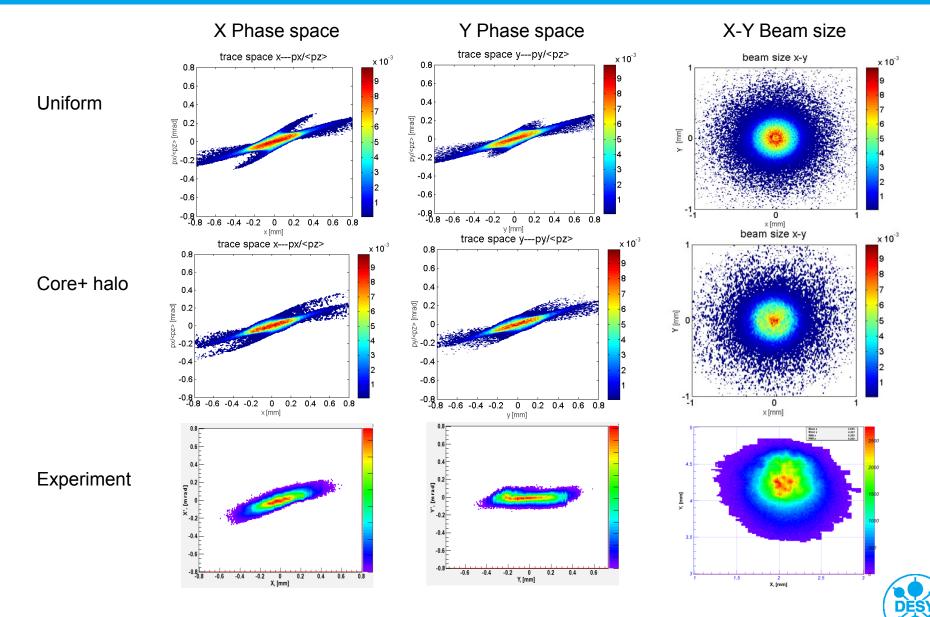

- Errors in measurements
- Extracted charge → emission modeling
- Imperfections (e.g. cathode laser halo)
- Sources of e-beam X-Y asymmetry/coupling (coaxial coupler, VM, solenoid...)

M. Krasilnikov DESY-TEMF Meeting Hamburg, 15 June 2015



Emittance measurements in 2015 (vs. 2011): Gun at 53 MV/m, Cathode laser → temporal Gaussian


Requirement for XFEL injector commissioning: 1 mm mrad at 500pC -> fulfilled !


M. Krasilnikov | DESY-TUD Meeting | 15/06/2015 | Page 2

2015: Measured Phase Spaces

*Emittance measurements for 100 pC bunch charge are not completed: to be continued

Phase space BSA = 0.9 mm, 100 pC, at EMSY1

Phase space BSA = 1.6 mm, 1 nC, at EMSY1

Measurements vs. Simulations

	2011	2015
Gun gradient, Ecath	60.6MV/m	53MV/m
Cathode laser, temporal	Flattop (2/21.5\2ps)	Gaussian (11-12ps fwhm)
CDS booster		Z-position \rightarrow -0.4m
Optimum phase space	 Even signs of <xpx>, <ypy> are opposite for high charge</ypy></xpx> Rather good agreement for low charges (≤100pC) Larger charges (≥500pC) → larger discrepancies Strong X-Y asymmetry/coupling, tails in e-beam transverse distributions Strong dependence on e-beam trajectory 	
Optimum machine parameters		
 Laser rms spot size 	 Simulated > Measured (e.g. for 0.25nC →+26%; 1nC →+35%; 2nC→59%) 	 Implemented core+halo in transverse laser distribution reduces the discrepancy
 Main solenoid current 	Imain: Simulated-Measured →-46A	
 RF gun phase 	 Simulated → ~MMMG Experiment → MMMG+6deg 	 Simulated ≈ Measured → ~MMMG
Auxiliary measurements: •Bunch charge vs. gun phase •Bunch charge vs. laser pulse energy	Underestimated extracted bunch charge in ASTRA simulations:Gun phase scansLT scans	Implemented core+halo in transverse laser distribution → better coincidence between ASTRA simulations and experimental data (studies of Carlos Hernandez-Garcia), BUT still large discrepancies in phase space for 1nC

How to explain the discrepancies

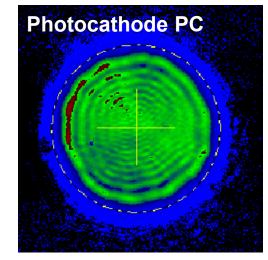
> ?Measurement errors:

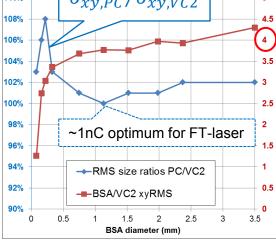
- Bunch charge: → cross-check using LOW.FC1,2, LOW.ICT1, HIGH.ICT1 → OK
- Laser spot size at VC2
- Electron beam/beamlet size at YAG screens → checked several times (grid based calibration)
- Gradient in the gun and CDS booster → cross-checked with beam momentum scans
- Emittance measurements using single slit scan → methodical studies were performed (e.g. transverse halo cut, etc.)
- Cathode laser pulse length (streak camera, OSS)

- Impact onto amount of extracted particles
- Impact onto beam dynamics ("initial" kick onto transverse and longitudinal phase spaces: correlation and intrinsic emittance?)
- Laser imperfections → core+halo
- Additional motivation: 3D quasi-ellipsoidal laser pulses for the production of (ellipsoidal) electron bunches with extremely low emittance

> Origin of X-Y asymmetry/coupling:

- ?RF-gun coaxial coupler kick (e-beam is large there + solenoid center)
- ??Vacuum mirror
- ???Other imperfections: wake field-like (image charge) effects of the beam line, solenoid, magnetic components


Cross-check of the VC2 (Virtual Cathode 2) measurements on 12.03.2013


DDC with VC2 camera at laser trolley Laser beam a little bit bigger vacuum mirror on photocathode ($\leq 2\%$) Virtual cathode VC2 $\sigma_{xy,PC}/\sigma_{xy,VC2}$ 110% 108% 06% 104% 102% 100% 98% 96% 94% 92%

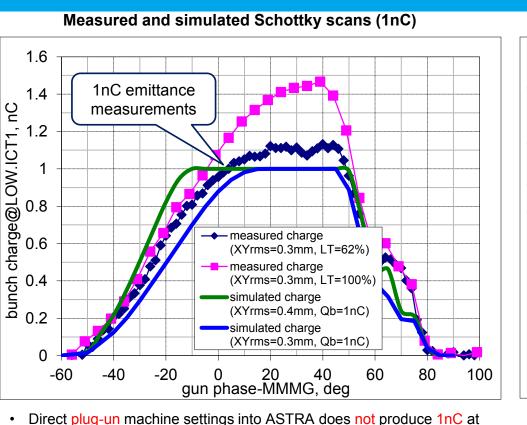
Quality (intensity) similar, the difference \rightarrow due to different number of mirrors and view ports in the path:

- PC: viewport-VM-viewport
- VC2: 4x mirrors

Cathode camera at gun location (CCD=Cs₂Te cathode location at the gun back plane)

Direct imaging onto CCD chip (pixel size 4.65um)

2011: Reasons of discrepancy for high $Q \rightarrow$ Emission from the cathode


1.6

1.4

1.2

1.0

0.8

the gun operation phase (+6deg), whereas 1nC and even higher charge

have different shapes than the experimentally measured (thin lines with

Simulated (ASTRA) phase scans w/o Schottky effects (solid thick lines)

(~1.2nC) are experimentally detected

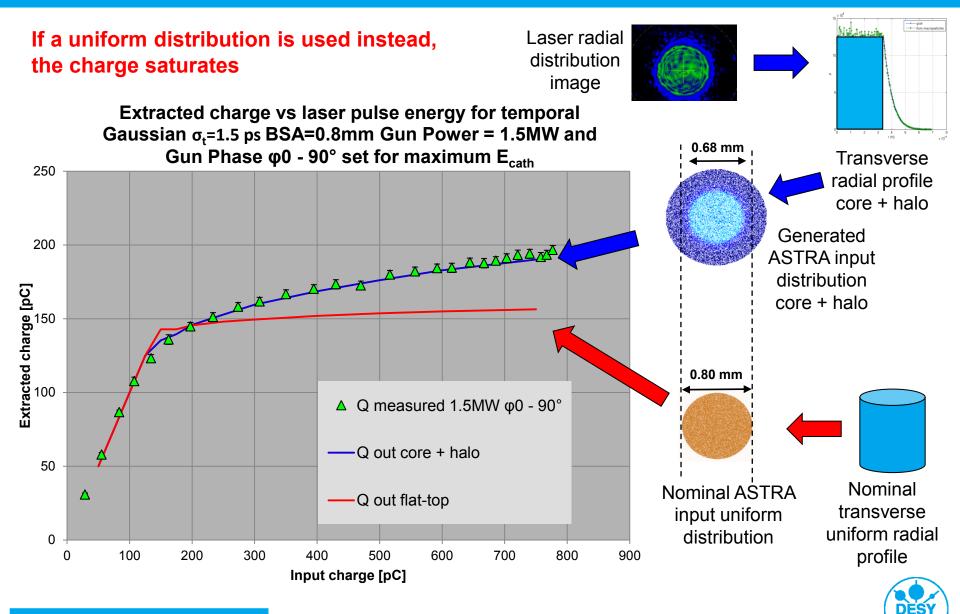
markers)

Measured and simulated laser energy scan (1nC)

measured charge (XYrms=0.3mm, 0deg)

simulated charge (XYrms=0.3mm, 0deg)

bunch charge@LOW.ICT1, nC 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 ~ laser intensity, nC


· Laser intensity (LT) scan at the MMMG phase (red curve with markers) shows higher saturation level, whereas the simulated charge even goes slightly down while the laser intensity (Qbunch) increases

Possible reasons:

- Field enhancement of the photo emission should be taken into account •
- Laser imperfections (transverse halo and temporal tails) could contribute at high charge densities

2015: Core+halo modeling applied to new measurements using cathode laser pulses with Gaussian temporal profile

C. Hernandez-Garcia

Measurements vs. Simulations at PITZ: Summary

- PITZ benchmark for theoretical understanding of the photo injector physics (beam dynamics simulations vs. measurements)
- > BD simulations \rightarrow to establish experimental optimization procedure
- Rather good agreement on emittance values between measurements and simulations
- > Optimum machine parameters: simulations ≠ experiment
 - Laser spot size → less in 2015 by applying core+halo model
 - Main solenoid current
 - RF-Gun launch phase → more consistent in 2015 for Gaussian laser pulses

Simulated and measured phase space:

- Rather good agreement for <0.1 nC</p>
- Large deviation for higher charges >500pC
- Correlations have different signs for higher charges
- > Photoemission studies (Talk of C. Hernandez-Garcia for more details):
 - New experimental benchmark (measurements for various RF and SC fields)
 - Implementation of the core+halo model → better understanding of the emission curves, BUT still transverse phase spaces for higher bunch charges are not explained
- X-Y asymmetry/coupling under study
- > Outlook:
 - TDS for LPS (bunch length) measurements
 - More precise charge measurements (less jitter, LOW.FC2 up to now → best s2n)
 - Coaxial coupler kick measurements (repeat)?

